Variable-diameter deployable carbon fiber reinforced polymer(CFRP)composites possess deformation and load-bearing functions and are composed of stiff-flexible coupled preforms and matrix.The stiff-flexible coupled pre...Variable-diameter deployable carbon fiber reinforced polymer(CFRP)composites possess deformation and load-bearing functions and are composed of stiff-flexible coupled preforms and matrix.The stiff-flexible coupled preform,serving as the reinforcing structure,directly determines the deployable properties,and its forming technology is currently a research challenge.This paper designs a braiding and needle-punching(BNP)composite preform forming technology suitable for stiff-flexible coupled preforms.Before forming,the preform is partitioned into flexible and rigid zones,with braiding and needle-punching performed layer by layer in the respective zones.A retractable rotating device is developed to form the stiff-flexible coupled preform,achieving a diameter variation rate of up to 26.6%for the BNP preform.A structural parameter model is also established to describe the geometric parameter changes in the deformation and load-bearing areas of the preform during deployment as a function of the braiding angle.Based on experiments,this paper explains the performance changes of BNP composites concerning the structural parameters of the preform.Experimental analysis shows that as the braiding angle increases,the tensile performance of BNP composites significantly decreases,with the change rate of tensile strength first decreasing and then increasing.Additionally,when the braiding angle is less than 21.89°,the impact toughness of BNP composites remains within the range of 83.66±2 kJ/m^(2).However,when the braiding angle exceeds 21.89°,the impact toughness of BNP composites gradually decreases with increasing braiding angle.Furthermore,a hybrid agent model based on Latin hypercube sampling and error back-propagation neural network is developed to predict the tensile and impact properties of BNP composites with different structural parameters,with maximum test relative errors of 1.89%for tensile strength and 2.37%for impact toughness.展开更多
The effect of Mg and Si additon to Al matrix on infiltration kinetics and rates of Al alloys pressureless infiltration into porous SiCp preform was investigated by observing the change of infiltration distance with ti...The effect of Mg and Si additon to Al matrix on infiltration kinetics and rates of Al alloys pressureless infiltration into porous SiCp preform was investigated by observing the change of infiltration distance with time as the Al alloys infiltrate into SiCp preforms at different temperatures.The results show that infiltration of SiCp preforms by Al melt is a thermal activation process and there is an incubation period before the infiltration becomes stable.With the increase of Mg content in the Al alloys from 0wt% to 8wt%,the infiltration will become much easier,the incubation period becomes shorter and the infiltration rate is faster,but these effects are not obvious when the Mg content is higher than 8wt%.As for Si addition to the Al alloys,it has no obvious effect on the incubation period,but the infiltration rate increases markedly with the increase of Si content from 0wt% to 12wt% and the rate has no obvious change when the content is bigger than 12wt%.The effect of Mg and Si on the incubation period is related to the infiltration mechanism of Al pressureless infiltration into SiCp preforms and their impact on the infiltration rate is a combined result from viscosity and surface tension of Al melt and SiC-Al wetting ability.展开更多
A hot-press tackified preform was used to improve the uniformity of the laminates thickness and the mechanical properties of the obtained laminates were studied using vacuum assisted resin transfer molding(VARTM). T...A hot-press tackified preform was used to improve the uniformity of the laminates thickness and the mechanical properties of the obtained laminates were studied using vacuum assisted resin transfer molding(VARTM). Two modified preforms were prepared under 0.1 and 0.6 MPa in an autoclave and then were used to fabricate the laminates via VARTM. Permeability and thickness distribution of the laminates were obtained by using a special device. Moreover, the tensile and compressive strengths of the obtained laminates were studied and compared with the unmodified ones. Results show that the tackified laminates present a maximum and minimum thickness under 0.1 and 0.6 MPa, respectively. The thicknesses and in-plane permeability of the tackified laminates, with better thickness uniformity, are significantly decreased compared with that of the unmodified cases, while the tensile and compressive strengths of the tackified laminates are improved obviously. Results show that the mechanical property of the tackified laminates prepared by hotpressing at 0.1 MPa is better than that processed at 0.6 MPa.展开更多
The preforms with high SiC volume fraction (〉50%) were successfully fabricated by two bonding methods. Moreover, the dimensional change, compressive strength, and microstructure of SiC preforms were investigated, a...The preforms with high SiC volume fraction (〉50%) were successfully fabricated by two bonding methods. Moreover, the dimensional change, compressive strength, and microstructure of SiC preforms were investigated, and the bonding mechanism among SiC particulates in preforms was also discussed. Results show that, after heating to 1 100 ~C and holding for 2 h, a uniform and interconnected structure in the SiC preforms can be obtained by using starch, stearic acid, and graphite respectively as the pore-forming agents, which benefits the subsequent infiltration by the molten metals. More neck-like-jointing among SiC particulate by using graphite as the pore-forming agent improves the dimensional accuracy and compressive strength of the preform. Besides, the properties of the preforms by the binder bonding are better than those by the oxidation bonding, which is mainly because the mixed neck-like-jointing and binder at high temperature provide effective bonding together.展开更多
