Sweet potatoes are significant cash crops,however,their yield and quality are greatly compromised by viral diseases.In this study,the complete genomic sequences of two Sweet Potato Virus 2(SPV2)isolates from infected ...Sweet potatoes are significant cash crops,however,their yield and quality are greatly compromised by viral diseases.In this study,the complete genomic sequences of two Sweet Potato Virus 2(SPV2)isolates from infected sweet potato leaves in the Shandong(designated as SPV2-SDYT,GenBank No.PQ855660.1)and Jiangsu(designated as SPV2-JSXZ,GenBank No.PQ855661.1)provinces in China were obtained using 5′RACE and RT-PCR amplification.Consistency,phylogeny,codon usage bias,recombination,and selection pressure analyses were conducted using the SPV2-SDYT and SPV2-JSXZ genome sequences.The complete genome sequences of SPV2-SDYT and SPV2-JSXZ were 10561 nucleotides(nt)in length,with respective nucleotide and amino acid identities of 99.25%and 99.12%,respectively.Both isolates were closely related to the SPV2 isolate from China(SPV2-LN).In both SPV2-SDYT and SPV2-JSXZ,the identity of the P1 protein was the highest,whereas that of the P3 protein was the lowest.There were 26 codons with relatively synonymous codon usage(RSCU)values greater than 1 in SPV2-SDYT and 27 codons with RSCU values greater than 1 in SPV2-JSXZ.High-frequency codons in their genomes were predominantly found to end with A/U.Recombination analysis revealed no major recombination sites in either SPV2-SDYT or SPV2-JSXZ.Further selection pressure analysis showed that the non-synonymous substitution rate/synonymous substitution rate(dN/dS)value of all 10 SPV2 proteins was less than 1.This is the first report on the evolutionary relationships of the 17 known SPV2 isolates.Our findings lay the molecular groundwork for preventing and controlling SPV2 infection in root-tuber crops.These findings also contribute to our understanding of the spread and evolution of SPV2,its pathogenic mechanisms,and the development of antiviral strategies against it.展开更多
Hydraulic fracturing and commingle production of multiple layers are extensively adopted in unconventional tight gas reservoirs.Accurate determination of parameters of individual layers in multilayered tight gas reser...Hydraulic fracturing and commingle production of multiple layers are extensively adopted in unconventional tight gas reservoirs.Accurate determination of parameters of individual layers in multilayered tight gas reservoirs is essential for well performance evaluation and development strategy optimization.However,most analytical models for fractured vertical wells in stratified gas reservoirs focus on fully penetrated hydraulic fractures,neglecting the influence of partial penetration of hydraulic fractures.This paper presents a semi-analytical model to investigate the transient pressure behavior of vertically fractured wells in dual porosity multi-layered tight gas reservoirs.The partial penetration of hydraulic fracture,the vertical heterogeneities of layer properties,the differences between hydraulic fracture lengths in each layer and the stress sensitivity are all incorporated in the proposed model.The point-source solution,Laplace transformation,Fourier transformation,Pedrosa's transformation,perturbation technique,and the superposition principle are applied to obtain the analytical solution of transient pressure responses.The proposed model is validated against a commercial software,and the transient pressure behavior of vertically fractured wells in multi-layered tight gas reservoirs are analyzed.Based on the characteristics of the type curves,seven flow regimes can be identified,including wellbore storage,transitional flow period,reservoir linear flow period,vertical pseudo-radial flow in fracture system,inter-porosity flow period,late-time pseudo-radial flow period,and the boundary-dominated flow period.Sensitivity analyses reveal that the penetration ratio of hydraulic fracture has primary influence on early-time transient pressure behavior and production contribution,while the stress sensitivity mainly affects the late-time transient pressure behavior.Gas production at the initial stage is mainly contributed by the high-pressure/high-permeability layer,and gas backflow will occur during initial production stage for obviously unequal initial formation pressures.Finally,two field cases are conducted to illustrate the applicability of the proposed model.The model and corresponding conclusions can provide technical support for performance analysis of tight gas reservoirs.展开更多
Water hammer diagnostics is an important fracturing diagnosis technique to evaluate fracture locations and other downhole events in fracturing. The evaluation results are obtained by analyzing shut-in water hammer pre...Water hammer diagnostics is an important fracturing diagnosis technique to evaluate fracture locations and other downhole events in fracturing. The evaluation results are obtained by analyzing shut-in water hammer pressure signal. The field-sampled water hammer signal is often disturbed by noise interference. Noise interference exists in various pumping stages during water hammer diagnostics, with significantly different frequency range and energy distribution. Clarifying the differences in frequency range and energy distribution between effective water hammer signals and noise is the basis of setting specific filtering parameters, including filtering frequency range and energy thresholds. Filtering specifically could separate the effective signal and noise, which is the key to ensuring the accuracy of water hammer diagnosis. As an emerging technique, there is a lack of research on the frequency range and energy distribution of effective signals in water hammer diagnostics. In this paper, the frequency range and energy distribution characteristics of field-sampled water hammer signals were clarified quantitatively and qualitatively for the first time by a newly proposed comprehensive water hammer segmentation-energy analysis method. The water hammer signals were preprocessed and divided into three segments, including pre-shut-in, water hammer oscillation, and leak-off segment. Then, the three segments were analyzed by energy analysis and correlation analysis. The results indicated that, one aspect, the frequency range of water hammer oscillation spans from 0 to 0.65 Hz, considered as effective water hammer signal. The pre-shut-in and leak-off segment ranges from 0 to 0.35 Hz and 0-0.2 Hz respectively. Meanwhile, odd harmonics were manifested in water hammer oscillation segment, with the harmonic frequencies ranging approximately from 0.07 to 0.75 Hz. Whereas integer harmonics were observed in pre-shut-in segment, ranging from 6 to 40 Hz. The other aspect, the energy distribution of water hammer signals was analyzed in different frequency ranges. In 0-1 Hz, an exponential decay was observed in all three segments. In 1-100 Hz, a periodical energy distribution was observed in pre-shut-in segment, an exponential decay was observed in water hammer oscillation, and an even energy distribution was observed in leak-off segment. In 100-500 Hz, an even energy distribution was observed in those three segments, yet the highest magnitude was noted in leak-off segment. In this study, the effective frequency range and energy distribution characteristics of the field-sampled water hammer signals in different segments were sufficiently elucidated quantitatively and qualitatively for the first time, laying the groundwork for optimizing the filtering parameters of the field filtering models and advancing the accuracy of identifying downhole event locations.展开更多
