This paper reports the current-voltage characteristics of [001]-oriented AlAs/InxGa1-xAs/GaAs resonant tunnelling diodes (RTDs) as a function of uniaxial external stress applied parallel to the [110] and the [1^-10]...This paper reports the current-voltage characteristics of [001]-oriented AlAs/InxGa1-xAs/GaAs resonant tunnelling diodes (RTDs) as a function of uniaxial external stress applied parallel to the [110] and the [1^-10] orientations, and the output characteristics of the GaAs pressure sensor based on the pressure effect on the RTDs. Under [110] stress, the resonance peak voltages of the RTDs shift to more positive voltages. For [1^-10] stress, the peaks shift toward more negative voltages. The resonance peak voltage is linearly dependent on the [110] and [1^-0] stresses and the linear sensitivities are up to 0.69 mV/MPa, -0.69 mV/MPa respectively. For the pressure sensor, the linear sensitivity is up to 0.37 mV/kPa.展开更多
We systematically investigate the effect of pressure on the magnetic properties of GdCo2B2 on the basis of alternating current(AC) susceptibility,AC heat capacity and electrical resistivity measurements under pressu...We systematically investigate the effect of pressure on the magnetic properties of GdCo2B2 on the basis of alternating current(AC) susceptibility,AC heat capacity and electrical resistivity measurements under pressures up to 2.2 GPa.A detailed magnetic phase diagram under pressure is determined.GdCo2B2 exhibits three anomalies that apparently reflect magnetic phase transitions,respectively,at temperatures TC= 20.5 K,T1= 18.0 K and TN= 11.5 K under ambient pressure.Under pressures up to 2.2 GPa,these anomalies are observed to slightly increase at TCand T1,and they coincide with each other above 1.6 GPa.Conversely,they decrease at TN and disappear under pressures higher than 1.4 GPa.The results indicate that the low-temperature magnetic phases can be easily suppressed by pressure.Moreover,the spin-glass-like behavior of GdCo2B2 is examined in terms of magnetization,aging effect and frequency dependence of AC susceptibility.A separation between the zero-field-cooled(ZFC) and field-cooled(FC) magnetization curves becomes evident at a low magnetic field of 0.001 T.A long-time relaxation behavior is observed at 4 K.The freezing temperature Tfincreases with frequency increasing.展开更多
By taking the influence of optical phonon modes into account, this paper adopts the dielectric continuum phonon model and force balance equation to investigate the electronic mobility parallel to the interfaces for Al...By taking the influence of optical phonon modes into account, this paper adopts the dielectric continuum phonon model and force balance equation to investigate the electronic mobility parallel to the interfaces for AlAs/GaAs semiconductor quantum wells (QWs) under hydrostatic pressure. The scattering from confined phonon modes, interface phonon modes and half-space phonon modes are analysed and the dominant scattering mechanisms in wide and narrow QWs are presented. The temperature dependence of the electronic mobility is also studied in the temperature range of optical phonon scattering being available. It is shown that the electronic mobility reduces obviously as pressure increases from 0 to 4GPa, the confined longitudinal optical (LO) phonon modes play an important role in wide QWs, whereas the interface optical phonon modes are dominant in narrow QWs, the half-space LO phonon modes hardly influence the electronic mobility expect for very narrow QWs.展开更多
The angular acceleration due to the spin effect increases the burning rate of solid propellant and changes the motor performance by increasing the operating pressure and decreasing the burning time. So it is important...The angular acceleration due to the spin effect increases the burning rate of solid propellant and changes the motor performance by increasing the operating pressure and decreasing the burning time. So it is important to know the grain regression taken place in the solid propellant rocket motor in the acceleration field. This study represents the grain regression analysis of two-dimensional axis-symmetric star grain configuration of the solid propellant rocket motor with spin induced acceleration effect and pressure effect on burn rate using geometrical and numerical analysis. While the rocket is spinning, the burn rates on each point of the propellant surface are different with its radial distance, acceleration vector angle and surface slope. With the different burn rates on the propellant surface, we analyze the propellant surface perimeter and port area, and these results are compared with those of constant burn rate and burn rate affected by the chamber pressure.展开更多
High-mobility and strong luminescent materials are essential as an important component of organic photodiodes,having received extensive attention in the field of organic optoelectronics.Beyond the conventional chemica...High-mobility and strong luminescent materials are essential as an important component of organic photodiodes,having received extensive attention in the field of organic optoelectronics.Beyond the conventional chemical synthesis of new molecules,pressure technology,as a flexible and efficient method,can tune the electronic and optical properties reversibly.However,the mechanism in organic materials has not been systematically revealed.Here,we theoretically predicted the pressure-depended luminescence and charge transport properties of high-performance organic optoelectronic semiconductors,2,6-diphenylanthracene(DPA),by first-principle and multi-scale theoretical calculation methods.The dispersion-corrected density functional theory(DFT-D)and hybrid quantum mechanics/molecular