Production of A6063/SiC-B4C hybrid composite using vacuum assisted block mould investment casting was investigated. Firstly,SiC-B4C hybrid preforms were fabricated in cylindrical shape.The preferred mean particle size...Production of A6063/SiC-B4C hybrid composite using vacuum assisted block mould investment casting was investigated. Firstly,SiC-B4C hybrid preforms were fabricated in cylindrical shape.The preferred mean particle size of the SiC and B4C powders were 60μm and 55μm respectively.In early experiments,single powder ratio of 85%SiC and 15%B4C was selected to produce the tough preforms.Subsequently,the preforms were placed into the cylindrical shape gypsum bonded block investment moulds and A6063 alloy was infiltrated into the preforms using vacuum assisted(-10 5 Pa)casting machine.Porosity fraction of preforms was determined using Archimedes’test.The fabricated cast specimens were characterized using hardness tests,image analysis and SEM observations and EDX analysis.The result indicates that,by the vacuum assisted block mould investment casting technique,the infiltration of the preforms by molten metal was successfully realized.展开更多
A particle preform was designed and prepared by conglomerating and cold-pressed process, which was condensed by chemical vapor infiltration (CVI) process to fabricate silicon nitride particles reinforced silicon nit...A particle preform was designed and prepared by conglomerating and cold-pressed process, which was condensed by chemical vapor infiltration (CVI) process to fabricate silicon nitride particles reinforced silicon nitride composites. The conglomerations are of almost sphericity after conglomerated. There are large pores among the conglomerations and small pores within themselves in the preform according to the design and the test of pore size distribution. The pore size of the preform is characterized by a double-peak distribution. The pore size distribution is influenced by conglomeration size. Large pores among the conglomerations still exist after infiltrated Si3N4 matrix. The conglomerations, however, are very compact. The CVI Si3N4 looks like cauliflowershaped structure. 2008 University of Science and Technology Beijing. All rights reserved.展开更多
The manufacturing of three-dimensional textile preforms used for composites started to re-ceive much attention in the last decade.The major barriers to accelerating the transition from thelamination of two-dimensional...The manufacturing of three-dimensional textile preforms used for composites started to re-ceive much attention in the last decade.The major barriers to accelerating the transition from thelamination of two-dimensional fabrics to manufacturing integral three-dimensional near-netshaped textile preforms are high cost and database deficiency.To reduce the cost of weaving three-dimensional preforms,and make full use of the potential of conventional looms,a rig was designedwhich can convert two-dimensional woven fabric to particular three-dimensional preforms wherethe yarn is orientated in the directions of maximum stress.展开更多
The automobiles, aircraft, and lightweight industries continuously demand thin near-net-shape preforms just out-of-machine as close to the final shape. This study addresses the possibilities of 3D thin shell textile p...The automobiles, aircraft, and lightweight industries continuously demand thin near-net-shape preforms just out-of-machine as close to the final shape. This study addresses the possibilities of 3D thin shell textile preform as the solution of lightweight reinforcement in various applications. Investigation into the development of 3D thin shells has led to different manufacturing processes. However, 3D thin shell preforms are mostly made by weaving and knitting, but nonwoven, winding, and/or layup techniques have been reported for over a decade. Owing to the complex thin shell manufacturing processes, they are not similar to the conventional methods. The different 3D thin shell preforms can extend the opportunities for new applications in various technical fields. This study presents existing research gaps and a few potential issues to be solved regarding 3D thin shell preforms in the near future.展开更多
The automobiles, aircraft, and lightweight industries continuously demand thin near-net-shape preforms just out-of-machine as close to the final shape. This study addresses the possibilities of 3D thin shell textile p...The automobiles, aircraft, and lightweight industries continuously demand thin near-net-shape preforms just out-of-machine as close to the final shape. This study addresses the possibilities of 3D thin shell textile preform as the solution of lightweight reinforcement in various applications. Investigation into the development of 3D thin shells has led to different manufacturing processes. However, 3D thin shell preforms are mostly made by weaving and knitting, but nonwoven, winding, and/or layup techniques have been reported for over a decade. Owing to the complex thin shell manufacturing processes, they are not similar to the conventional methods. The different 3D thin shell preforms can extend the opportunities for new applications in various technical fields. This study presents existing research gaps and a few potential issues to be solved regarding 3D thin shell preforms in the near future.展开更多
By combining experimental α-decay energies and half-lives, the α-particle preformation factor for nuclei around neutron magic numbers N of 126, 152, and 162 were extracted using the two-potential approach. The nucle...By combining experimental α-decay energies and half-lives, the α-particle preformation factor for nuclei around neutron magic numbers N of 126, 152, and 162 were extracted using the two-potential approach. The nuclei around the shell closure were more tightly bound than adjacent nuclei. Additionally, based on the WS4 mass model (Wang et al., Phys. Lett.B 734, 215 (2014)), we extended the two-potential approach to predict the α-decay half-lives of nuclei around N values of178 and 184 with Z of 119 and 120. We believe that our findings will serve as guidelines for future experimental studies.展开更多