Almost all sandstone reservoirs contain interlayers. The identification and characterization of these interlayers iscritical for minimizing the uncertainty associated with oilfield development and improving oil and ga...Almost all sandstone reservoirs contain interlayers. The identification and characterization of these interlayers iscritical for minimizing the uncertainty associated with oilfield development and improving oil and gas recovery.Identifying interlayers outside wells using identification methods based on logging data and machine learning isdifficult and seismic-based identification techniques are expensive. Herein, a numerical model based on seepageand well-testing theories is introduced to identify interlayers using transient pressure data. The proposed modelrelies on the open-source MATLAB Reservoir Simulation Toolbox. The effects of the interlayer thickness, position,and width on the pressure response are thoroughly investigated. A procedure for inverting interlayer parametersin the reservoir using the bottom-hole pressure is also proposed. This method uses only transient pressuredata during well testing and can effectively identify the interlayer distribution near the wellbore at an extremelylow cost. The reliability of the model is verified using effective oilfield examples.展开更多
Severe well interference through complex fracture networks(CFNs)can be observed among multi-well pads in low permeability reservoirs.The well interference analysis between multi-fractured horizontal wells(MFHWs)is vit...Severe well interference through complex fracture networks(CFNs)can be observed among multi-well pads in low permeability reservoirs.The well interference analysis between multi-fractured horizontal wells(MFHWs)is vitally important for reservoir effective development.Well interference has been historically investigated by pressure transient analysis,while it has shown that rate transient analysis has great potential in well interference diagnosis.However,the impact of complex fracture networks(CFNs)on rate transient behavior of parent well and child well in unconventional reservoirs is still not clear.To further investigate,this paper develops an integrated approach combining pressure and rate transient analysis for well interference diagnosis considering CFNs.To perform multi-well simulation considering CFNs,non-intrusive embedded discrete fracture model approach was applied for coupling fracture with reservoir models.The impact of CFN including natural fractures and frac-hits on pressure and rate transient behavior in multi-well system was investigated.On a logelog plot,interference flow and compound linear flow are two new flow regimes caused by nearby producers.When both NFs and frac-hits are present in the reservoir,frac-hits have a greater impact on well#1 which contains frac-hits,and NFs have greater impact on well#3 which does not have frac-hits.For all well producing circumstances,it might be challenging to see divergence during pseudosteady state flow brought on by frac-hits on the logelog plot.Besides,when NFs occur,reservoir depletion becomes noticeable in comparison to frac-hits in pressure distribution.Application of this integrated approach demonstrates that it works well to characterize the well interference among different multi-fractured horizontal wells in a well pad.Better reservoir evaluation can be acquired based on the new features observed in the novel model,demonstrating the practicability of the proposed approach.The findings of this study can help for better evaluating well interference degree in multi-well systems combing PTA and RTA,which can reduce the uncertainty and improve the accuracy of the well interference analysis based on both field pressure and rate data.展开更多
A review of the pressure transient analysis of flow in reservoirs having natural fractures,vugs and/or caves is presented to provide an insight into how much knowledge has been acquired about this phenomenon and to hi...A review of the pressure transient analysis of flow in reservoirs having natural fractures,vugs and/or caves is presented to provide an insight into how much knowledge has been acquired about this phenomenon and to highlight the gaps still open for further research.A comparison-based approach is adopted which involved the review of works by several authors and identifying the limiting assumptions,model restrictions and applicability.Pressure transient analysis provides information to aid the identification of important features of reservoirs.It also provides an explanation to complex reservoir pressuredependent variations which have led to improved understanding and optimization of the reservoir dynamics.Pressure transient analysis techniques,however,have limitations as not all its models find application in naturally fractured and vuggy reservoirs as the flow dynamics differ considerably.Pollard’s model presented in 1953 provided the foundation for existing pressure transient analysis in these types of reservoirs,and since then,several authors have modified this basic model and come up with more accurate models to characterize the dynamic pressure behavior in reservoirs with natural fractures,vugs and/or caves,with most having inherent limitations.This paper summarizes what has been done,what knowledge is considered established and the gaps left to be researched on.展开更多
Sealing analysis of sealing system in reactor pressure vessels is relevant with multiple nonlinear coupled-field effects, so even large-scale commercial finite element software cannot finish the complicated analysis. ...Sealing analysis of sealing system in reactor pressure vessels is relevant with multiple nonlinear coupled-field effects, so even large-scale commercial finite element software cannot finish the complicated analysis. A finite element method of 3D transient coupled thermo-elastic-plastic contact sealing analysis for reactor pressure vessels is presented, in which the surface nonlinearity, material nonlinearity, transient heat transfer nonlinearity and multiple coupled effect are taken into account and the sealing equation is coupling solved in iterative procedure. At the same time, a computational analysis program is developed, which is applied in the sealing analysis of experimental reactor pressure vessel, and the numerical results are in good coincidence with the experimental resuits. This program is also successful in analyzing the practical problem in engineering.展开更多
Stabilizing pile is a kind of earth shoring structure frequently used in slope engineering. When the piles have cantilever segments above the ground,laggings are usually installed to avoid collapse of soil between pil...Stabilizing pile is a kind of earth shoring structure frequently used in slope engineering. When the piles have cantilever segments above the ground,laggings are usually installed to avoid collapse of soil between piles. Evaluating the earth pressure acting on laggings is of great importance in design process.Since laggings are usually less stiff than piles,the lateral pressure on lagging is much closer to active earth pressure. In order to estimate the lateral earth pressure on lagging more accurately,first,a model test of cantilever stabilizing pile and lagging systems was carried out. Then,basing the experimental results a three-dimensional sliding wedge model was established. Last,the calculation process of the total active force on lagging is presented based on the kinematic approach of limit analysis. A comparison is made between the total active force on lagging calculated by the formula presented in this study and the force on a same-size rigid retaining wall obtained from Rankine's theory. It is found that the proposed method fits well with the experimental results.Parametric studies show that the total active force on lagging increases with the growth of the lagging height and the lagging clear span; while decreases asthe soil internal friction angle and soil cohesion increase.展开更多
Dear Sir,Triamcinolone acetonide(TA)is worldwide available therapeutic agent that is commonly used throughout medicine.TA remains a safe and important ophthalmic therapeutic agent even after the advent of angiogenes...Dear Sir,Triamcinolone acetonide(TA)is worldwide available therapeutic agent that is commonly used throughout medicine.TA remains a safe and important ophthalmic therapeutic agent even after the advent of angiogenesis inhibitors[1-2].展开更多