mechanics(QM/MM)method were used to get the electronic structures and vibration properties under pressure.Furthermore,the charge transport and luminescence properties were calculated with the quantum tunneling method and thermal vibration correlation function.We found that the pressure could significantly improve the charge transport performance of the DPA single crystal.When the applied pressure increased to 1.86 GPa,the hole mobility could be doubled.At the same time,due to the weak exciton coupling effect and the rigid flat structure,there is neither fluorescence quenching nor obvious emission enhancement phenomenon.The DPA single crystal possesses a slightly higher fluorescence quantum yield~0.47 under pressure.Our work systematically explored the pressure-dependence photoelectric properties and explained the inside mechanism.Also,we proposed that the exte rnal pressure would be an effective way to improve the photoelectric perfo rmance of organic semiconductors.展开更多
The effect of pressure on the variation of the crystallization phases of the Zr55Cu30Al10Ni5 bulk glass and its thermal stability under high pressure annealing was investigated by X-ray diffraction (XRD) and different...The effect of pressure on the variation of the crystallization phases of the Zr55Cu30Al10Ni5 bulk glass and its thermal stability under high pressure annealing was investigated by X-ray diffraction (XRD) and differential scanning calorimeter (DSC). The mode of crystallization and products of crystallization of the Zr55Cu30Al10Ni5 bulk glass were quite different under different pressure. At ambient pressure, the crystallization products consisted of NiZr2 and CuZr2, while at pressure of 1 GPa and 3 GPa, the alloys crystallized into NiZr2 and Cu10Zr7, respectively. The alloy was nearly not crystallized and only a small amount of Cu10Zr7 was precipitated under 5 GPa. DSC proved that the mode of the crystallization under high pressure was different from that at ambient pressure.展开更多
The calculations presented in this paper are based on the Sanchez-Lacombe(SL)lattice fluid theory.The interaction energy parameter,g12/k,required in this approach was obtained by fitting the cloud points of polystyr...The calculations presented in this paper are based on the Sanchez-Lacombe(SL)lattice fluid theory.The interaction energy parameter,g12/k,required in this approach was obtained by fitting the cloud points of polystyrene(PS)/methylcyclohexane(MCH)polymer solutions under pressure.The SL lattice fluid theory was used to calculate the spinodals,the binodals,and the Flory-Huggins(FH)interaction parameter of the solutions.The calculated results show that the SL lattice fluid theory can describe the dependences of thermodynamics of PS/MCH solutions on temperature and pressure very well.However,the calculated enthalpy and the excess volume changes indicate that the Clausius-Clapeyron equation cannot be suitable to describe pressure effect on PS/MCH solutions.Further analysis on the thermodynamics of this system under pressure shows that the role of entropy is more important than the excess volume in the present case.展开更多
Based on the phenomenon that acoustic emissions (AE) generated by rock mass increase suddenly because of underground excavation, time sequence of AE rate in rock failure has been discussed by using statistical damage ...Based on the phenomenon that acoustic emissions (AE) generated by rock mass increase suddenly because of underground excavation, time sequence of AE rate in rock failure has been discussed by using statistical damage theory. It has been demonstrated that how the influence of confining pressure on the deformation behavior and AE characteristics in rocks can be inferred from a simple mechanics model. The results show that loading confining pressure sharply brings out increasing of AE. On the other hand, few AE emits when confining pressure is loaded sharply, and AE occurs again when axial pressure keeps on increasing. These results have been well simulated with computer and show close correspondence with directly measured curves in experiments.展开更多
With a memory function approach, this paper investigates the electronic mobility parallel to the interface in a ZnSe/Zn1-xCdxSe strained heterojunction under hydrostatic pressure by considering the intersubband and in...With a memory function approach, this paper investigates the electronic mobility parallel to the interface in a ZnSe/Zn1-xCdxSe strained heterojunction under hydrostatic pressure by considering the intersubband and intrasubband scattering from the optical phonon modes. A triangular potential approximation is adopted to simplify the potential of the conduction band bending in the channel side and the electronic penetrating into the barrier is considered by a finite interface potential in the adopted model. The numerical results with and without strain effect are compared and analysed. Meanwhile, the properties of electronic mobility under pressure versus temperature, Cd concentration and electronic density are also given and discussed, respectively. It shows that the strain effect lowers the mobility of electrons while the hydrostatic pressure effect is more obvious to decrease the mobility. The contribution induced by the longitudinal optical phonons in the channel side is dominant to decide the mobility. Compared with the intrasubband scattering it finds that the effect of intersubband scattering is also important for the studied material.展开更多