During the automated placement process of dry fibers,the positioning and fixation of dry fiber gauze belts are achieved by spraying setting agents.The amount of the setting agent is difficult to control when it is spr...During the automated placement process of dry fibers,the positioning and fixation of dry fiber gauze belts are achieved by spraying setting agents.The amount of the setting agent is difficult to control when it is sprayed manually.Furthermore,it can also affect the permeability of the preform,resin injection and the quality of the vacuum assisted resin infusion(VARI)molding,resulting in a decrease in the mechanical properties of composite materials.This study utilizes dry fiber automated placement equipment and an automated spraying system to manufacture preform structures,followed by VARI process to prepare composite samples with varying setting agent contents.Subsequently,mechanical characterization including interlaminar shear,bending and tensile testing is conducted to investigate the influence of setting agent content on both the manufacturing process and the mechanical properties of composite products.The results show that the interlaminar shear strength,bending strength and tensile strength of the sample gradually decrease with the increase of the content of the setting agent.The optimal setting agent content for automated laying of dry fiber is determined to be 4%-6%,balancing the preformed body’s layup quality and its impact on mechanical properties.Compared with agent-free samples,this range results in reductions of 3% in interlaminar shear strength,9% in bending strength,11% in bending modulus,and 13%-16% in tensile strength.展开更多
The final quality of complex conical-section rings depends on co-design of multiple processes in forming process chain.In this study,for a complex aeroengine casing ring with a large slope and a flange on its end,a co...The final quality of complex conical-section rings depends on co-design of multiple processes in forming process chain.In this study,for a complex aeroengine casing ring with a large slope and a flange on its end,a co-design method of the forming process chain is put forward towards the objective of precision forming,which not only proposes a standard process route composed of multiple processes of upsetting,punching,rectangular ring rolling,loose tooling forging and profiled ring rolling,but also presents co-design methods of dies and blanks for all the processes.For profiled ring rolling,a design method of preformed blank that makes the blank and the target conical-section ring have the same axial volume distribution is proposed.By the method,the axial metal redistribution during the process can be alleviated greatly thus improving the forming stability and precision of the ring.Based on the geometric features of designed preformed blank,design methods of blanks and dies for loose tolling forging,rectangular ring rolling,punching and upsetting are proposed sequentially.In view of the key roles of loose tooling forging(manufacturing the preformed blank)and profiled ring rolling on the final quality of the conical ring parts,inherited FE simulations for these two processes are performed to verify the proposed design methods and determine appropriate design parameter.It is demonstrated that the proposed design method has significant advantages in improving forming precision.Besides,a suggestive value 1.5 of the rolling ratio for profiled ring rolling(a key design parameter)is given based on comprehensive consideration of multiple indicators such as ring roundness,deformation uniformity and forming load.The corresponding industrial experiments performed illustrate that a high forming precision of the conical-section aeroengine casing ring is achieved.展开更多
This article, in order to improve the deformation homogeneity in aerospace forgings, proposes an approach that combines the fnite element method (FEM) and the response surface method (RSM) to optimize the preform ...This article, in order to improve the deformation homogeneity in aerospace forgings, proposes an approach that combines the fnite element method (FEM) and the response surface method (RSM) to optimize the preform shapes. New expressions that take into account the influences of equivalent effective strain distribution are developed to evaluate the homogeneity of deformation distribution in aerospace forgings. In order to reduce the number of design variables, the domain-division method is put forward to determine the optimal design variables. On the basis of FEM results, the RSM is used to establish an approximate model to depict the relationship between the responses (deformation homogeneity and die underfilling) and the design variables repre- sented by geometric parameters of the preform shape. With a typical aeroengine disk as an example, the proposed method is verified by achieving an optimal combination of design variables. By comparing the preform shape obtained with the proposed method to that with the existing one, it is evidenced that the former could achieve more homogeneous deformation in forging.展开更多
C/C composites with banded structure pyrocarbon were fabricated by fast chemical vapor infiltration(CVI),with C3H6 as carbon source,N2 as carrier gas,and three-dimensional(3D) 12K PAN-based carbon fabric with high...C/C composites with banded structure pyrocarbon were fabricated by fast chemical vapor infiltration(CVI),with C3H6 as carbon source,N2 as carrier gas,and three-dimensional(3D) 12K PAN-based carbon fabric with high density of 0.94 g/cm3 as preform.Experimental results indicated that the fracture characteristics of C/C composites were closely related to the frequency of high-temperature treatment(HTT) at the break of CVI process.According to the load?displacement curves,C/C composites showed a pseudoplastic fracture after twice of HTT.After three times of HTT,load?displacement curves tended to be stable with a decreasing bending strength at 177.5 MPa.Delamination failure and intrastratal fiber fracture were observed at the cross-section of C/C composites by scanning electronic microscope.Because the content of pyrocarbon and fibers has a different distribution in layers,the C/C composites show different fracture characteristics at various regions,which leads to good toughness and bending strength.展开更多