A numerical method is proposed for the elasto-plasticity and pore-pressure coupled analysis on the pull- out behaviors of a plate anchor. The bounding-surface plasticity (BSP) model combined with Blot's consol- ida...A numerical method is proposed for the elasto-plasticity and pore-pressure coupled analysis on the pull- out behaviors of a plate anchor. The bounding-surface plasticity (BSP) model combined with Blot's consol- idation theory is employed to simulate the cyclic loading induced elasto-plastic deformation of the soil skeleton and the accompanying generation/dissipation of the excess pore water pressure. The suction force generated around the anchor due to the cyclic variation of the pore water pressure has much effect on the pullout capacity of the plate anchor. The calculated pullout capacity with the proposed method (i.e., the coupled analysis) gets lower than that with the conventional total stress analysis for the case of long-term sustained loading, but slightly higher for the case of short-term monotonic loading. The cyclic loading induced accumulation of pore water pressure may result in an obvious decrease of the stiffness of the soil-Plate anchor svstem.展开更多
With mean yield(MY)criterion,an analytical solution of the collapse load for a defect-free pipe elbow under internal pressure is first obtained.It is a function of ratio of thickness to radius t0/r0,strain hardening...With mean yield(MY)criterion,an analytical solution of the collapse load for a defect-free pipe elbow under internal pressure is first obtained.It is a function of ratio of thickness to radius t0/r0,strain hardening exponent n,curvature influence factor mand ultimate tensile strength.The collapse load increases with the increase of m,and it is the same as the burst pressure of straight pipe if m=1is assumed.The MY-based solution is compared with those based on Tresca,Mises and twin shear stress(TSS)yield criteria,and the comparison indicates that Tresca and twin shear stress yield criteria predict a lower bound and an upper bound to the collapse load respectively.However,the MY-based solution lies just between the TSS and Tresca solutions,and almost has the same precision with the Mises solution.展开更多
Polymer flooding in fractured wells has been extensively applied in oilfields to enhance oil recovery.In contrast to water,polymer solution exhibits non-Newtonian and nonlinear behavior such as effects of shear thinni...Polymer flooding in fractured wells has been extensively applied in oilfields to enhance oil recovery.In contrast to water,polymer solution exhibits non-Newtonian and nonlinear behavior such as effects of shear thinning and shear thickening,polymer convection,diffusion,adsorption retention,inaccessible pore volume and reduced effective permeability.Meanwhile,the flux density and fracture conductivity along the hydraulic fracture are generally non-uniform due to the effects of pressure distribution,formation damage,and proppant breakage.In this paper,we present an oil-water two-phase flow model that captures these complex non-Newtonian and nonlinear behavior,and non-uniform fracture characteristics in fractured polymer flooding.The hydraulic fracture is firstly divided into two parts:high-conductivity fracture near the wellbore and low-conductivity fracture in the far-wellbore section.A hybrid grid system,including perpendicular bisection(PEBI)and Cartesian grid,is applied to discrete the partial differential flow equations,and the local grid refinement method is applied in the near-wellbore region to accurately calculate the pressure distribution and shear rate of polymer solution.The combination of polymer behavior characterizations and numerical flow simulations are applied,resulting in the calculation for the distribution of water saturation,polymer concentration and reservoir pressure.Compared with the polymer flooding well with uniform fracture conductivity,this non-uniform fracture conductivity model exhibits the larger pressure difference,and the shorter bilinear flow period due to the decrease of fracture flow ability in the far-wellbore section.The field case of the fall-off test demonstrates that the proposed method characterizes fracture characteristics more accurately,and yields fracture half-lengths that better match engineering reality,enabling a quantitative segmented characterization of the near-wellbore section with high fracture conductivity and the far-wellbore section with low fracture conductivity.The novelty of this paper is the analysis of pressure performances caused by the fracture dynamics and polymer rheology,as well as an analysis method that derives formation and fracture parameters based on the pressure and its derivative curves.展开更多
In order to extend the service life of torque converters, it is essential to predict the pressure condition and improve its weak areas. According to computational fluid dynamics and structural statics, a model of torq...In order to extend the service life of torque converters, it is essential to predict the pressure condition and improve its weak areas. According to computational fluid dynamics and structural statics, a model of torque converter is constructed using software ANSYS. Then, a fluid-solid interaction(FSI) analysis method is proposed to obtain its stress distribution, in which the fluid pressure is applied to the coupling surface to calculate the interaction between fluid and solid. The results show that the fluid pressure at the inlet of the impeller is maximum and decreases along the flow direction, the pressure at the inlet of the turbine blade is minimum and the outlet pressure is the largest, increasing along the flow direction gradually;the pressure distribution of the impeller is concentrated mainly at the corner, especially between the inner ring and the impeller blades;the pressure of the turbine is concentrated mainly on the connection between turbine and the outer edge of the blade.展开更多
Feline calicivirus(FCV)is an important feline pathogen mainly causing upper respiratory tract disease,conjunctivitis,and stomatitis,and it is classifed into genotype I and genotype II.To investigate the prevalence and...Feline calicivirus(FCV)is an important feline pathogen mainly causing upper respiratory tract disease,conjunctivitis,and stomatitis,and it is classifed into genotype I and genotype II.To investigate the prevalence and molecular characteristics of FCV,this study collected 337 cat swab samples from animal hospitals in diferent regions of China from 2019 to 2021.The positive detection rate of FCV was 29.9%(101/337)by RT-PCR.Statistical analysis showed that FCV prevalence was signifcantly associated with living environment(p=0.0004),age(p=0.031)and clinical symptoms(p=0.00),but not with sex(p=0.092)and breed(p=0.171).The 26 strains of FCV were isolated using F81 cells.Phylogenetic analysis showed that 10 isolates belonged to genotype I,and 16 isolates belonged to genotype II.These 26 isolates were highly genetically diverse,of which HB7 isolate had three same virulence-related amino acid loci with VSD strains.Potential loci distinguishing diferent genotypes were identifed from 26 isolates,suggesting the genetic relationship between diferent genotypes.In addition,selection pressure analysis based on capsid protein of 26 isolates revealed that the protein is under diversifying selection.This study reveals the genetic diversity of FCV and provides a reference for the screening of vaccine candidate strains and the development of vaccines with better cross-protection efects.展开更多
