期刊文献+
共找到40篇文章
< 1 2 >
每页显示 20 50 100
Gating system optimization of low pressure casting A356 aluminum alloy intake manifold based on numerical simulation 被引量:15
1
作者 Jiang Wenming Fan Zitian 《China Foundry》 SCIE CAS 2014年第2期119-124,共6页
To eliminate the shrinkage porosity in low pressure casting of an A356 aluminum alloy intake manifold casting, numerical simulation on fi lling and solidifi cation processes of the casting was carried out using the Pr... To eliminate the shrinkage porosity in low pressure casting of an A356 aluminum alloy intake manifold casting, numerical simulation on fi lling and solidifi cation processes of the casting was carried out using the ProCAST software. The gating system of the casting is optimized according to the simulation results. Results show that when the gating system consists of only one sprue, the fi lling of the molten metal is not stable; and the casting does not follow the sequence solidifi cation, and many shrinkage porosities are observed through the casting. After the gating system is improved by adding one runner and two in-gates, the fi lling time is prolonged from 4.0 s to 4.5 s, the fi lling of molten metal becomes stable, but this casting does not follow the sequence solidifi cation either. Some shrinkage porosity is also observed in the hot spots of the casting. When the gating system was further improved by adding risers and chill to the hot spots of the casting, the shrinkage porosity defects were eliminated completely. Finally, by using the optimized gating system the A356 aluminum alloy intake manifold casting with integrated shape and smooth surface as well as dense microstructure was successfully produced. 展开更多
关键词 low pressure casting A356 aluminum alloy numerical simulation OPTIMIZATION intake manifold
在线阅读 下载PDF
Effect of pressurizing speed on filling behavior of gradual expansion structure in low pressure casting of ZL205A alloy 被引量:8
2
作者 Shan-guang Liu Chuan-biao Luo +3 位作者 Guo-ai Li Wen-lin Gao Zheng Lu Sheng-long 《China Foundry》 SCIE 2018年第4期276-282,共7页
The mold filling behavior of gradual expansion structure in low pressure casting was studied by two phase flow model using the Volume of Fluid method, and was verified by water simulation with a Plexiglas mold. To get... The mold filling behavior of gradual expansion structure in low pressure casting was studied by two phase flow model using the Volume of Fluid method, and was verified by water simulation with a Plexiglas mold. To get smooth mold filling process and provide a guide for the pressurizing speed design in the producing practice, the mathematical model with the pressurizing speed, expansion angle and height of the gradual expansion structure was established. For validation experiments, ZL205 A alloy castings were produced under two different pressurizing speeds. Weibull probability plots were used to assess the fracture mechanisms under different pressurizing speeds. Mechanical properties of ZL205 A alloy were applied to assess the entrainment of oxide film. The results show that the filling process of a gradual expansion structure in a low pressure casting can be divided into the spreading stage and filling stage by gate velocity. The gate velocity continues to increase in the gradual expansion structure, and increases with the increase of pressurizing speed or expansion angle. Under the effect of the falling fluid raised by the jet flow along the sidewall, the fluid velocity decreases in the jet zone from ingate to free surface. As such, oxide film entrainment does not occur when the gate velocity is greater than the critical velocity, andthe gate velocity no longer reflects the real state of the free surface. The scatter of the mechanical properties is strongly affected by the entrainment of oxide films. 展开更多
关键词 low pressure casting two phase flow water simulation oxide film ZL205A alloy
在线阅读 下载PDF
Influence of mold wall thickness on morphologies of defect band in high-pressure die casting technology
3
作者 Zhen-yu Sun Wen-bo Yu +4 位作者 Jun-jie Li Wei-chen Zheng Guang-rui Wang Jian-ru Fang Shou-mei Xiong 《China Foundry》 2026年第1期31-36,共6页