The charge transport behavior of barium fluoride nanocrystals is investigated by in situ impedance measurement up to 35 GPa. It is found that the parameters change discontinuously at about 6.9 GPa, corresponding to th...The charge transport behavior of barium fluoride nanocrystals is investigated by in situ impedance measurement up to 35 GPa. It is found that the parameters change discontinuously at about 6.9 GPa, corresponding to the phase transition of BaF2 nanocrystals under high pressure. The charge carriers in BaF2 nanocrystals include both Fions and electrons. Pressure makes the electronic transport more difficult. The defects at grains dominate the electronic transport process. Pressure could make the charge-discharge processes in the Fm3m phase more difficult.展开更多
The evaporation behaviors are crucial for the flame location estimation in liquid rocketengines.This work,for the first time,experimentally reports the sub-millimeter droplet evaporationcharacteristics of the corrosiv...The evaporation behaviors are crucial for the flame location estimation in liquid rocketengines.This work,for the first time,experimentally reports the sub-millimeter droplet evaporationcharacteristics of the corrosive dinitrogen tetroxide(NTO,one prevailing hypergolic oxidizer)athigh ambient pressure up to 4.5 MPa.An in-house corrosion-resistant droplet generator is usedto generate isolated flying droplets of sub-millimeter size,which are then exposed in a gas environ-ment with temperatures between 1010 K and 1210 K and pressures in the range between 2.0 MPaand 4.5 MPa,provided by an optical rapid compression machine.Parallelly,a theoretical modelconsidering both the droplet ambient convection and the NTO dissociation is developed.Resultsindicate that firstly,the present theoretical model that considers the transient droplet-ambient con-vection as well as the temperature and pressure dependent rate of dissociation shows good agree-ment with the experimentally observed droplet lifetime.In addition,the flying droplets velocityregress gradually due to momentum exchange with the ambient,which is more prominent at higherpressure.The evaporation caused droplet size reduction is consistent with the classical D^(2)-law pre-diction,in the present temperature and pressure range.Finally,higher temperature and pressureaccelerate the evaporation and an empirical correlation for the temperature and pressure dependentevaporation rate constant is proposed,which shows good agreement with experiment and simula-tion results.展开更多
Based on the 3D electron's radial wave function of Co 2+ free ion,a Nephelauxetic effect modifying factor to modify the radial wave function is introduced when Co 2+ cations are put into the crystal fie...Based on the 3D electron's radial wave function of Co 2+ free ion,a Nephelauxetic effect modifying factor to modify the radial wave function is introduced when Co 2+ cations are put into the crystal field of Zn 1-x Co x Se.With the modified wave functions,the optical transitions for Zn 1-x Co x Se crystals are calculated.Moreover,based on the first principle of physics,the influences of high pressure to the Nephelauxetic effect modifying factor is considered,and the high pressure blue shift for the Zn 1-x Co x Se crystal absorption spectra are calculated and a shift rate of d E /d p =0 45meV/GPa is obtained.展开更多
Changes in barometric pressure can affect the micro-dynamic state of groundwater level.The groundwater level data carry a lot of important information of tectonic activity and earthquakes.It is very significant to eli...Changes in barometric pressure can affect the micro-dynamic state of groundwater level.The groundwater level data carry a lot of important information of tectonic activity and earthquakes.It is very significant to eliminate the barometric pressure effects from the groundwater level data in order to recognize seismic anomalies effectively.With the analysis of the main influential constituents of barometric pressure and their changes,we can have a better understanding of the changes of the aquifer medium,which can provide useful information for earthquake prediction.Taking the May 12,2008 Wenchuan earthquake as an example,this paper deals with the influence of barometric pressure on groundwater level based on observational data from Nanxi,Qionglai and Chaohu wells.The methods of the linear regression and the deconvolution regression were employed to remove the barometric pressure from the groundwater level data.The harmonic analysis and the spectral analysis were used to recognize the main influential waves of barometric pressure effect.A comparison was conducted on the main influential waves before and after the earthquake.The results showed that the main influential waves of barometric pressure effect changed and the amplitudes of all constituents also changed.This phenomenon may result from the characteristics of the influential constituents of pressure,or from the changes of the aquifer medium,which were caused by the earthquake.展开更多
The effect of nitrogen pressure on optical properties of hydrogen-free diamond-like carbon (DLC) films deposited by pulsed laser ablation graphite in different background pressures of nitrogen is reported. By varying ...The effect of nitrogen pressure on optical properties of hydrogen-free diamond-like carbon (DLC) films deposited by pulsed laser ablation graphite in different background pressures of nitrogen is reported. By varying nitrogen pressures from 0.05 to 15.00 Pa, the photoluminescence is gradually increased and optical transmittance is gradually decreased. Atomic force microscopy (AFM) is used to observe the surface morphology of the DLC films. The results indicate that the surface becomes unsmoothed and there a...展开更多
