期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Artificial Intelligence in Traditional Chinese Medicine:Multimodal Fusion and Machine Learning for Enhanced Diagnosis and Treatment Efficacy
1
作者 Jie Wang Yong-mei Liu +4 位作者 Jun Li Hao-qiang He Chao Liu Yi-jie Song Su-ya Ma 《Current Medical Science》 2025年第5期1013-1022,共10页
Artificial intelligence(AI)serves as a key technology in global industrial transformation and technological restructuring and as the core driver of the fourth industrial revolution.Currently,deep learning techniques,s... Artificial intelligence(AI)serves as a key technology in global industrial transformation and technological restructuring and as the core driver of the fourth industrial revolution.Currently,deep learning techniques,such as convolutional neural networks,enable intelligent information collection in fields such as tongue and pulse diagnosis owing to their robust feature-processing capabilities.Natural language processing models,including long short-term memory and transformers,have been applied to traditional Chinese medicine(TCM)for diagnosis,syndrome differentiation,and prescription generation.Traditional machine learning algorithms,such as neural networks,support vector machines,and random forests,are also widely used in TCM diagnosis and treatment because of their strong regression and classification performance on small structured datasets.Future research on AI in TCM diagnosis and treatment may emphasize building large-scale,high-quality TCM datasets with unified criteria based on syndrome elements;identifying algorithms suited to TCM theoretical data distributions;and leveraging AI multimodal fusion and ensemble learning techniques for diverse raw features,such as images,text,and manually processed structured data,to increase the clinical efficacy of TCM diagnosis and treatment. 展开更多
关键词 Artificial intelligence Traditional Chinese medicine Machine learning Deep learning Syndromic elements Multimodal fusion Ensemble learning Clinical dignosis Prescription generation Clinical Efficacy
在线阅读 下载PDF
Parallel Learning:a Perspective and a Framework 被引量:39
2
作者 Li Li Yilun Lin +1 位作者 Nanning Zheng Fei-Yue Wang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2017年第3期389-395,共7页
The development of machine learning in complex system is hindered by two problems nowadays.The first problem is the inefficiency of exploration in state and action space,which leads to the data-hungry of some state-of... The development of machine learning in complex system is hindered by two problems nowadays.The first problem is the inefficiency of exploration in state and action space,which leads to the data-hungry of some state-of-art data-driven algorithm.The second problem is the lack of a general theory which can be used to analyze and implement a complex learning system.In this paper,we proposed a general methods that can address both two issues.We combine the concepts of descriptive learning,predictive learning,and prescriptive learning into a uniform framework,so as to build a parallel system allowing learning system improved by self-boosting.Formulating a new perspective of data,knowledge and action,we provide a new methodology called parallel learning to design machine learning system for real-world problems. 展开更多
关键词 Descriptive learning machine learning parallel learning parallel systems predictive learning prescriptive learning
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部