In order to investigate the effect of die wall thickness on morphologies of defect band,a stepped mold with a wall thickness of 5 mm,4 mm,3 mm,2 mm,and 1 mm was designed to carry out high pressure die casting experime... In order to investigate the effect of die wall thickness on morphologies of defect band,a stepped mold with a wall thickness of 5 mm,4 mm,3 mm,2 mm,and 1 mm was designed to carry out high pressure die casting experiments with AlSi10 MgMn alloy.For castings with wall thickness of 2-4 mm,the ratio of the mean defect band width(w)and mean grain size(d)in the defect band(w/d)ranges 7-18,while it increases to 24.47 for the 5 mm-thick casting.This difference is related with the filling speed and the distribution of externally solidified crystals(ESCs).The mold flow analysis indicates that the filling speed decreases from 25.41 m·s^(-1)to 11.07 m·s^(-1)when wall thickness increases from 2 mm to 5 mm.Due to the decreasing filling speed along the wall thickness,ESCs gradually diffuse from the center to the defect band,which keep the shear strength in the defect band at a high-level during filling.Meanwhile,the shear strength generated during the filling also decreases as the shear rate drops.Finally,the defect bands in the 5 mm-thick region become widen and indistinct,and the porosity is as high as 5.25%. 展开更多
关键词 AlSi10MgMn high pressure die casting defect band mold flow analysis externally solidified crystals
在线阅读 下载PDF
Influence of filling parameters on fatigue properties of A357 alloy produced by counter pressure plaster mold casting 被引量:6
4
作者 李强 郝启堂 +1 位作者 介万奇 Maijer DAAN 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第5期1281-1285,共5页
The influence of filling parameters including pouring temperature, filling speed, boost pressure and synchronous pressure on the fatigue of A357 alloy produced by counter pressure plaster casting was studied. The Tagu... The influence of filling parameters including pouring temperature, filling speed, boost pressure and synchronous pressure on the fatigue of A357 alloy produced by counter pressure plaster casting was studied. The Taguchi method was used to investigate the relationship between the fatigue performance and filling parameters. The results show that filling speed is the most significant factor among the four parameters. Synchronous pressures is less influential on the fatigue life when the value of synchronous pressure is from 400 kPa to 600 kPa. 展开更多
关键词 counter pressure casting A357 alloy filing parameters fatigue properties
在线阅读 下载PDF
Pressurization control system for low pressure crucible casting 被引量:2
5
作者 Li Qiang Hao Qitang Jie Wanqi 《China Foundry》 SCIE CAS 2011年第4期376-379,共4页
A new compact pressurization control system of the low pressure casting machine for crucible pressure casting has been developed. It is especially designed for the production of high-quality aluminum or magnesium allo... A new compact pressurization control system of the low pressure casting machine for crucible pressure casting has been developed. It is especially designed for the production of high-quality aluminum or magnesium alloy parts with low input cost. This machine with such a system has the virtue of economical and compact, and combines the Fuzzy-PID technology and achieves accuracies of ±2.5 mbar. At present, this machine has been adopted by several users in China for the production of aluminum alloy castings with high property requirements. Furthermore, for magnesium alloy castings, this machine can be used with the gas protect unit. 展开更多
关键词 crucible pressure casting low pressure casting pressurization control system
在线阅读 下载PDF
Controlling externally solidified crystals and porosity for enhancing mechanical properties of a die-casting aluminum-silicon alloy
6
作者 Yi-hui Zhang Xiang-yi Jiao +6 位作者 Peng-yue Wang Yi-xian Liu Jin-rui Wang Wen-ning Liu Li-jun Shi Cheng-gang Wang Shou-mei Xiong 《China Foundry》 2026年第1期94-100,共7页
The effects of the high pressure die casting(HPDC)processes on porosity,microstructure,and mechanical properties of heat-treatment-free aluminum silicon(Al-Si)alloys have long been a focal point in automotive die-cast... The effects of the high pressure die casting(HPDC)processes on porosity,microstructure,and mechanical properties of heat-treatment-free aluminum silicon(Al-Si)alloys have long been a focal point in automotive die-casting research.In this work,the combined effect of shot sleeve materials and slow shot speeds on porosity,microstructure and mechanical properties of a newly designed HPDC Al-Si alloy was investigated.Results show that employing a ceramic shot sleeve or increasing the slow shot speed significantly reduces both the average size and area fraction of externally solidified crystals(ESCs),as well as the average pore size and volume fraction.When the slow shot speed is increased from 0.05 m·s^(-1)to 0.1 m·s^(-1),the pore volume fraction decreases by 10.2%in steel-shot-sleeve samples,compared to a substantial 67.1%reduction in ceramic-shot-sleeve samples.At a slow shot speed of 0.1 m·s^(-1),castings produced with a ceramic shot sleeve exhibit superior mechanical properties:8.3%higher yield strength,17.4%greater tensile strength,and an 81.4%improvement in elongation,relative to those from a steel shot sleeve.These findings provide valuable insights for minimizing porosity and coarse ESCs in die castings,offering promising potential for broader industrial applications. 展开更多