On the basis of the minimum energy principle and the minimum resistance law,this article proposes a new method,termed equipotential field method,to design the proper preform for producing isothermo forged P/M superall...On the basis of the minimum energy principle and the minimum resistance law,this article proposes a new method,termed equipotential field method,to design the proper preform for producing isothermo forged P/M superalloy disks. Using this new method,six variant preform contours are acquired with software ANSYS. The isothermal forging process of the P/M superalloy disk is simulated by using the industrial software MSC/Superform with thus obtained preforms so as to achieve the equivalent strain distribution in...展开更多
Cobalt-silicon based carbon composites(Co–Si/C)have established a noteworthy consideration in recent years as a replacement for conventional materials in the automotive and aerospace industries.To achieve the composi...Cobalt-silicon based carbon composites(Co–Si/C)have established a noteworthy consideration in recent years as a replacement for conventional materials in the automotive and aerospace industries.To achieve the composite,a reactive melt infiltration process(RMI)is used,in which a melt impregnates a porous preform by capillary force.This method promises a high-volume fraction of reinforcement and can be steered in such a way to get the good“near-net”shaped components.A mathematical model is developed using reaction-formed Co–Si alloy/C composite as a prototype system for this process.The wetting behavior and contact angle are discussed;surface tension and viscosity are calculated by Wang’s and Egry’s equations,respectively.Pore radii of 5μm and 10μm are set as a reference on highly oriented pyrolytic graphite.The graphs are plotted using the model,to study some aspects of the infiltration dynamics.This highlights the possible connections among the various processes.In this attempt,the Co–Si(62.5 at.%silicon)alloy’s maximum infiltration at 5μm and 10μm radii are found as 0.05668 m at 125 s and 0.22674 m at 250 s,respectively.展开更多
A new geometric model of Multiaxial Warp-Knitted (MWK) performs, which is based on the experimental observations and analysis of basic stitch, is developed to relate the geometric parameters and process variables. The...A new geometric model of Multiaxial Warp-Knitted (MWK) performs, which is based on the experimental observations and analysis of basic stitch, is developed to relate the geometric parameters and process variables. The fiber volume fraction and fibre orientation of MWK reinforced composites are described in terms of structural and processing parameters in the model. And this model provides a basis for the prediction of mechanical behavior of the MWK reinforced composites.展开更多
The multiple objective preform design optimization was put forward. The final forging's shape and deformation uniformity were considered in the multiple objective. The objective is to optimize the shape and the defor...The multiple objective preform design optimization was put forward. The final forging's shape and deformation uniformity were considered in the multiple objective. The objective is to optimize the shape and the deformation uniformity of the final forging at the same time so that a more high integrate quality of the final forging can be obtained. The total objective was assembled by the shape and uniformity objective using the weight adding method. The preform die shape is presented by cubic B-spline curves. The control points of B-spline curves are used as the design variables. The forms of the total objective function, shape and uniformity sub-objective function are given. The sensitivities of the total objective function and the sub-objective functions with respect to the design variables are developed. Using this method, the preform die shape of an H-shaped forging process is optimally designed. The optimization results are very satisfactory.展开更多
The cast preformed forming process(CPFP) is increasingly considered and applied in the metal forming industries due to its short process, low cost, and environmental friendliness, especially in the aerospace field. Ho...The cast preformed forming process(CPFP) is increasingly considered and applied in the metal forming industries due to its short process, low cost, and environmental friendliness, especially in the aerospace field. However, how to establish a unified model of a non-uniform as-cast billet depicting the flow stress and microstructure evolution behaviors during hot working is the key to microstructure prediction and parameter optimization of the CPFP. In this work, hot compression tests are performed using a non-uniform as-cast 42 CrMo billet at 1123–1423 K and 0.01–1sà1. The effect laws of the non-uniform state of the as-cast billet with different initial grain sizes on the flow stress and microstructure are revealed deeply. Based on experimental results, a unified model of flow stress and grain size evolutions is developed by the internal variable modeling method. Verified results show that the model can well describe the responses of the flow stress and microstructure to deformation conditions and initial grain sizes. To further evaluate its reliability, the unified model is applied to FE simulation of the cast preformed ring rolling process.The predictions of the rolling force and grain size indicate that it could well describe the flow stress and microstructure evolutions during the process.展开更多