The thermal decomposition of 2, 2'-azobis (isobutyronitrile) (AIBN) in supercritical CO2 with cosolvent methanol or cyclohexane has been studied by using UV/Vis spectroscopic method at 335.15 K and at 12.0 MPa and...The thermal decomposition of 2, 2'-azobis (isobutyronitrile) (AIBN) in supercritical CO2 with cosolvent methanol or cyclohexane has been studied by using UV/Vis spectroscopic method at 335.15 K and at 12.0 MPa and 14.0 MPa. Both of the cosolvents can accelerate the decomposition rate, and the effect of methanol is more significant than that of the cyclohexane.展开更多
Under high pressure, the long believed single-phase material CaB6 was latterly discovered to have a new phase tI56. Based on the density-functional theory, the pressure effects on the structural and elastic properties...Under high pressure, the long believed single-phase material CaB6 was latterly discovered to have a new phase tI56. Based on the density-functional theory, the pressure effects on the structural and elastic properties of CaB6 are obtained. The calculated bulk, shear, and Young’s moduli of the recently synthesized high pressure phase tI56-CaB6 are larger than those of the low pressure phase. Moreover, the high pressure phase of CaB6 has ductile behaviors, and its ductility increases with the increase of pressure. On the contrary, the calculated results indicate that the low pressure phase of CaB6 is brittle. The calculated Debye temperature indicates that the thermal conductivity of CaB6 is not very good. Furthermore, based on the Christoffel equation, the slowness surface of the acoustic waves is obtained.展开更多
Pressure is one of the necessary conditions for diamond growth.Exploring the influence of pressure on growth changes in silicon-doped diamonds is of great value for the production of high-quality diamonds.This work re...Pressure is one of the necessary conditions for diamond growth.Exploring the influence of pressure on growth changes in silicon-doped diamonds is of great value for the production of high-quality diamonds.This work reports the morphology,impurity content and crystal quality characteristics of silicon-doped diamond crystals synthesized under different pressures.Fourier transform infrared spectroscopy shows that with the increase of pressure,the nitrogen content in the C-center inside the diamond crystal decreases.X-ray photoelectron spectroscopy test results show the presence of silicon in the diamond crystals synthesized by adding silicon powder.Raman spectroscopy data shows that the increase in pressure in the Fe-Ni-C-Si system shifts the Raman peak of diamonds from 1331.18 cm^(-1)to 1331.25 cm^(-1),resulting in a decrease in internal stress in the crystal.The half-peak width decreased from 5.41 cm^(-1)to 5.26 cm^(-1),and the crystallinity of the silicon-doped diamond crystals improved,resulting in improved quality.This work provides valuable data that can provide a reference for the synthesis of high-quality silicon-doped diamonds.展开更多
Studies show that the dynamic properties of rockfill are strongly dependent on the confining pressure.Therefore,confining pressure effect has become a very important factor in the seismic analysis of high rockfill dam...Studies show that the dynamic properties of rockfill are strongly dependent on the confining pressure.Therefore,confining pressure effect has become a very important factor in the seismic analysis of high rockfill dam.The relationships of dynamic shear modulus versus dynamic shear strain and damping ratio versus dynamic shear strain had been improved to a certain degree on the basic of widely used Hardin-Drnevich constitutive model in this paper.Then a new model that could consider confining pressure effect has been established.Regression analysis was carried out of the dynamic triaxial experimental data of the damming materials in the Changheba hydropower station of Sichun Province,China.The results show that,the new model can fit the test data well under various confining pressures.A corresponding computational procedure was compiled and applied in the dynamic response analysis of the Changheba Dam.Comparing the calculation results between the new constitutive model and the ordinary Hardin-Drnevich model,it can be seen that the result is conservative to some extent without considering confining pressure effect.展开更多
Various strategies for thermoelectric material optimization have been widely studied and used for promoting electrical transport and suppressing thermal transport.As a nontraditional method,pressure has shown great po...Various strategies for thermoelectric material optimization have been widely studied and used for promoting electrical transport and suppressing thermal transport.As a nontraditional method,pressure has shown great potential,as it has been applied to obtain a high thermoelectric figure of merit,but the microscopic mechanisms involved have yet to be fully explored.In this study,we focus on r-GeTe,a lowtemperature phase of GeTe,and investigate the pressure effects on the electronic structure,electrical transport properties and anharmonic lattice dynamics based on density functional theory(DFT),the Boltzmann transport equations(BTEs)and perturbation theory.Electronic relaxation times are obtained based on the electron-phonon interaction and the constant relaxation time approximation.The corresponding electrical transport properties are compared with those obtained from previous experiments.Hydrostatic pressure is shown to increase valley degeneracy,decrease the band effective mass and enhance the electrical transport property.At the same time,the increase in the low-frequency phonon lifetime and phonon group velocity leads to an increase in lattice thermal conductivity under pressure.This study provides insight into r-GeTe under hydrostatic pressure and paves the way for a high-pressure strategy to optimize transport properties.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos 50405025 and 50375050).