关键词 high pressure die casting aluminum-silicon alloy externally solidified crystals POROSITY shot sleeve
在线阅读 下载PDF
Correlation between Porosity and Fracture Mechanism in High Pressure Die Casting of AM60B Alloy 被引量:35
7
作者 X.Li S.M.Xiong Z.Guo 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2016年第1期54-61,共8页
X-ray tomography was used to characterize the porosity in high pressure die casting of AM60B alloy. In situ tensile deformation was performed to observe the change of porosities and their influences on crack initiatio... X-ray tomography was used to characterize the porosity in high pressure die casting of AM60B alloy. In situ tensile deformation was performed to observe the change of porosities and their influences on crack initiation, propagation and subsequent fracture of specimen. Results showed that four types of porosi- ties, including gas-shrinkage pore, gas pore, net-shrinkage and island-shrinkage, could be identified according to the formation mechanism and morphology characterization. During tensile deformation, it was shown that the gas-shrinkage pore and net-shrinkage, rather than gas pore or island-shrinkage, were the main sources for crack initiation. In addition, the crack propagated by interconnecting the po- rosities at the cross section with minimum efficient force bearing area. At these locations where externally solidified crystals (ESCs) were present, the crack would propagate along the ESC boundaries in an inter- granular mode, while at these locations without ESCs, the crack would propagate roughly along the direction perpendicular to the tensile stress in a combination of trans-granular and inter-granular modes. 展开更多
关键词 High pressures die casting AM60B alloy Fracture mechanism POROSITY
原文传递
Characterization of A390 aluminum alloy produced at different slow shot speeds using vacuum assisted high pressure die casting 被引量:11
8
作者 Wen-bo YU Zi-hao YUAN +1 位作者 Zhi-peng GUO Shou-mei XIONG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2017年第12期2529-2538,共10页
The effects of vacuum assistance on the microstructure and mechanical properties of high pressure die cast A390alloy at different slow shot speeds were evaluated.Plate-shaped specimens of hypereutectic A390aluminum al... The effects of vacuum assistance on the microstructure and mechanical properties of high pressure die cast A390alloy at different slow shot speeds were evaluated.Plate-shaped specimens of hypereutectic A390aluminum alloy were produced on a TOYO BD?350V5cold chamber die casting machine incorporated with a self-improved TOYO vacuum system.According to the results,the vacuum pressure inside the die cavity increased linearly with the increasing slow shot speed at the beginning of mold filling.Meanwhile,tensile properties of vacuum die castings were deteriorated by the porosity content.In addition,the average primary silicon size decreased from23to14μm when the slow shot speed increased from0.05to0.2m/s,which has a binary functional relationship with the slow shot speed.After heat treatment,microstructural morphologies revealed that needle-shaped and thin-flaked eutectic silicon particles became rounded while Al2Cu dissolved intoα(Al)matrix.Furthermore,the fractography revealed that the fracture mechanism has evolved from brittle transgranular fracture to a fracture mode with many dimples after heat treatment. 展开更多
关键词 A390 aluminum shot speed vacuum assisted high pressure die casting (VHPDC) Si distribution tensile strength heat treatment
在线阅读 下载PDF
Determination of Interfacial Heat Transfer Behavior at the Metal/Shot Sleeve of High Pressure Die Casting Process of AZ91D Alloy 被引量:9
9
作者 Wenbo Yu Yongyou Cao +2 位作者 Xiaobo Li Zhipeng Guo Shoumei Xiong 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2017年第1期52-58,共7页
The interfacial heat transfer behavior at the metalJshot sleeve interface in the high pressure die casting (HPDC) process of AZ91D alloy is carefully investigated. Based on the temperature measurements along the sho... The interfacial heat transfer behavior at the metalJshot sleeve interface in the high pressure die casting (HPDC) process of AZ91D alloy is carefully investigated. Based on the temperature measurements along the shot sleeve, inverse method has been developed to determine the interfacial heat transfer coefficient in the shot sleeve. Under static condition, Interracial heat transfer coefficient (IHTC) peak values are 11.9, 7,3, 8.33kWm-2K-1 at pouring zone (S2), middle zone (S5), and end zone (510), respectively. During the casting process, the IHTC curve displays a second peak of 6.1 kWm-2 K-1 at middle zone during the casting process at a slow speed of 0.3 ms 1 Subsequently, when the high speed started, the IHTC curve reached a second peal〈 of 12.9 kW m-2K-1 at end zone. Furthermore, under different slow casting speeds, both the calculated initial temperature (TIDs) and the maximum temperature (Tsimax) of shot sleeve surface first decrease from 0.1 ms-1 to 0.3 ms-1, but increase again from 0.3 ms-1 to 0.6 ms-1. This result agrees with the experimental results obtained in a series of "plate-shape" casting experiments under different slow speeds, which reveals that the amount of ESCs decreases to the minimum values at 0.3 m s-1 and increase again with the increasing casting slow speed. 展开更多