The eutectic point is a critical parameter in the phase diagrams of solid–liquid equilibrium. In this study, high-pressure differential thermal analysis(HPDTA) was utilized to measure the melting temperatures of Fe–...The eutectic point is a critical parameter in the phase diagrams of solid–liquid equilibrium. In this study, high-pressure differential thermal analysis(HPDTA) was utilized to measure the melting temperatures of Fe–C alloy(3.4–4.2 wt.% C)under 5 GPa and to plot the liquidus temperature curves spanning from hypoeutectic to hypereutectic compositions. Our results indicate that under 5 GPa, the carbon content at the eutectic point of the Fe–C alloy decreases to 3.6–3.7 wt.%C, representing a reduction of approximately 0.6 wt.% C compared to the atmospheric pressure value(4.3 wt.% C). Concurrently, the eutectic temperature rises to 1195℃, showing an elevation of 48℃relative to the atmospheric pressure condition(1147℃). Microstructural analysis, x-ray diffraction(XRD), and hardness tests further corroborate these findings, demonstrating that high pressure significantly suppresses the solubility of carbon in γ-Fe, resulting in a decrease in the eutectic carbon content. Additionally, the hardness of the Fe–C alloy under 5 GPa is increased by more than 50% compared to that of the same type of Fe–C alloy under atmospheric pressure. This study provides essential experimental data for constructing high-pressure Fe–C phase diagrams and offers valuable insights for the design of high-performance Fe-based materials under extreme conditions.展开更多
Estimating the intensity of outbursts of coal and gas is important as the intensity and frequency of outbursts of coal and gas tend to increase in deep mining. Fully understanding the major factors contributing to coa...Estimating the intensity of outbursts of coal and gas is important as the intensity and frequency of outbursts of coal and gas tend to increase in deep mining. Fully understanding the major factors contributing to coal and gas outbursts is significant in the evaluation of the intensity of the outburst. In this paper, we discuss the correlation between these major factors and the intensity of the outburst using Analysis of Variance(ANOVA) and Contingency Table Analysis(CTA). Regression analysis is used to evaluate the impact of these major factors on the intensity of outbursts based on physical experiments. Based on the evaluation, two simple models in terms of multiple linear and nonlinear regression were constructed for the prediction of the intensity of the outburst. The results show that the gas pressure and initial moisture in the coal mass could be the most significant factors compared to the weakest factor-porosity. The P values from Fisher's exact test in CTA are: moisture(0.019), geostress(0.290), porosity(0.650), and gas pressure(0.031). P values from ANOVA are moisture(0.094), geostress(0.077), porosity(0.420), and gas pressure(0.051). Furthermore, the multiple nonlinear regression model(RMSE: 3.870) is more accurate than the linear regression model(RMSE: 4.091).展开更多
Fixed offshore wind turbines usually have large underwater supporting structures. The fluid influences the dynamic characteristics of the structure system. The dynamic model of a 5-MW tripod offshore wind turbine cons...Fixed offshore wind turbines usually have large underwater supporting structures. The fluid influences the dynamic characteristics of the structure system. The dynamic model of a 5-MW tripod offshore wind turbine considering the pile-soil system and fluid structure interaction (FSI) is established, and the structural modes in air and in water are obtained by use of ANSYS. By comparing low-order natural frequencies and mode shapes, the influence of sea water on the free vibration characteristics of offshore wind turbine is analyzed. On basis of the above work, seismic responses under excitation by E1-Centro waves are calculated by the time-history analysis method. The results reveal that the dynamic responses such as the lateral displacement of the foundation and the section bending moment of the tubular piles increase substantially under the influence of the added-mass and hydrodynamic pressure of sea water. The method and conclusions presented in this paper can provide a theoretical reference for structure design and analysis of offshore wind turbines fixed in deep seawater.展开更多
The utilization of pressure vessels in aerospace applications is manifold.In this work,fnite element analysis(FEA)has been carried out using ANSYS software package with 2D axisymmetric model to access the failure pr...The utilization of pressure vessels in aerospace applications is manifold.In this work,fnite element analysis(FEA)has been carried out using ANSYS software package with 2D axisymmetric model to access the failure pressure of cylindrical pressure vessel made of ASTM A36 carbon steel having weld-induced residual stresses.To fnd out the effect of residual stresses on failure pressure,frst an elasto-plastic analysis is performed to fnd out the failure pressure of pressure vessel not having residual stresses.Then a thermo-mechanical fnite element analysis is performed to assess the residual stresses developed in the pressure vessel during welding.Finally one more elasto-plastic analysis is performed to assess the effect of residual stresses on failure pressure of the pressure vessel having residual stresses.This analysis indicates reduction in the failure pressure due to unfavorable residual stresses.展开更多
Caving of mine roofs from water inrush due to anomalous pressure is one of the major disasters and accidents that can occur in mines during production.Roof water inrush can trigger a wide range of roof collapse,causin...Caving of mine roofs from water inrush due to anomalous pressure is one of the major disasters and accidents that can occur in mines during production.Roof water inrush can trigger a wide range of roof collapse,causing major accidents from breaking roof supports while caving.These failures flood wells and do a great deal of damage to mines and endanger mine safety.Our objective is to analyze the anomalies of water inrush crushing the support at the #6301 working face in the Jisan Coal Mine of the Yanzhou Mining Group.Through information of water inrush to the roof,damage caused by tectonic movements,information on the damage caused by roof collapse and the theory about the distribution of pressure in mine abutments,we advice adjusting the length of the working face and the position of open-off cut relatively to the rich water area.In the case of anomalous roof pressure we should develop a state equation to estimate preventive measures with"transferring rock beam"theory.Simultaneously, we improve the capacity of drainage equipment and ensured adequate water retention at the storehouse. These are all major technologies to ensure the control and prevention against accidents caused by anomalous water inrush in roofs,thus ensuring safety in the production process of a coal mine.展开更多
Hydraulic fracture is one of the key methods in well stimulation to increase production of oil and gas.Crack Opening Displacement(COD) is of great importance in this method since it is in direct relation with permeabi...Hydraulic fracture is one of the key methods in well stimulation to increase production of oil and gas.Crack Opening Displacement(COD) is of great importance in this method since it is in direct relation with permeability and production rate.In this paper COD is measured by a distinct element model which has been validated by an exact solution.A comprehensive study has been performed on confining pressure effect on COD which is neglected in the analytical solution.Numerical results showed that confining pressure considerably affects COD.A multi-parameter regression(considering effect of confining pressure,rock mass properties and fluid pressure) was performed on numerical results which resulted in an equation.The proposed equation considers the effect of confining pressure and its results are in good agreement with numerical results.展开更多
基金Funding Statement:This work was funded by the National Natural Science Foundation of China(32100132)Shandong Province Natural Sciences Foundation of China(ZR2021QC008)+1 种基金Youth Innovation Team Program'in College of Shandong Province of China(2022KJ119)supported by Young Talent of Lifting Engineering for Science and Technology in Shandong,China(SDAST2024QT085).