文摘This paper reports the current-voltage characteristics of [001]-oriented AlAs/InxGa1-xAs/GaAs resonant tunnelling diodes (RTDs) as a function of uniaxial external stress applied parallel to the [110] and the [1^-10] orientations, and the output characteristics of the GaAs pressure sensor based on the pressure effect on the RTDs. Under [110] stress, the resonance peak voltages of the RTDs shift to more positive voltages. For [1^-10] stress, the peaks shift toward more negative voltages. The resonance peak voltage is linearly dependent on the [110] and [1^-0] stresses and the linear sensitivities are up to 0.69 mV/MPa, -0.69 mV/MPa respectively. For the pressure sensor, the linear sensitivity is up to 0.37 mV/kPa.
基金Project supported by JSPS KAKENHI(Grant No.24540366,Grant-in-Aid for Scientific Research(C))
文摘We systematically investigate the effect of pressure on the magnetic properties of GdCo2B2 on the basis of alternating current(AC) susceptibility,AC heat capacity and electrical resistivity measurements under pressures up to 2.2 GPa.A detailed magnetic phase diagram under pressure is determined.GdCo2B2 exhibits three anomalies that apparently reflect magnetic phase transitions,respectively,at temperatures TC= 20.5 K,T1= 18.0 K and TN= 11.5 K under ambient pressure.Under pressures up to 2.2 GPa,these anomalies are observed to slightly increase at TCand T1,and they coincide with each other above 1.6 GPa.Conversely,they decrease at TN and disappear under pressures higher than 1.4 GPa.The results indicate that the low-temperature magnetic phases can be easily suppressed by pressure.Moreover,the spin-glass-like behavior of GdCo2B2 is examined in terms of magnetization,aging effect and frequency dependence of AC susceptibility.A separation between the zero-field-cooled(ZFC) and field-cooled(FC) magnetization curves becomes evident at a low magnetic field of 0.001 T.A long-time relaxation behavior is observed at 4 K.The freezing temperature Tfincreases with frequency increasing.
基金Project supported by the National Natural Science Foundation of China (Grant No 60566002) and the project for excellence subject-directors of Inner Mongolia Autonomous Region of China.
文摘By taking the influence of optical phonon modes into account, this paper adopts the dielectric continuum phonon model and force balance equation to investigate the electronic mobility parallel to the interfaces for AlAs/GaAs semiconductor quantum wells (QWs) under hydrostatic pressure. The scattering from confined phonon modes, interface phonon modes and half-space phonon modes are analysed and the dominant scattering mechanisms in wide and narrow QWs are presented. The temperature dependence of the electronic mobility is also studied in the temperature range of optical phonon scattering being available. It is shown that the electronic mobility reduces obviously as pressure increases from 0 to 4GPa, the confined longitudinal optical (LO) phonon modes play an important role in wide QWs, whereas the interface optical phonon modes are dominant in narrow QWs, the half-space LO phonon modes hardly influence the electronic mobility expect for very narrow QWs.
文摘The angular acceleration due to the spin effect increases the burning rate of solid propellant and changes the motor performance by increasing the operating pressure and decreasing the burning time. So it is important to know the grain regression taken place in the solid propellant rocket motor in the acceleration field. This study represents the grain regression analysis of two-dimensional axis-symmetric star grain configuration of the solid propellant rocket motor with spin induced acceleration effect and pressure effect on burn rate using geometrical and numerical analysis. While the rocket is spinning, the burn rates on each point of the propellant surface are different with its radial distance, acceleration vector angle and surface slope. With the different burn rates on the propellant surface, we analyze the propellant surface perimeter and port area, and these results are compared with those of constant burn rate and burn rate affected by the chamber pressure.