关键词 High pressure die casting (HPDC) Interracial heat transfer behavior Inverse method Slow casting speed
原文传递
Simulation of mold filling and prediction of gas entrapment on practical high pressure die castings 被引量:9
10
作者 赵海东 白砚飞 +1 位作者 欧阳晓贤 董普云 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2010年第11期2064-2070,共7页
Element parameters including volume filled ratio,surface dimensionless distance,and surface filled ratio for DFDM(direct finite difference method)were proposed to describe shape and location of free surfaces in castin... Element parameters including volume filled ratio,surface dimensionless distance,and surface filled ratio for DFDM(direct finite difference method)were proposed to describe shape and location of free surfaces in casting mold filling processes.A mathematical model of the filling process was proposed specially considering the mass,momentum and heat transfer in the vicinity of free surfaces.Furthermore,a method for gas entrapment was established by tracking flow of entrapped gas.The model and method were applied to practical ADC1 high pressure die castings.The gas entrapment prediction was compared with the fraction and maximum size of porosities in the different casting parts.The comparison shows validity of the proposed model and method.The study indicates that final porosities in high pressure die castings are dependent on both gas entrapment during mold filling process and pressure transfer within solidification period. 展开更多
关键词 high pressure die casting mold filling gas entrapment
在线阅读 下载PDF
Tensile Properties and Deformation Behaviors of a New Aluminum Alloy for High Pressure Die Casting 被引量:8
11
作者 Peng Zhang Zhenming Li +1 位作者 Baoliang Liu Wenjiang Ding 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2017年第4期367-378,共12页
Effects of natural aging and test temperature on the tensile behaviors have been studied for a highperformance cast aluminum alloy Al–10Si–1.2Cu–0.7Mn. Based on self-strengthening mechanism and spheroidization micr... Effects of natural aging and test temperature on the tensile behaviors have been studied for a highperformance cast aluminum alloy Al–10Si–1.2Cu–0.7Mn. Based on self-strengthening mechanism and spheroidization microstructures, the alloy tested at room temperature(RT) exhibits higher 0.2% proof stress(YS) of 206 MPa, ultimate tensile strength(UTS) of 331 MPa and elongation of 10%. Increasing aging time improves the YS and UTS and reduces the ductility of the alloy. Further increasing aging time beyond72 h does not signi?cantly increase the tensile strengths. Increasing test temperature significantly decreases the tensile strengths and increases the ductility of the alloy. The UTS of the alloy can be estimated by using the hardness. The Portevin–Le Chatelier effect occurs at RT due to the interactions between solid solution atoms and dislocations. Similar behaviors occurring at 250℃ are attributed to dynamic strain aging mechanism. Increasing aging time leads to decrease in the strain-hardening exponent(n) value and increase in the strain-hardening coeficient(k) value. Increasing test temperature apparently decreases the n and k values. Eutectic phase particles cracking and debonding determine the fracture mechanism of the alloy. Final failure of the alloy mainly depends on the global instability(high temperature, necking) and local instability(RT, shearing). Different tensile behaviors of the alloy are mainly attributed to different matrix strengths, phase particle strengths and damage rate. 展开更多
关键词 Al-10Si-1.2Cu-0.7Mn aluminum alloy High pressure die casting Tensile behavior Natural aging (self-strengthening) High temperature
原文传递
Determination of interfacial heat transfer coefficient and its application in high pressure die casting process 被引量:6
12
作者 Cao Yongyou Guo Zhipeng Xiong Shoumei 《China Foundry》 SCIE CAS 2014年第4期314-321,共8页