文摘Sweet potatoes are significant cash crops,however,their yield and quality are greatly compromised by viral diseases.In this study,the complete genomic sequences of two Sweet Potato Virus 2(SPV2)isolates from infected sweet potato leaves in the Shandong(designated as SPV2-SDYT,GenBank No.PQ855660.1)and Jiangsu(designated as SPV2-JSXZ,GenBank No.PQ855661.1)provinces in China were obtained using 5′RACE and RT-PCR amplification.Consistency,phylogeny,codon usage bias,recombination,and selection pressure analyses were conducted using the SPV2-SDYT and SPV2-JSXZ genome sequences.The complete genome sequences of SPV2-SDYT and SPV2-JSXZ were 10561 nucleotides(nt)in length,with respective nucleotide and amino acid identities of 99.25%and 99.12%,respectively.Both isolates were closely related to the SPV2 isolate from China(SPV2-LN).In both SPV2-SDYT and SPV2-JSXZ,the identity of the P1 protein was the highest,whereas that of the P3 protein was the lowest.There were 26 codons with relatively synonymous codon usage(RSCU)values greater than 1 in SPV2-SDYT and 27 codons with RSCU values greater than 1 in SPV2-JSXZ.High-frequency codons in their genomes were predominantly found to end with A/U.Recombination analysis revealed no major recombination sites in either SPV2-SDYT or SPV2-JSXZ.Further selection pressure analysis showed that the non-synonymous substitution rate/synonymous substitution rate(dN/dS)value of all 10 SPV2 proteins was less than 1.This is the first report on the evolutionary relationships of the 17 known SPV2 isolates.Our findings lay the molecular groundwork for preventing and controlling SPV2 infection in root-tuber crops.These findings also contribute to our understanding of the spread and evolution of SPV2,its pathogenic mechanisms,and the development of antiviral strategies against it.
基金supported by the National Natural Science Foundation of China(Grant Nos.52174036,52234003)the Sichuan Province Science and Technology Program(Grant No.2024NSFSC0199)the Joint Fund for Innovation and Development of Chongqing Natural Science Foundation(Grant No.2023NSCQ-LZX0184).
文摘Hydraulic fracturing and commingle production of multiple layers are extensively adopted in unconventional tight gas reservoirs.Accurate determination of parameters of individual layers in multilayered tight gas reservoirs is essential for well performance evaluation and development strategy optimization.However,most analytical models for fractured vertical wells in stratified gas reservoirs focus on fully penetrated hydraulic fractures,neglecting the influence of partial penetration of hydraulic fractures.This paper presents a semi-analytical model to investigate the transient pressure behavior of vertically fractured wells in dual porosity multi-layered tight gas reservoirs.The partial penetration of hydraulic fracture,the vertical heterogeneities of layer properties,the differences between hydraulic fracture lengths in each layer and the stress sensitivity are all incorporated in the proposed model.The point-source solution,Laplace transformation,Fourier transformation,Pedrosa's transformation,perturbation technique,and the superposition principle are applied to obtain the analytical solution of transient pressure responses.The proposed model is validated against a commercial software,and the transient pressure behavior of vertically fractured wells in multi-layered tight gas reservoirs are analyzed.Based on the characteristics of the type curves,seven flow regimes can be identified,including wellbore storage,transitional flow period,reservoir linear flow period,vertical pseudo-radial flow in fracture system,inter-porosity flow period,late-time pseudo-radial flow period,and the boundary-dominated flow period.Sensitivity analyses reveal that the penetration ratio of hydraulic fracture has primary influence on early-time transient pressure behavior and production contribution,while the stress sensitivity mainly affects the late-time transient pressure behavior.Gas production at the initial stage is mainly contributed by the high-pressure/high-permeability layer,and gas backflow will occur during initial production stage for obviously unequal initial formation pressures.Finally,two field cases are conducted to illustrate the applicability of the proposed model.The model and corresponding conclusions can provide technical support for performance analysis of tight gas reservoirs.
基金support from the National Natural Science Foundation of China(No.52374019).
文摘Water hammer diagnostics is an important fracturing diagnosis technique to evaluate fracture locations and other downhole events in fracturing. The evaluation results are obtained by analyzing shut-in water hammer pressure signal. The field-sampled water hammer signal is often disturbed by noise interference. Noise interference exists in various pumping stages during water hammer diagnostics, with significantly different frequency range and energy distribution. Clarifying the differences in frequency range and energy distribution between effective water hammer signals and noise is the basis of setting specific filtering parameters, including filtering frequency range and energy thresholds. Filtering specifically could separate the effective signal and noise, which is the key to ensuring the accuracy of water hammer diagnosis. As an emerging technique, there is a lack of research on the frequency range and energy distribution of effective signals in water hammer diagnostics. In this paper, the frequency range and energy distribution characteristics of field-sampled water hammer signals were clarified quantitatively and qualitatively for the first time by a newly proposed comprehensive water hammer segmentation-energy analysis method. The water hammer signals were preprocessed and divided into three segments, including pre-shut-in, water hammer oscillation, and leak-off segment. Then, the three segments were analyzed by energy analysis and correlation analysis. The results indicated that, one aspect, the frequency range of water hammer oscillation spans from 0 to 0.65 Hz, considered as effective water hammer signal. The pre-shut-in and leak-off segment ranges from 0 to 0.35 Hz and 0-0.2 Hz respectively. Meanwhile, odd harmonics were manifested in water hammer oscillation segment, with the harmonic frequencies ranging approximately from 0.07 to 0.75 Hz. Whereas integer harmonics were observed in pre-shut-in segment, ranging from 6 to 40 Hz. The other aspect, the energy distribution of water hammer signals was analyzed in different frequency ranges. In 0-1 Hz, an exponential decay was observed in all three segments. In 1-100 Hz, a periodical energy distribution was observed in pre-shut-in segment, an exponential decay was observed in water hammer oscillation, and an even energy distribution was observed in leak-off segment. In 100-500 Hz, an even energy distribution was observed in those three segments, yet the highest magnitude was noted in leak-off segment. In this study, the effective frequency range and energy distribution characteristics of the field-sampled water hammer signals in different segments were sufficiently elucidated quantitatively and qualitatively for the first time, laying the groundwork for optimizing the filtering parameters of the field filtering models and advancing the accuracy of identifying downhole event locations.