Three-dimensional(3 D)braided composites are a kind of advanced ones and are used in the aeronautical and astronautical fields more widely. The advantages, usages, shortages and disadvantages of 3D braided composite...Three-dimensional(3 D)braided composites are a kind of advanced ones and are used in the aeronautical and astronautical fields more widely. The advantages, usages, shortages and disadvantages of 3D braided composites are analyzed, and the possible approach of improving the properties of the materials is presented, that is, a new type of 3D full 5-directional braided composites is developed. The methods of making this type of preform are proposed. It is pointed out that the four-step braiding which is the most possible to realize industrialized production almost has no effect on the composites' properties. By analyzing the simulation model,the advantages of the material compared with the 3D 4-directional and 5-directional materials are presented. Finally, a microstructural model is analyzed to lay the foundation for the future theoretical analysis of these composites.展开更多
基金Supported by Jiangsu Provincial Frontier Leading Technology Basic Research Project(Grant No.BK20212007)Aero-Engine and Gas Turbine Basic Science Center(Grant No.P2022-B-IV-014-001)+1 种基金China Postdoctoral Program Fund(Grant No.1005/YBA23044)China Postdoctoral Assistance Fund(Grant No.1005/YBA23031)。
文摘Variable-diameter deployable carbon fiber reinforced polymer(CFRP)composites possess deformation and load-bearing functions and are composed of stiff-flexible coupled preforms and matrix.The stiff-flexible coupled preform,serving as the reinforcing structure,directly determines the deployable properties,and its forming technology is currently a research challenge.This paper designs a braiding and needle-punching(BNP)composite preform forming technology suitable for stiff-flexible coupled preforms.Before forming,the preform is partitioned into flexible and rigid zones,with braiding and needle-punching performed layer by layer in the respective zones.A retractable rotating device is developed to form the stiff-flexible coupled preform,achieving a diameter variation rate of up to 26.6%for the BNP preform.A structural parameter model is also established to describe the geometric parameter changes in the deformation and load-bearing areas of the preform during deployment as a function of the braiding angle.Based on experiments,this paper explains the performance changes of BNP composites concerning the structural parameters of the preform.Experimental analysis shows that as the braiding angle increases,the tensile performance of BNP composites significantly decreases,with the change rate of tensile strength first decreasing and then increasing.Additionally,when the braiding angle is less than 21.89°,the impact toughness of BNP composites remains within the range of 83.66±2 kJ/m^(2).However,when the braiding angle exceeds 21.89°,the impact toughness of BNP composites gradually decreases with increasing braiding angle.Furthermore,a hybrid agent model based on Latin hypercube sampling and error back-propagation neural network is developed to predict the tensile and impact properties of BNP composites with different structural parameters,with maximum test relative errors of 1.89%for tensile strength and 2.37%for impact toughness.
基金supported by the National Natural Science Foundation of China (No.51004010)the Research Fund for the Doctoral Program of Higher Education of China (No.20090006120022)
文摘The effect of Mg and Si additon to Al matrix on infiltration kinetics and rates of Al alloys pressureless infiltration into porous SiCp preform was investigated by observing the change of infiltration distance with time as the Al alloys infiltrate into SiCp preforms at different temperatures.The results show that infiltration of SiCp preforms by Al melt is a thermal activation process and there is an incubation period before the infiltration becomes stable.With the increase of Mg content in the Al alloys from 0wt% to 8wt%,the infiltration will become much easier,the incubation period becomes shorter and the infiltration rate is faster,but these effects are not obvious when the Mg content is higher than 8wt%.As for Si addition to the Al alloys,it has no obvious effect on the incubation period,but the infiltration rate increases markedly with the increase of Si content from 0wt% to 12wt% and the rate has no obvious change when the content is bigger than 12wt%.The effect of Mg and Si on the incubation period is related to the infiltration mechanism of Al pressureless infiltration into SiCp preforms and their impact on the infiltration rate is a combined result from viscosity and surface tension of Al melt and SiC-Al wetting ability.
基金Funded by the National Engineering and Research Center for Commercial Aircraft Manufacturing(No.SAMC 13-JS-15-034)
文摘A hot-press tackified preform was used to improve the uniformity of the laminates thickness and the mechanical properties of the obtained laminates were studied using vacuum assisted resin transfer molding(VARTM). Two modified preforms were prepared under 0.1 and 0.6 MPa in an autoclave and then were used to fabricate the laminates via VARTM. Permeability and thickness distribution of the laminates were obtained by using a special device. Moreover, the tensile and compressive strengths of the obtained laminates were studied and compared with the unmodified ones. Results show that the tackified laminates present a maximum and minimum thickness under 0.1 and 0.6 MPa, respectively. The thicknesses and in-plane permeability of the tackified laminates, with better thickness uniformity, are significantly decreased compared with that of the unmodified cases, while the tensile and compressive strengths of the tackified laminates are improved obviously. Results show that the mechanical property of the tackified laminates prepared by hotpressing at 0.1 MPa is better than that processed at 0.6 MPa.