In this paper,the research progress of the interfacial heat transfer in high pressure die casting(HPDC)is reviewed.Results including determination of the interfacial heat transfer coefficient(IHTC),influence of castin... In this paper,the research progress of the interfacial heat transfer in high pressure die casting(HPDC)is reviewed.Results including determination of the interfacial heat transfer coefficient(IHTC),influence of casting thickness,process parameters and casting alloys on the IHTC are summarized and discussed.A thermal boundary condition model was developed based on the two correlations:(a)IHTC and casting solid fraction and(b)IHTC peak value and initial die surface temperature.The boundary model was then applied during the determination of the temperature field in HPDC and excellent agreement was found. 展开更多
关键词 high pressure die casting interfacial heat transfer coefficient inverse method
在线阅读 下载PDF
Shear-accelerated crystallization of glass-forming metallic liquids in high-pressure die casting 被引量:3
13
作者 L.H.Liu W.J.Gao +7 位作者 X.S.Huang T.Zhang Z.Y.Liu C.Yang W.W.Zhang W.R.Li L.Li P.J.Li 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第22期146-157,共12页
As one of the most important forming technologies for industrial bulk metallic glass (BMG) parts withcomplex shapes, high-pressure die casting (HPDC) can fill a die cavity with a glass-forming metallic liquidin millis... As one of the most important forming technologies for industrial bulk metallic glass (BMG) parts withcomplex shapes, high-pressure die casting (HPDC) can fill a die cavity with a glass-forming metallic liquidin milliseconds. However, to our knowledge, the correlation between flow and crystallization behavior inthe HPDC process has never been established. In this study, we report on the solidification behavior ofZr_(55)Cu_(30)Ni_(5)Al_(10) glass forming liquid under various flow rates. Surprisingly, the resulting alloys display adecreasing content of amorphous phase with increase of flow rate, i.e. increase of cooling rate, suggestingthat crystallization kinetics of glass-forming metallic liquids in the HPDC process is strongly dependenton the flow field. Analysis reveals that the accelerated crystallization behavior is mainly ascribed to therapid increase in viscosity with a decreasing temperature as well as to the huge shear effect in the glassforming liquid at the end stage of the filling process when the temperature is close to the glass-transitionpoint;this results in a transition from diffusion- to advection-dominated transport. The current investigation suggests that flow-related crystallization must be considered to assess the intrinsic glass-formingability of BMGs produced via HPDC. The obtained results will not only improve the understanding ofcrystallization dynamics but also promote the high-quality production and large-scale application of BMGparts. 展开更多
关键词 CRYSTALLIZATION SHEAR Supercooled liquid High pressure die casting
原文传递
Defect band formation in high pressure die casting AE44 magnesium alloy 被引量:3
14
作者 Ying-ying Hou Meng-wu Wu +2 位作者 Feng Huang Xiao-bo Li Shou-mei Xiong 《China Foundry》 SCIE CAS 2022年第3期201-210,共10页
The characteristics of defect bands in the microstructure of high pressure die casting(HPDC)AE44 magnesium alloy were investigated.Special attention was paid to the effects of process parameters during the HPDC proces... The characteristics of defect bands in the microstructure of high pressure die casting(HPDC)AE44 magnesium alloy were investigated.Special attention was paid to the effects of process parameters during the HPDC process and casting structure on the distribution of defect bands.Results show that the defect bands are solute segregation bands with the enrichment of Al,Ce and La elements,which are basically in the form of Al_(11)RE_(3) phase.There is no obvious aggregation of porosities in the defect bands.The width of the inner defect band is 4-8 times larger than that of the outer one.The variation trends of the distribution of the inner and outer defect bands are not consistent under different process parameters and at different locations of castings.This is due to the discrepancy between the formation mechanisms of double defect bands.The filling and solidification behavior of the melt near the chilling layer is very complicated,which finally leads to a fluctuation of the width and location of the outer defect band.By affecting the content and aggregation degree of externally solidified crystals(ESCs)in the cross section of die castings,the process parameters and casting structure have a great influence on the distribution of the inner defect band. 展开更多
关键词 high pressure die casting magnesium alloy AE44 defect band MICROSTRUCTURE
在线阅读 下载PDF
Study on interfacial heat transfer coefficient at metal/die interface during high pressure die casting process of AZ91D alloy 被引量:4
15
作者 GUO Zhi-peng XIONG Shou-mei +2 位作者 M. Murakami Y. Matsumoto S. Ikeda 《China Foundry》 SCIE CAS 2007年第1期5-9,共5页