基金supported by National Key R&D Program(No.2016YFB0401100)the National Natural Science Foundation of China(Nos.91833306,51633006)。
文摘High-mobility and strong luminescent materials are essential as an important component of organic photodiodes,having received extensive attention in the field of organic optoelectronics.Beyond the conventional chemical synthesis of new molecules,pressure technology,as a flexible and efficient method,can tune the electronic and optical properties reversibly.However,the mechanism in organic materials has not been systematically revealed.Here,we theoretically predicted the pressure-depended luminescence and charge transport properties of high-performance organic optoelectronic semiconductors,2,6-diphenylanthracene(DPA),by first-principle and multi-scale theoretical calculation methods.The dispersion-corrected density functional theory(DFT-D)and hybrid quantum mechanics/molecular mechanics(QM/MM)method were used to get the electronic structures and vibration properties under pressure.Furthermore,the charge transport and luminescence properties were calculated with the quantum tunneling method and thermal vibration correlation function.We found that the pressure could significantly improve the charge transport performance of the DPA single crystal.When the applied pressure increased to 1.86 GPa,the hole mobility could be doubled.At the same time,due to the weak exciton coupling effect and the rigid flat structure,there is neither fluorescence quenching nor obvious emission enhancement phenomenon.The DPA single crystal possesses a slightly higher fluorescence quantum yield~0.47 under pressure.Our work systematically explored the pressure-dependence photoelectric properties and explained the inside mechanism.Also,we proposed that the exte rnal pressure would be an effective way to improve the photoelectric perfo rmance of organic semiconductors.
文摘The effect of pressure on the variation of the crystallization phases of the Zr55Cu30Al10Ni5 bulk glass and its thermal stability under high pressure annealing was investigated by X-ray diffraction (XRD) and differential scanning calorimeter (DSC). The mode of crystallization and products of crystallization of the Zr55Cu30Al10Ni5 bulk glass were quite different under different pressure. At ambient pressure, the crystallization products consisted of NiZr2 and CuZr2, while at pressure of 1 GPa and 3 GPa, the alloys crystallized into NiZr2 and Cu10Zr7, respectively. The alloy was nearly not crystallized and only a small amount of Cu10Zr7 was precipitated under 5 GPa. DSC proved that the mode of the crystallization under high pressure was different from that at ambient pressure.
基金Supported by the National Natural Science Foundation of China(Nos.20574069,20490220,50303017,50373044and50340420392)Programs of the Chinese Academy of Sciences(No.KJCX2-SW-H07)the National Basic Research Program ofChina(No.2003CB615600).
文摘The calculations presented in this paper are based on the Sanchez-Lacombe(SL)lattice fluid theory.The interaction energy parameter,g12/k,required in this approach was obtained by fitting the cloud points of polystyrene(PS)/methylcyclohexane(MCH)polymer solutions under pressure.The SL lattice fluid theory was used to calculate the spinodals,the binodals,and the Flory-Huggins(FH)interaction parameter of the solutions.The calculated results show that the SL lattice fluid theory can describe the dependences of thermodynamics of PS/MCH solutions on temperature and pressure very well.However,the calculated enthalpy and the excess volume changes indicate that the Clausius-Clapeyron equation cannot be suitable to describe pressure effect on PS/MCH solutions.Further analysis on the thermodynamics of this system under pressure shows that the role of entropy is more important than the excess volume in the present case.
文摘Based on the phenomenon that acoustic emissions (AE) generated by rock mass increase suddenly because of underground excavation, time sequence of AE rate in rock failure has been discussed by using statistical damage theory. It has been demonstrated that how the influence of confining pressure on the deformation behavior and AE characteristics in rocks can be inferred from a simple mechanics model. The results show that loading confining pressure sharply brings out increasing of AE. On the other hand, few AE emits when confining pressure is loaded sharply, and AE occurs again when axial pressure keeps on increasing. These results have been well simulated with computer and show close correspondence with directly measured curves in experiments.
基金Project supported by the National Natural Science Foundation (Grant No 60566002)the Specialized Research Fund for the Doctoral Program of Higher Education (Grant No 20070126001) of China
文摘With a memory function approach, this paper investigates the electronic mobility parallel to the interface in a ZnSe/Zn1-xCdxSe strained heterojunction under hydrostatic pressure by considering the intersubband and intrasubband scattering from the optical phonon modes. A triangular potential approximation is adopted to simplify the potential of the conduction band bending in the channel side and the electronic penetrating into the barrier is considered by a finite interface potential in the adopted model. The numerical results with and without strain effect are compared and analysed. Meanwhile, the properties of electronic mobility under pressure versus temperature, Cd concentration and electronic density are also given and discussed, respectively. It shows that the strain effect lowers the mobility of electrons while the hydrostatic pressure effect is more obvious to decrease the mobility. The contribution induced by the longitudinal optical phonons in the channel side is dominant to decide the mobility. Compared with the intrasubband scattering it finds that the effect of intersubband scattering is also important for the studied material.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11374131,11674404,11404137 and 61378085the Program for New Century Excellent Talents in University under Grant No NCET-13-0824+1 种基金the Program for the Development of Science and Technology of Jilin Province under Grant Nos 201201079 and 20150204085GXthe Twentieth Five-Year Program for Science and Technology of Education Department of Jilin Province under Grant No 20150221
文摘The charge transport behavior of barium fluoride nanocrystals is investigated by in situ impedance measurement up to 35 GPa. It is found that the parameters change discontinuously at about 6.9 GPa, corresponding to the phase transition of BaF2 nanocrystals under high pressure. The charge carriers in BaF2 nanocrystals include both Fions and electrons. Pressure makes the electronic transport more difficult. The defects at grains dominate the electronic transport process. Pressure could make the charge-discharge processes in the Fm3m phase more difficult.