文摘Almost all sandstone reservoirs contain interlayers. The identification and characterization of these interlayers iscritical for minimizing the uncertainty associated with oilfield development and improving oil and gas recovery.Identifying interlayers outside wells using identification methods based on logging data and machine learning isdifficult and seismic-based identification techniques are expensive. Herein, a numerical model based on seepageand well-testing theories is introduced to identify interlayers using transient pressure data. The proposed modelrelies on the open-source MATLAB Reservoir Simulation Toolbox. The effects of the interlayer thickness, position,and width on the pressure response are thoroughly investigated. A procedure for inverting interlayer parametersin the reservoir using the bottom-hole pressure is also proposed. This method uses only transient pressuredata during well testing and can effectively identify the interlayer distribution near the wellbore at an extremelylow cost. The reliability of the model is verified using effective oilfield examples.
基金The authors are grateful to the financial support from China Postdoctoral Science Foundation(2022M712645)Opening Fund of Key Laboratory of Enhanced Oil Recovery(Northeast Petroleum University),Ministry of Education(NEPU-EOR-2021-03).
文摘Severe well interference through complex fracture networks(CFNs)can be observed among multi-well pads in low permeability reservoirs.The well interference analysis between multi-fractured horizontal wells(MFHWs)is vitally important for reservoir effective development.Well interference has been historically investigated by pressure transient analysis,while it has shown that rate transient analysis has great potential in well interference diagnosis.However,the impact of complex fracture networks(CFNs)on rate transient behavior of parent well and child well in unconventional reservoirs is still not clear.To further investigate,this paper develops an integrated approach combining pressure and rate transient analysis for well interference diagnosis considering CFNs.To perform multi-well simulation considering CFNs,non-intrusive embedded discrete fracture model approach was applied for coupling fracture with reservoir models.The impact of CFN including natural fractures and frac-hits on pressure and rate transient behavior in multi-well system was investigated.On a logelog plot,interference flow and compound linear flow are two new flow regimes caused by nearby producers.When both NFs and frac-hits are present in the reservoir,frac-hits have a greater impact on well#1 which contains frac-hits,and NFs have greater impact on well#3 which does not have frac-hits.For all well producing circumstances,it might be challenging to see divergence during pseudosteady state flow brought on by frac-hits on the logelog plot.Besides,when NFs occur,reservoir depletion becomes noticeable in comparison to frac-hits in pressure distribution.Application of this integrated approach demonstrates that it works well to characterize the well interference among different multi-fractured horizontal wells in a well pad.Better reservoir evaluation can be acquired based on the new features observed in the novel model,demonstrating the practicability of the proposed approach.The findings of this study can help for better evaluating well interference degree in multi-well systems combing PTA and RTA,which can reduce the uncertainty and improve the accuracy of the well interference analysis based on both field pressure and rate data.
基金the financial support received from the College of Petroleum Engineering and Geosciences at KFUPM through the project SF20006 toward the completion of this work。
文摘A review of the pressure transient analysis of flow in reservoirs having natural fractures,vugs and/or caves is presented to provide an insight into how much knowledge has been acquired about this phenomenon and to highlight the gaps still open for further research.A comparison-based approach is adopted which involved the review of works by several authors and identifying the limiting assumptions,model restrictions and applicability.Pressure transient analysis provides information to aid the identification of important features of reservoirs.It also provides an explanation to complex reservoir pressuredependent variations which have led to improved understanding and optimization of the reservoir dynamics.Pressure transient analysis techniques,however,have limitations as not all its models find application in naturally fractured and vuggy reservoirs as the flow dynamics differ considerably.Pollard’s model presented in 1953 provided the foundation for existing pressure transient analysis in these types of reservoirs,and since then,several authors have modified this basic model and come up with more accurate models to characterize the dynamic pressure behavior in reservoirs with natural fractures,vugs and/or caves,with most having inherent limitations.This paper summarizes what has been done,what knowledge is considered established and the gaps left to be researched on.
文摘Sealing analysis of sealing system in reactor pressure vessels is relevant with multiple nonlinear coupled-field effects, so even large-scale commercial finite element software cannot finish the complicated analysis. A finite element method of 3D transient coupled thermo-elastic-plastic contact sealing analysis for reactor pressure vessels is presented, in which the surface nonlinearity, material nonlinearity, transient heat transfer nonlinearity and multiple coupled effect are taken into account and the sealing equation is coupling solved in iterative procedure. At the same time, a computational analysis program is developed, which is applied in the sealing analysis of experimental reactor pressure vessel, and the numerical results are in good coincidence with the experimental resuits. This program is also successful in analyzing the practical problem in engineering.
基金financially supported by the National Key Technology Research and Development Program of the Ministry of Science and Technology of China under Grant No. 2012BAJ22B06
文摘Stabilizing pile is a kind of earth shoring structure frequently used in slope engineering. When the piles have cantilever segments above the ground,laggings are usually installed to avoid collapse of soil between piles. Evaluating the earth pressure acting on laggings is of great importance in design process.Since laggings are usually less stiff than piles,the lateral pressure on lagging is much closer to active earth pressure. In order to estimate the lateral earth pressure on lagging more accurately,first,a model test of cantilever stabilizing pile and lagging systems was carried out. Then,basing the experimental results a three-dimensional sliding wedge model was established. Last,the calculation process of the total active force on lagging is presented based on the kinematic approach of limit analysis. A comparison is made between the total active force on lagging calculated by the formula presented in this study and the force on a same-size rigid retaining wall obtained from Rankine's theory. It is found that the proposed method fits well with the experimental results.Parametric studies show that the total active force on lagging increases with the growth of the lagging height and the lagging clear span; while decreases asthe soil internal friction angle and soil cohesion increase.