基金Funded by the National Natural Science Foundation of China(No.51166011)Aviation Science Foundation(No.2012ZF56024)Key Laboratory for Microstructural Control of Metallic Materials of Jiangxi Province(Nanchang Hangkong University)(No.JW201423003)
文摘The preforms with high SiC volume fraction (〉50%) were successfully fabricated by two bonding methods. Moreover, the dimensional change, compressive strength, and microstructure of SiC preforms were investigated, and the bonding mechanism among SiC particulates in preforms was also discussed. Results show that, after heating to 1 100 ~C and holding for 2 h, a uniform and interconnected structure in the SiC preforms can be obtained by using starch, stearic acid, and graphite respectively as the pore-forming agents, which benefits the subsequent infiltration by the molten metals. More neck-like-jointing among SiC particulate by using graphite as the pore-forming agent improves the dimensional accuracy and compressive strength of the preform. Besides, the properties of the preforms by the binder bonding are better than those by the oxidation bonding, which is mainly because the mixed neck-like-jointing and binder at high temperature provide effective bonding together.
基金Yildiz Technical University and Balkan Center for Advanced Casting Technologies (BCACT) for their financial support
文摘Production of A6063/SiC-B4C hybrid composite using vacuum assisted block mould investment casting was investigated. Firstly,SiC-B4C hybrid preforms were fabricated in cylindrical shape.The preferred mean particle size of the SiC and B4C powders were 60μm and 55μm respectively.In early experiments,single powder ratio of 85%SiC and 15%B4C was selected to produce the tough preforms.Subsequently,the preforms were placed into the cylindrical shape gypsum bonded block investment moulds and A6063 alloy was infiltrated into the preforms using vacuum assisted(-10 5 Pa)casting machine.Porosity fraction of preforms was determined using Archimedes’test.The fabricated cast specimens were characterized using hardness tests,image analysis and SEM observations and EDX analysis.The result indicates that,by the vacuum assisted block mould investment casting technique,the infiltration of the preforms by molten metal was successfully realized.
基金the National Natural Science Foundation of China(No.50672076 and 50642039)the Key Foundation of National Natural Science in China(No.90405015)+1 种基金the National Young Elitist Foundation in China(No.50425208)the Doctorate Foundation of Northwestern Polytechnical University(No.CX200505).
文摘A particle preform was designed and prepared by conglomerating and cold-pressed process, which was condensed by chemical vapor infiltration (CVI) process to fabricate silicon nitride particles reinforced silicon nitride composites. The conglomerations are of almost sphericity after conglomerated. There are large pores among the conglomerations and small pores within themselves in the preform according to the design and the test of pore size distribution. The pore size of the preform is characterized by a double-peak distribution. The pore size distribution is influenced by conglomeration size. Large pores among the conglomerations still exist after infiltrated Si3N4 matrix. The conglomerations, however, are very compact. The CVI Si3N4 looks like cauliflowershaped structure. 2008 University of Science and Technology Beijing. All rights reserved.
文摘The manufacturing of three-dimensional textile preforms used for composites started to re-ceive much attention in the last decade.The major barriers to accelerating the transition from thelamination of two-dimensional fabrics to manufacturing integral three-dimensional near-netshaped textile preforms are high cost and database deficiency.To reduce the cost of weaving three-dimensional preforms,and make full use of the potential of conventional looms,a rig was designedwhich can convert two-dimensional woven fabric to particular three-dimensional preforms wherethe yarn is orientated in the directions of maximum stress.
文摘The automobiles, aircraft, and lightweight industries continuously demand thin near-net-shape preforms just out-of-machine as close to the final shape. This study addresses the possibilities of 3D thin shell textile preform as the solution of lightweight reinforcement in various applications. Investigation into the development of 3D thin shells has led to different manufacturing processes. However, 3D thin shell preforms are mostly made by weaving and knitting, but nonwoven, winding, and/or layup techniques have been reported for over a decade. Owing to the complex thin shell manufacturing processes, they are not similar to the conventional methods. The different 3D thin shell preforms can extend the opportunities for new applications in various technical fields. This study presents existing research gaps and a few potential issues to be solved regarding 3D thin shell preforms in the near future.
文摘The automobiles, aircraft, and lightweight industries continuously demand thin near-net-shape preforms just out-of-machine as close to the final shape. This study addresses the possibilities of 3D thin shell textile preform as the solution of lightweight reinforcement in various applications. Investigation into the development of 3D thin shells has led to different manufacturing processes. However, 3D thin shell preforms are mostly made by weaving and knitting, but nonwoven, winding, and/or layup techniques have been reported for over a decade. Owing to the complex thin shell manufacturing processes, they are not similar to the conventional methods. The different 3D thin shell preforms can extend the opportunities for new applications in various technical fields. This study presents existing research gaps and a few potential issues to be solved regarding 3D thin shell preforms in the near future.