基金supported by the Natural Science Foundation of China(No.52236001)The support from Research Grants Council of Hong Kong,China(No.CityU 15218820)was also appreciated。
文摘The evaporation behaviors are crucial for the flame location estimation in liquid rocketengines.This work,for the first time,experimentally reports the sub-millimeter droplet evaporationcharacteristics of the corrosive dinitrogen tetroxide(NTO,one prevailing hypergolic oxidizer)athigh ambient pressure up to 4.5 MPa.An in-house corrosion-resistant droplet generator is usedto generate isolated flying droplets of sub-millimeter size,which are then exposed in a gas environ-ment with temperatures between 1010 K and 1210 K and pressures in the range between 2.0 MPaand 4.5 MPa,provided by an optical rapid compression machine.Parallelly,a theoretical modelconsidering both the droplet ambient convection and the NTO dissociation is developed.Resultsindicate that firstly,the present theoretical model that considers the transient droplet-ambient con-vection as well as the temperature and pressure dependent rate of dissociation shows good agree-ment with the experimentally observed droplet lifetime.In addition,the flying droplets velocityregress gradually due to momentum exchange with the ambient,which is more prominent at higherpressure.The evaporation caused droplet size reduction is consistent with the classical D^(2)-law pre-diction,in the present temperature and pressure range.Finally,higher temperature and pressureaccelerate the evaporation and an empirical correlation for the temperature and pressure dependentevaporation rate constant is proposed,which shows good agreement with experiment and simula-tion results.
文摘Based on the 3D electron's radial wave function of Co 2+ free ion,a Nephelauxetic effect modifying factor to modify the radial wave function is introduced when Co 2+ cations are put into the crystal field of Zn 1-x Co x Se.With the modified wave functions,the optical transitions for Zn 1-x Co x Se crystals are calculated.Moreover,based on the first principle of physics,the influences of high pressure to the Nephelauxetic effect modifying factor is considered,and the high pressure blue shift for the Zn 1-x Co x Se crystal absorption spectra are calculated and a shift rate of d E /d p =0 45meV/GPa is obtained.
基金supported by the National Natural Science Foundation of China (Grant No. 40930637)Special Project for Earthquake Science(Grant No. 200808079)Subject Foundation of Ministry of Education for Doctor Candidates in Universities (Grant No. 20100022110001)
文摘Changes in barometric pressure can affect the micro-dynamic state of groundwater level.The groundwater level data carry a lot of important information of tectonic activity and earthquakes.It is very significant to eliminate the barometric pressure effects from the groundwater level data in order to recognize seismic anomalies effectively.With the analysis of the main influential constituents of barometric pressure and their changes,we can have a better understanding of the changes of the aquifer medium,which can provide useful information for earthquake prediction.Taking the May 12,2008 Wenchuan earthquake as an example,this paper deals with the influence of barometric pressure on groundwater level based on observational data from Nanxi,Qionglai and Chaohu wells.The methods of the linear regression and the deconvolution regression were employed to remove the barometric pressure from the groundwater level data.The harmonic analysis and the spectral analysis were used to recognize the main influential waves of barometric pressure effect.A comparison was conducted on the main influential waves before and after the earthquake.The results showed that the main influential waves of barometric pressure effect changed and the amplitudes of all constituents also changed.This phenomenon may result from the characteristics of the influential constituents of pressure,or from the changes of the aquifer medium,which were caused by the earthquake.
基金supported by the Natural Science Foundationof Shandong Province (Grant No. Y2002A09).
文摘The effect of nitrogen pressure on optical properties of hydrogen-free diamond-like carbon (DLC) films deposited by pulsed laser ablation graphite in different background pressures of nitrogen is reported. By varying nitrogen pressures from 0.05 to 15.00 Pa, the photoluminescence is gradually increased and optical transmittance is gradually decreased. Atomic force microscopy (AFM) is used to observe the surface morphology of the DLC films. The results indicate that the surface becomes unsmoothed and there a...