文摘Dear Sir,Triamcinolone acetonide(TA)is worldwide available therapeutic agent that is commonly used throughout medicine.TA remains a safe and important ophthalmic therapeutic agent even after the advent of angiogenesis inhibitors[1-2].
基金supported by the National Natural Science Foundation of China(51309213)the 973 program of China (2014CB046200)
文摘A numerical method is proposed for the elasto-plasticity and pore-pressure coupled analysis on the pull- out behaviors of a plate anchor. The bounding-surface plasticity (BSP) model combined with Blot's consol- idation theory is employed to simulate the cyclic loading induced elasto-plastic deformation of the soil skeleton and the accompanying generation/dissipation of the excess pore water pressure. The suction force generated around the anchor due to the cyclic variation of the pore water pressure has much effect on the pullout capacity of the plate anchor. The calculated pullout capacity with the proposed method (i.e., the coupled analysis) gets lower than that with the conventional total stress analysis for the case of long-term sustained loading, but slightly higher for the case of short-term monotonic loading. The cyclic loading induced accumulation of pore water pressure may result in an obvious decrease of the stiffness of the soil-Plate anchor svstem.
基金Sponsored by National Natural Science Foundation of China(51074052,50734002)
文摘With mean yield(MY)criterion,an analytical solution of the collapse load for a defect-free pipe elbow under internal pressure is first obtained.It is a function of ratio of thickness to radius t0/r0,strain hardening exponent n,curvature influence factor mand ultimate tensile strength.The collapse load increases with the increase of m,and it is the same as the burst pressure of straight pipe if m=1is assumed.The MY-based solution is compared with those based on Tresca,Mises and twin shear stress(TSS)yield criteria,and the comparison indicates that Tresca and twin shear stress yield criteria predict a lower bound and an upper bound to the collapse load respectively.However,the MY-based solution lies just between the TSS and Tresca solutions,and almost has the same precision with the Mises solution.
基金This work is supported by the National Natural Science Foundation of China(No.52104049)the Young Elite Scientist Sponsorship Program by Beijing Association for Science and Technology(No.BYESS2023262)Science Foundation of China University of Petroleum,Beijing(No.2462022BJRC004).
文摘Polymer flooding in fractured wells has been extensively applied in oilfields to enhance oil recovery.In contrast to water,polymer solution exhibits non-Newtonian and nonlinear behavior such as effects of shear thinning and shear thickening,polymer convection,diffusion,adsorption retention,inaccessible pore volume and reduced effective permeability.Meanwhile,the flux density and fracture conductivity along the hydraulic fracture are generally non-uniform due to the effects of pressure distribution,formation damage,and proppant breakage.In this paper,we present an oil-water two-phase flow model that captures these complex non-Newtonian and nonlinear behavior,and non-uniform fracture characteristics in fractured polymer flooding.The hydraulic fracture is firstly divided into two parts:high-conductivity fracture near the wellbore and low-conductivity fracture in the far-wellbore section.A hybrid grid system,including perpendicular bisection(PEBI)and Cartesian grid,is applied to discrete the partial differential flow equations,and the local grid refinement method is applied in the near-wellbore region to accurately calculate the pressure distribution and shear rate of polymer solution.The combination of polymer behavior characterizations and numerical flow simulations are applied,resulting in the calculation for the distribution of water saturation,polymer concentration and reservoir pressure.Compared with the polymer flooding well with uniform fracture conductivity,this non-uniform fracture conductivity model exhibits the larger pressure difference,and the shorter bilinear flow period due to the decrease of fracture flow ability in the far-wellbore section.The field case of the fall-off test demonstrates that the proposed method characterizes fracture characteristics more accurately,and yields fracture half-lengths that better match engineering reality,enabling a quantitative segmented characterization of the near-wellbore section with high fracture conductivity and the far-wellbore section with low fracture conductivity.The novelty of this paper is the analysis of pressure performances caused by the fracture dynamics and polymer rheology,as well as an analysis method that derives formation and fracture parameters based on the pressure and its derivative curves.
基金Supported by the Natural Science Foundation of Shaanxi Province of China(No.2019JZ-10)
文摘In order to extend the service life of torque converters, it is essential to predict the pressure condition and improve its weak areas. According to computational fluid dynamics and structural statics, a model of torque converter is constructed using software ANSYS. Then, a fluid-solid interaction(FSI) analysis method is proposed to obtain its stress distribution, in which the fluid pressure is applied to the coupling surface to calculate the interaction between fluid and solid. The results show that the fluid pressure at the inlet of the impeller is maximum and decreases along the flow direction, the pressure at the inlet of the turbine blade is minimum and the outlet pressure is the largest, increasing along the flow direction gradually;the pressure distribution of the impeller is concentrated mainly at the corner, especially between the inner ring and the impeller blades;the pressure of the turbine is concentrated mainly on the connection between turbine and the outer edge of the blade.
基金supported by the National Natural Science Foundation of China(NSFC):(Grant No.32002268)the China Postdoctoral Science Foundation(Grant No.2019M662677)the Wuhan 3551 Optics Valley Talent Program and the Wuhan Talent Program.
文摘Feline calicivirus(FCV)is an important feline pathogen mainly causing upper respiratory tract disease,conjunctivitis,and stomatitis,and it is classifed into genotype I and genotype II.To investigate the prevalence and molecular characteristics of FCV,this study collected 337 cat swab samples from animal hospitals in diferent regions of China from 2019 to 2021.The positive detection rate of FCV was 29.9%(101/337)by RT-PCR.Statistical analysis showed that FCV prevalence was signifcantly associated with living environment(p=0.0004),age(p=0.031)and clinical symptoms(p=0.00),but not with sex(p=0.092)and breed(p=0.171).The 26 strains of FCV were isolated using F81 cells.Phylogenetic analysis showed that 10 isolates belonged to genotype I,and 16 isolates belonged to genotype II.These 26 isolates were highly genetically diverse,of which HB7 isolate had three same virulence-related amino acid loci with VSD strains.Potential loci distinguishing diferent genotypes were identifed from 26 isolates,suggesting the genetic relationship between diferent genotypes.In addition,selection pressure analysis based on capsid protein of 26 isolates revealed that the protein is under diversifying selection.This study reveals the genetic diversity of FCV and provides a reference for the screening of vaccine candidate strains and the development of vaccines with better cross-protection efects.