基金supported in part by the National Natural Science Foundation of China(Nos.12175100 and 11975132)Construct Program of the Key Discipline in Hunan Province,Research Foundation of Education Bureau of Hunan Province,China(Nos.21B0402,18A237 and 22A0305)+3 种基金Natural Science Foundation of Hunan Province,China(No.2018JJ2321)Innovation Group of Nuclear and Particle Physics in USC,Shandong Province Natural Science Foundation,China(No.ZR2022JQ04)Opening Project of Cooperative Innovation Center for Nuclear Fuel Cycle Technology and Equipment,University of South China(No.2019KFZ10)Hunan Provincial Innovation Foundation for Postgraduate(No.CX20230962).
文摘By combining experimental α-decay energies and half-lives, the α-particle preformation factor for nuclei around neutron magic numbers N of 126, 152, and 162 were extracted using the two-potential approach. The nuclei around the shell closure were more tightly bound than adjacent nuclei. Additionally, based on the WS4 mass model (Wang et al., Phys. Lett.B 734, 215 (2014)), we extended the two-potential approach to predict the α-decay half-lives of nuclei around N values of178 and 184 with Z of 119 and 120. We believe that our findings will serve as guidelines for future experimental studies.
基金supported by Jiangsu Provincial Key Research and Development Program(No.BE2023014-4).
文摘During the automated placement process of dry fibers,the positioning and fixation of dry fiber gauze belts are achieved by spraying setting agents.The amount of the setting agent is difficult to control when it is sprayed manually.Furthermore,it can also affect the permeability of the preform,resin injection and the quality of the vacuum assisted resin infusion(VARI)molding,resulting in a decrease in the mechanical properties of composite materials.This study utilizes dry fiber automated placement equipment and an automated spraying system to manufacture preform structures,followed by VARI process to prepare composite samples with varying setting agent contents.Subsequently,mechanical characterization including interlaminar shear,bending and tensile testing is conducted to investigate the influence of setting agent content on both the manufacturing process and the mechanical properties of composite products.The results show that the interlaminar shear strength,bending strength and tensile strength of the sample gradually decrease with the increase of the content of the setting agent.The optimal setting agent content for automated laying of dry fiber is determined to be 4%-6%,balancing the preformed body’s layup quality and its impact on mechanical properties.Compared with agent-free samples,this range results in reductions of 3% in interlaminar shear strength,9% in bending strength,11% in bending modulus,and 13%-16% in tensile strength.
基金the National Natural Science Foundation of China(52275378).
文摘The final quality of complex conical-section rings depends on co-design of multiple processes in forming process chain.In this study,for a complex aeroengine casing ring with a large slope and a flange on its end,a co-design method of the forming process chain is put forward towards the objective of precision forming,which not only proposes a standard process route composed of multiple processes of upsetting,punching,rectangular ring rolling,loose tooling forging and profiled ring rolling,but also presents co-design methods of dies and blanks for all the processes.For profiled ring rolling,a design method of preformed blank that makes the blank and the target conical-section ring have the same axial volume distribution is proposed.By the method,the axial metal redistribution during the process can be alleviated greatly thus improving the forming stability and precision of the ring.Based on the geometric features of designed preformed blank,design methods of blanks and dies for loose tolling forging,rectangular ring rolling,punching and upsetting are proposed sequentially.In view of the key roles of loose tooling forging(manufacturing the preformed blank)and profiled ring rolling on the final quality of the conical ring parts,inherited FE simulations for these two processes are performed to verify the proposed design methods and determine appropriate design parameter.It is demonstrated that the proposed design method has significant advantages in improving forming precision.Besides,a suggestive value 1.5 of the rolling ratio for profiled ring rolling(a key design parameter)is given based on comprehensive consideration of multiple indicators such as ring roundness,deformation uniformity and forming load.The corresponding industrial experiments performed illustrate that a high forming precision of the conical-section aeroengine casing ring is achieved.
文摘This article, in order to improve the deformation homogeneity in aerospace forgings, proposes an approach that combines the fnite element method (FEM) and the response surface method (RSM) to optimize the preform shapes. New expressions that take into account the influences of equivalent effective strain distribution are developed to evaluate the homogeneity of deformation distribution in aerospace forgings. In order to reduce the number of design variables, the domain-division method is put forward to determine the optimal design variables. On the basis of FEM results, the RSM is used to establish an approximate model to depict the relationship between the responses (deformation homogeneity and die underfilling) and the design variables repre- sented by geometric parameters of the preform shape. With a typical aeroengine disk as an example, the proposed method is verified by achieving an optimal combination of design variables. By comparing the preform shape obtained with the proposed method to that with the existing one, it is evidenced that the former could achieve more homogeneous deformation in forging.