文摘The thermal decomposition of 2, 2'-azobis (isobutyronitrile) (AIBN) in supercritical CO2 with cosolvent methanol or cyclohexane has been studied by using UV/Vis spectroscopic method at 335.15 K and at 12.0 MPa and 14.0 MPa. Both of the cosolvents can accelerate the decomposition rate, and the effect of methanol is more significant than that of the cyclohexane.
文摘Under high pressure, the long believed single-phase material CaB6 was latterly discovered to have a new phase tI56. Based on the density-functional theory, the pressure effects on the structural and elastic properties of CaB6 are obtained. The calculated bulk, shear, and Young’s moduli of the recently synthesized high pressure phase tI56-CaB6 are larger than those of the low pressure phase. Moreover, the high pressure phase of CaB6 has ductile behaviors, and its ductility increases with the increase of pressure. On the contrary, the calculated results indicate that the low pressure phase of CaB6 is brittle. The calculated Debye temperature indicates that the thermal conductivity of CaB6 is not very good. Furthermore, based on the Christoffel equation, the slowness surface of the acoustic waves is obtained.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.51872112 and 51772120)。
文摘Pressure is one of the necessary conditions for diamond growth.Exploring the influence of pressure on growth changes in silicon-doped diamonds is of great value for the production of high-quality diamonds.This work reports the morphology,impurity content and crystal quality characteristics of silicon-doped diamond crystals synthesized under different pressures.Fourier transform infrared spectroscopy shows that with the increase of pressure,the nitrogen content in the C-center inside the diamond crystal decreases.X-ray photoelectron spectroscopy test results show the presence of silicon in the diamond crystals synthesized by adding silicon powder.Raman spectroscopy data shows that the increase in pressure in the Fe-Ni-C-Si system shifts the Raman peak of diamonds from 1331.18 cm^(-1)to 1331.25 cm^(-1),resulting in a decrease in internal stress in the crystal.The half-peak width decreased from 5.41 cm^(-1)to 5.26 cm^(-1),and the crystallinity of the silicon-doped diamond crystals improved,resulting in improved quality.This work provides valuable data that can provide a reference for the synthesis of high-quality silicon-doped diamonds.
文摘Studies show that the dynamic properties of rockfill are strongly dependent on the confining pressure.Therefore,confining pressure effect has become a very important factor in the seismic analysis of high rockfill dam.The relationships of dynamic shear modulus versus dynamic shear strain and damping ratio versus dynamic shear strain had been improved to a certain degree on the basic of widely used Hardin-Drnevich constitutive model in this paper.Then a new model that could consider confining pressure effect has been established.Regression analysis was carried out of the dynamic triaxial experimental data of the damming materials in the Changheba hydropower station of Sichun Province,China.The results show that,the new model can fit the test data well under various confining pressures.A corresponding computational procedure was compiled and applied in the dynamic response analysis of the Changheba Dam.Comparing the calculation results between the new constitutive model and the ordinary Hardin-Drnevich model,it can be seen that the result is conservative to some extent without considering confining pressure effect.
基金supported by the Research Grants Council of Hong Kong(17201019)the National Natural Science Foundation of China(11934007,11874194and 11874313)+3 种基金the Guangdong Provincial Key Laboratory of Energy Materials for Electric Power(NO.2018B030322001)the Science and Technology Innovation Committee Foundation of Shenzhen(KQTD2016022619565991)the Zhejiang Provincial Natural Science Foundation(LR19A040001)SL acknowledges the support from the startup fund of Nanjing University of Posts and Telecommunications(NY220096).
文摘Various strategies for thermoelectric material optimization have been widely studied and used for promoting electrical transport and suppressing thermal transport.As a nontraditional method,pressure has shown great potential,as it has been applied to obtain a high thermoelectric figure of merit,but the microscopic mechanisms involved have yet to be fully explored.In this study,we focus on r-GeTe,a lowtemperature phase of GeTe,and investigate the pressure effects on the electronic structure,electrical transport properties and anharmonic lattice dynamics based on density functional theory(DFT),the Boltzmann transport equations(BTEs)and perturbation theory.Electronic relaxation times are obtained based on the electron-phonon interaction and the constant relaxation time approximation.The corresponding electrical transport properties are compared with those obtained from previous experiments.Hydrostatic pressure is shown to increase valley degeneracy,decrease the band effective mass and enhance the electrical transport property.At the same time,the increase in the low-frequency phonon lifetime and phonon group velocity leads to an increase in lattice thermal conductivity under pressure.This study provides insight into r-GeTe under hydrostatic pressure and paves the way for a high-pressure strategy to optimize transport properties.