基金Project supported by the National Key Research and Development Program of China (Grant No. 2023YFA1406200)。
文摘The eutectic point is a critical parameter in the phase diagrams of solid–liquid equilibrium. In this study, high-pressure differential thermal analysis(HPDTA) was utilized to measure the melting temperatures of Fe–C alloy(3.4–4.2 wt.% C)under 5 GPa and to plot the liquidus temperature curves spanning from hypoeutectic to hypereutectic compositions. Our results indicate that under 5 GPa, the carbon content at the eutectic point of the Fe–C alloy decreases to 3.6–3.7 wt.%C, representing a reduction of approximately 0.6 wt.% C compared to the atmospheric pressure value(4.3 wt.% C). Concurrently, the eutectic temperature rises to 1195℃, showing an elevation of 48℃relative to the atmospheric pressure condition(1147℃). Microstructural analysis, x-ray diffraction(XRD), and hardness tests further corroborate these findings, demonstrating that high pressure significantly suppresses the solubility of carbon in γ-Fe, resulting in a decrease in the eutectic carbon content. Additionally, the hardness of the Fe–C alloy under 5 GPa is increased by more than 50% compared to that of the same type of Fe–C alloy under atmospheric pressure. This study provides essential experimental data for constructing high-pressure Fe–C phase diagrams and offers valuable insights for the design of high-performance Fe-based materials under extreme conditions.
基金provided by the Natural Science Foundation Project(Key)of Chongqing(No.cstc2013jjB0012)the National Natural Science Foundation of China(No.51434003)the National Natural Science Foundation of China(No.51474040)
文摘Estimating the intensity of outbursts of coal and gas is important as the intensity and frequency of outbursts of coal and gas tend to increase in deep mining. Fully understanding the major factors contributing to coal and gas outbursts is significant in the evaluation of the intensity of the outburst. In this paper, we discuss the correlation between these major factors and the intensity of the outburst using Analysis of Variance(ANOVA) and Contingency Table Analysis(CTA). Regression analysis is used to evaluate the impact of these major factors on the intensity of outbursts based on physical experiments. Based on the evaluation, two simple models in terms of multiple linear and nonlinear regression were constructed for the prediction of the intensity of the outburst. The results show that the gas pressure and initial moisture in the coal mass could be the most significant factors compared to the weakest factor-porosity. The P values from Fisher's exact test in CTA are: moisture(0.019), geostress(0.290), porosity(0.650), and gas pressure(0.031). P values from ANOVA are moisture(0.094), geostress(0.077), porosity(0.420), and gas pressure(0.051). Furthermore, the multiple nonlinear regression model(RMSE: 3.870) is more accurate than the linear regression model(RMSE: 4.091).
基金financially supported by the Fund for Creative Research Groups of China(Grant No.51421064)
文摘Fixed offshore wind turbines usually have large underwater supporting structures. The fluid influences the dynamic characteristics of the structure system. The dynamic model of a 5-MW tripod offshore wind turbine considering the pile-soil system and fluid structure interaction (FSI) is established, and the structural modes in air and in water are obtained by use of ANSYS. By comparing low-order natural frequencies and mode shapes, the influence of sea water on the free vibration characteristics of offshore wind turbine is analyzed. On basis of the above work, seismic responses under excitation by E1-Centro waves are calculated by the time-history analysis method. The results reveal that the dynamic responses such as the lateral displacement of the foundation and the section bending moment of the tubular piles increase substantially under the influence of the added-mass and hydrodynamic pressure of sea water. The method and conclusions presented in this paper can provide a theoretical reference for structure design and analysis of offshore wind turbines fixed in deep seawater.
文摘The utilization of pressure vessels in aerospace applications is manifold.In this work,fnite element analysis(FEA)has been carried out using ANSYS software package with 2D axisymmetric model to access the failure pressure of cylindrical pressure vessel made of ASTM A36 carbon steel having weld-induced residual stresses.To fnd out the effect of residual stresses on failure pressure,frst an elasto-plastic analysis is performed to fnd out the failure pressure of pressure vessel not having residual stresses.Then a thermo-mechanical fnite element analysis is performed to assess the residual stresses developed in the pressure vessel during welding.Finally one more elasto-plastic analysis is performed to assess the effect of residual stresses on failure pressure of the pressure vessel having residual stresses.This analysis indicates reduction in the failure pressure due to unfavorable residual stresses.
基金sponsored by the National Natural Science Foundation of China(No.50874021 )the Program for New Century Excellent Talents in University(No.NCET-08-0833)the Program for Changjiang Scholars and Innovative Research Team in University(No.IRT0656) of the Ministry of Education of China.
文摘Caving of mine roofs from water inrush due to anomalous pressure is one of the major disasters and accidents that can occur in mines during production.Roof water inrush can trigger a wide range of roof collapse,causing major accidents from breaking roof supports while caving.These failures flood wells and do a great deal of damage to mines and endanger mine safety.Our objective is to analyze the anomalies of water inrush crushing the support at the #6301 working face in the Jisan Coal Mine of the Yanzhou Mining Group.Through information of water inrush to the roof,damage caused by tectonic movements,information on the damage caused by roof collapse and the theory about the distribution of pressure in mine abutments,we advice adjusting the length of the working face and the position of open-off cut relatively to the rich water area.In the case of anomalous roof pressure we should develop a state equation to estimate preventive measures with"transferring rock beam"theory.Simultaneously, we improve the capacity of drainage equipment and ensured adequate water retention at the storehouse. These are all major technologies to ensure the control and prevention against accidents caused by anomalous water inrush in roofs,thus ensuring safety in the production process of a coal mine.
文摘Hydraulic fracture is one of the key methods in well stimulation to increase production of oil and gas.Crack Opening Displacement(COD) is of great importance in this method since it is in direct relation with permeability and production rate.In this paper COD is measured by a distinct element model which has been validated by an exact solution.A comprehensive study has been performed on confining pressure effect on COD which is neglected in the analytical solution.Numerical results showed that confining pressure considerably affects COD.A multi-parameter regression(considering effect of confining pressure,rock mass properties and fluid pressure) was performed on numerical results which resulted in an equation.The proposed equation considers the effect of confining pressure and its results are in good agreement with numerical results.