基金Project (50802115) supported by the National Natural Science Foundation of ChinaProject (2011CB605801) supported by the National Basic Research Program of China
文摘C/C composites with banded structure pyrocarbon were fabricated by fast chemical vapor infiltration(CVI),with C3H6 as carbon source,N2 as carrier gas,and three-dimensional(3D) 12K PAN-based carbon fabric with high density of 0.94 g/cm3 as preform.Experimental results indicated that the fracture characteristics of C/C composites were closely related to the frequency of high-temperature treatment(HTT) at the break of CVI process.According to the load?displacement curves,C/C composites showed a pseudoplastic fracture after twice of HTT.After three times of HTT,load?displacement curves tended to be stable with a decreasing bending strength at 177.5 MPa.Delamination failure and intrastratal fiber fracture were observed at the cross-section of C/C composites by scanning electronic microscope.Because the content of pyrocarbon and fibers has a different distribution in layers,the C/C composites show different fracture characteristics at various regions,which leads to good toughness and bending strength.
基金Aeronautical Science Foundation of China (03H53048)
文摘On the basis of the minimum energy principle and the minimum resistance law,this article proposes a new method,termed equipotential field method,to design the proper preform for producing isothermo forged P/M superalloy disks. Using this new method,six variant preform contours are acquired with software ANSYS. The isothermal forging process of the P/M superalloy disk is simulated by using the industrial software MSC/Superform with thus obtained preforms so as to achieve the equivalent strain distribution in...
文摘Cobalt-silicon based carbon composites(Co–Si/C)have established a noteworthy consideration in recent years as a replacement for conventional materials in the automotive and aerospace industries.To achieve the composite,a reactive melt infiltration process(RMI)is used,in which a melt impregnates a porous preform by capillary force.This method promises a high-volume fraction of reinforcement and can be steered in such a way to get the good“near-net”shaped components.A mathematical model is developed using reaction-formed Co–Si alloy/C composite as a prototype system for this process.The wetting behavior and contact angle are discussed;surface tension and viscosity are calculated by Wang’s and Egry’s equations,respectively.Pore radii of 5μm and 10μm are set as a reference on highly oriented pyrolytic graphite.The graphs are plotted using the model,to study some aspects of the infiltration dynamics.This highlights the possible connections among the various processes.In this attempt,the Co–Si(62.5 at.%silicon)alloy’s maximum infiltration at 5μm and 10μm radii are found as 0.05668 m at 125 s and 0.22674 m at 250 s,respectively.
文摘A new geometric model of Multiaxial Warp-Knitted (MWK) performs, which is based on the experimental observations and analysis of basic stitch, is developed to relate the geometric parameters and process variables. The fiber volume fraction and fibre orientation of MWK reinforced composites are described in terms of structural and processing parameters in the model. And this model provides a basis for the prediction of mechanical behavior of the MWK reinforced composites.
文摘The multiple objective preform design optimization was put forward. The final forging's shape and deformation uniformity were considered in the multiple objective. The objective is to optimize the shape and the deformation uniformity of the final forging at the same time so that a more high integrate quality of the final forging can be obtained. The total objective was assembled by the shape and uniformity objective using the weight adding method. The preform die shape is presented by cubic B-spline curves. The control points of B-spline curves are used as the design variables. The forms of the total objective function, shape and uniformity sub-objective function are given. The sensitivities of the total objective function and the sub-objective functions with respect to the design variables are developed. Using this method, the preform die shape of an H-shaped forging process is optimally designed. The optimization results are very satisfactory.
基金supported by the National Natural Science Foundation of China (No’s. 51575448 and 51135007)
文摘The cast preformed forming process(CPFP) is increasingly considered and applied in the metal forming industries due to its short process, low cost, and environmental friendliness, especially in the aerospace field. However, how to establish a unified model of a non-uniform as-cast billet depicting the flow stress and microstructure evolution behaviors during hot working is the key to microstructure prediction and parameter optimization of the CPFP. In this work, hot compression tests are performed using a non-uniform as-cast 42 CrMo billet at 1123–1423 K and 0.01–1sà1. The effect laws of the non-uniform state of the as-cast billet with different initial grain sizes on the flow stress and microstructure are revealed deeply. Based on experimental results, a unified model of flow stress and grain size evolutions is developed by the internal variable modeling method. Verified results show that the model can well describe the responses of the flow stress and microstructure to deformation conditions and initial grain sizes. To further evaluate its reliability, the unified model is applied to FE simulation of the cast preformed ring rolling process.The predictions of the rolling force and grain size indicate that it could well describe the flow stress and microstructure evolutions during the process.
文摘Three-dimensional(3 D)braided composites are a kind of advanced ones and are used in the aeronautical and astronautical fields more widely. The advantages, usages, shortages and disadvantages of 3D braided composites are analyzed, and the possible approach of improving the properties of the materials is presented, that is, a new type of 3D full 5-directional braided composites is developed. The methods of making this type of preform are proposed. It is pointed out that the four-step braiding which is the most possible to realize industrialized production almost has no effect on the composites' properties. By analyzing the simulation model,the advantages of the material compared with the 3D 4-directional and 5-directional materials are presented. Finally, a microstructural model is analyzed to lay the foundation for the future theoretical analysis of these composites.