The high pressure die casting (HPDC) process is one of the fastest growing and most efficient methods for the production of complex shape castings of magnesium and aluminum alloys in today's manufacturing industry... The high pressure die casting (HPDC) process is one of the fastest growing and most efficient methods for the production of complex shape castings of magnesium and aluminum alloys in today's manufacturing industry. In this study, a high pressure die casting experiment using AZ91D magnesium alloy was conducted, and the temperature profiles inside the die were measured. By using a computer program based on solving the inverse heat problem, the metal/die interfacial heat transfer coefficient (IHTC) was calculated and studied. The results show that the IHTC between the metal and die increases right after the liquid metal is brought into the cavity by the plunger, and decreases as the solidification process of the liquid metal proceeds until the liquid metal is completely solidified, when the IHTC tends to be stable. The interfacial heat transfer coefficient shows different characteristics under different casting wall thicknesses and varies with the change of solidification behavior. 展开更多
关键词 high pressure die casting (HPDC) magnesium alloy interfacial heat transfer coefficient(IHTC)
在线阅读 下载PDF
Grain Size Distribution and Interfacial Heat Transfer Coefficient during Solidification of Magnesium Alloys Using High Pressure Die Casting Process 被引量:10
16
作者 P. Sharifi J. Jamali +1 位作者 K. Sadayappan J.T. Wood 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2018年第2期324-334,共11页
The objective of this study is to predict grain size and heat transfer coefficient at the metal-die interface during high pressure die casting process and solidification of the magnesium alloy AM60. Multiple runs of t... The objective of this study is to predict grain size and heat transfer coefficient at the metal-die interface during high pressure die casting process and solidification of the magnesium alloy AM60. Multiple runs of the commercial casting simulation package, ProCASTTM, were used to model the mold filling and solidification events employing a range of interfacial heat transfer coefficient values. The simulation results were used to estimate the centerline cooling curve at various locations through the casting. The centerline cooling curves, together with the die temperature and the thermodynamic properties of the alloy, were then used as inputs to compute the solution to the Stefan problem of a moving phase boundary, thereby providing the through-thickness cooling curves at each chosen location of the casting, Finally, the local cooling rate was used to calculate the resulting grain size via previously established relationships. The effects of die temperature, filling time and heat transfer coefficient on the grain structure in skin region and core region were quantitatively characterized. It was observed that the grain size of skin region strongly depends on above three factors whereas the grain size of core region shows dependence on the interracial heat transfer coefficient and thickness of the samples. The grain size distribution from surface to center was estimated from the relationship between grain size and the predicted cooling rate. The prediction of grain size matches well with experimental results. A comparison of the predicted and experimentally determined grain size profiles enables the determination of the apparent interracial heat transfer coefficient for different locations. 展开更多
关键词 High pressure die casting Grain size lnterfacial heat transfer coefficient Solidification of magnesium alloys Process parameters
原文传递
Heat Transfer between Casting and Die during High Pressure Die Casting Process of AM50 Alloy-Modeling and Experimental Results
17
作者 Zhipeng GUO Shoumei XIONG +1 位作者 Sang-Hyun Cho Jeong-Kil Choi 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2008年第1期131-135,共5页
A method based on die casting experiments and mathematic modeling is presented for the determination of the heat flow density (HFD) and interfacial heat transfer coefficient (IHTC) during the high pressure die cas... A method based on die casting experiments and mathematic modeling is presented for the determination of the heat flow density (HFD) and interfacial heat transfer coefficient (IHTC) during the high pressure die casting (HPDC) process.Experiments were carried out using step shape casting and a commercial magnesium alloy,AM50.Temperature profiles were measured and recorded using thermocouples embedded inside the die. Based on these temperature readings,the HFD and IHTC were successfully determined and the calculation results show that the HFD and IHTC at the metal-die interface increases sharply right after the fast phase injection process until approaching their maximum values,after which their values decrease to a much lower level until the dies are opened.Different patterns of heat transfer behavior were found between the die and the casting at different thicknesses.The thinner the casting was,the more quickly the HFD and IHTC reached their steady states.Also,the values for both the HFD and IHTC values were different between die and casting at different thicknesses. 展开更多
关键词 Interfacial heat transfer coefficient High pressure die casting process AM50 Magnesium alloy
在线阅读 下载PDF
Impact of a large dominant pore and its location on ductility of thin-walled high-pressure die-cast magnesium
18
作者 Kyoo Sil Choi Xin Sun Mei Li 《Journal of Magnesium and Alloys》 2025年第5期1978-1993,共16页
High-pressure die-cast(HPDC)magnesium(Mg)and aluminum alloys enable vehicle lightweighting while reducing manufacturing costs by simplifying part assembly.The increasing use of super-large castings in electric vehicle... High-pressure die-cast(HPDC)magnesium(Mg)and aluminum alloys enable vehicle lightweighting while reducing manufacturing costs by simplifying part assembly.The increasing use of super-large castings in electric vehicles enhances structural reliability and cost efficiency.However,HPDC Mg alloys face challenges related to casting defects such as porosity,cold shuts,and oxides.These defects influence tensile strength and ductility,depending on their location and size.This study employs finite element(FE)modeling to investigate how a dominant large pore,its position,and the sample size affect the ductility of thin-walled HPDC Mg.Motivated by the ductility variations reported in literature and the experimental findings on AM60 castings,synthetic microstructure-based models are used to assess the effects of different pore sizes and locations.The results indicate the presence of three different regions based on the large pore size and model size:1)a region dominated by the effects of the large pore,2)a plateau region dominated by pore interactions,and 3)a transient region between these two effects.A threshold distance from the sample edge (d≈0.9√D·L)is proposed,within which a large pore can significantly reduce ductility.Additionally,large pores near edges contribute to ductility variations in Mg castings. 展开更多
关键词 MAGNESIUM High pressure die cast Porosity DUCTILITY Microstructure-based finite element model
在线阅读 下载PDF
THE PRODUCTION OF FOAM ALUMINIUM ALLOY BY LOW-PRESSURE INFILTRATION METHOD 被引量:2
19
作者 Y. Zhang, Z.D. Zhao and J.C. Ding Department of Mechanical Engineering, Shandong Institute of Technology, Zibo 255012,China 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1999年第5期747-751,共5页
The influence of technical parameters on the infiltrating height of the moltenmetal in the process of Producing aluminium alloy foam by low-pressure infiltration method were investigated.Experiments indicated that the... The influence of technical parameters on the infiltrating height of the moltenmetal in the process of Producing aluminium alloy foam by low-pressure infiltration method were investigated.Experiments indicated that the height increases with the preheating temperature of granules,theexternal pressureand the pouring temperature of molten alloy,among which the action of pre heating temperature of granules is more effective.There exists a critical pre heating temperature for different size of granules. 展开更多
关键词 aluminium alloy foam low pressure casting INFILTRATION
在线阅读 下载PDF
Effect of pressure on the feeding characteristics of ZCuZn16Si4 alloy
20
作者 Li Hailan Sun Xun +4 位作者 Zhang Shiyan Liu Xiaofu Qi Xiaobing Wang Penghua Yu Bo 《China Foundry》 SCIE CAS 2008年第2期92-94,共3页
The experimental and numerical simulation methods were employed to study the effect of pressure on the feeding characteristics of ZCuZn16Si4 alloy castings. The results proved that different pressures would lead to di... The experimental and numerical simulation methods were employed to study the effect of pressure on the feeding characteristics of ZCuZn16Si4 alloy castings. The results proved that different pressures would lead to different feeding distance of riser over a suitable pressure range, and the pressure can be used to greatly improve the feeding characteristics compared with gravity casting. It should be pointed out that current porosity criteria in the numerical simulation codes cannot yet be applied well enough to predict the porosity defects of low-pressure copper alloy castings. 展开更多
关键词 low pressure casting ZCuZn16Si4 alloy pressure feeding characteristics feeding distance
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部