AIM: The aims of this study were to explore individualized treatment method for hepatocellular carcinoma (HCC) patients whose maximum tumor size was less than 5 cm to improve prognosis and survival quality. METHODS: T...AIM: The aims of this study were to explore individualized treatment method for hepatocellular carcinoma (HCC) patients whose maximum tumor size was less than 5 cm to improve prognosis and survival quality. METHODS: Thirty cases of primary HCC patients undergoing tumor resection were retrospectively analyzed (resection group). All the tumors were proved as primary HCC with pathologic examination. The patients were divided into two groups according to follow-up results: group A, with tumor recurrence within 1 year after resection; group B, without tumor recurrence within 1 year. Immunohist-ochemical stainings were performed using 11 kinds of monoclonal antibodies (AFP, c-erbB2, c-met, c-myc, HBsAg, HCV, Ki-67, MMP-2, nm23-H1, P53, and VEGF), and expressing intensities were quantitatively analyzed. Regression equation using factors affecting prognosis of HCC was constructed with binary logistic method. HCC patients undergoing percutaneous microwave coagulation therapy (PMCT) were also retrospectively analyzed (PMCT group). Immunohistochemical stainings of tumor biopsy samples were performed with molecules related to HCC prognosis, staining intensities were quantitatively analyzed, coincidence rate of prediction was calculated. RESULTS: In resection group, the expressing intensities of c-myc, Ki-67, MMP-2 and VEGF in cancer tissue in group A were significantly higher than those in group B (t = 2.97, P= 0.01; t = 2.42, P= 0.03<0.05; t = 2.57, P= 0.02<0.05; t = 3.43, P = 0.004<0.01, respectively); the expressing intensities of 11 kinds of detected molecules in para-cancer tissue in groups A and B were not significantly different (P>0.05). The regression equation predicting prognosis of HCC is as follows: P(1) = 1/[1+e-(3.663-0.412mycc-2.187kl-67c-0.397vegfc)]. It demonstrates that prognosis of HCC in resection group was related with c-myc, Ki-67 and VEGF expressing intensity in cancer tissue. In PMCT group, the expressing intensities of c-myc, Ki-67 and VEGF in cancer tissue in group A were significantly higher than those in group B (t = 4.57, P= 0.000<0.01; t = 2.08, P= 0.04<0.05; t = 2.38, P= 0.02<0.05, respectively); the expressing intensities of c-myc, Ki-67 and VEGF in para-cancer tissue in groups A and B were not significantly different (P>0.05). The coincidence rate of patients undergoing PMCT in group A was 88.00% (22/25), in group B 68.75% (11/16), the total coincidence rate was 80.49% (33/41). CONCLUSION: The regression equation is accurate and feasible and could be used for predicting prognosis of HCC, it helps to select treatment method (resection or PMCT) for HCC patients to realize individualized treatment to improve prognosis.展开更多
Dear Editor,In this letter,a constrained networked predictive control strategy is proposed for the optimal control problem of complex nonlinear highorder fully actuated(HOFA)systems with noises.The method can effectiv...Dear Editor,In this letter,a constrained networked predictive control strategy is proposed for the optimal control problem of complex nonlinear highorder fully actuated(HOFA)systems with noises.The method can effectively deal with nonlinearities,constraints,and noises in the system,optimize the performance metric,and present an upper bound on the stable output of the system.展开更多
A composite anti-disturbance predictive control strategy employing a Multi-dimensional Taylor Network(MTN)is presented for unmanned systems subject to time-delay and multi-source disturbances.First,the multi-source di...A composite anti-disturbance predictive control strategy employing a Multi-dimensional Taylor Network(MTN)is presented for unmanned systems subject to time-delay and multi-source disturbances.First,the multi-source disturbances are addressed according to their specific characteristics as follows:(A)an MTN data-driven model,which is used for uncertainty description,is designed accompanied with the mechanism model to represent the unmanned systems;(B)an adaptive MTN filter is used to remove the influence of the internal disturbance;(C)an MTN disturbance observer is constructed to estimate and compensate for the influence of the external disturbance;(D)the Extended Kalman Filter(EKF)algorithm is utilized as the learning mechanism for MTNs.Second,to address the time-delay effect,a recursiveτstep-ahead MTN predictive model is designed utilizing recursive technology,aiming to mitigate the impact of time-delay,and the EKF algorithm is employed as its learning mechanism.Then,the MTN predictive control law is designed based on the quadratic performance index.By implementing the proposed composite controller to unmanned systems,simultaneous feedforward compensation and feedback suppression to the multi-source disturbances are conducted.Finally,the convergence of the MTN and the stability of the closed-loop system are established utilizing the Lyapunov theorem.Two exemplary applications of unmanned systems involving unmanned vehicle and rigid spacecraft are presented to validate the effectiveness of the proposed approach.展开更多
Large-scale new energy grid connection leads to the weakening of the system frequency regulation capability,and the system frequency stability is facing unprecedented challenges.In order to solve rapid frequency fluct...Large-scale new energy grid connection leads to the weakening of the system frequency regulation capability,and the system frequency stability is facing unprecedented challenges.In order to solve rapid frequency fluctuation caused by new energy units,this paper proposes a new energy power system frequency regulation strategy with multiple units including the doubly-fed pumped storage unit(DFPSU).Firstly,based on the model predictive control(MPC)theory,the state space equations are established by considering the operating characteristics of the units and the dynamic behavior of the system;secondly,the proportional-differential control link is introduced to minimize the frequency deviation to further optimize the frequency modulation(FM)output of the DFPSU and inhibit the rapid fluctuation of the frequency;lastly,it is verified on theMatlab/Simulink simulation platform,and the results show that the model predictive control with proportional-differential control link can further release the FM potential of the DFPSU,increase the depth of its FM,effectively reduce the frequency deviation of the system and its rate of change,realize the optimization of the active output of the DFPSU and that of other units,and improve the frequency response capability of the system.展开更多
Dear Editor,This letter presents a novel approach to the data-driven control of unknown nonlinear systems.By leveraging online sparse identification based on the Koopman operator,a high-dimensional linear system model...Dear Editor,This letter presents a novel approach to the data-driven control of unknown nonlinear systems.By leveraging online sparse identification based on the Koopman operator,a high-dimensional linear system model approximating the actual system is obtained online.The upper bound of the discrepancy between the identified model and the actual system is estimated using real-time prediction error,which is then utilized in the design of a tube-based robust model predictive controller.The effectiveness of the proposed approach is validated by numerical simulation.展开更多
Radiomics and machine learning(ML)are increasingly utilized to predict treatment response by uncovering latent information in medical images.This study systematically reviews radiomics studies on brain metastasis trea...Radiomics and machine learning(ML)are increasingly utilized to predict treatment response by uncovering latent information in medical images.This study systematically reviews radiomics studies on brain metastasis treated with stereotactic radio-surgery(SRS)and quantifies their radiomic quality score(RQS).A systematic search on Scopus,Web of Science,and PubMed was conducted to identify original studies on radiomics for predicting treatment response,adhering to predefined patient,intervention,comparator,and outcome(PICO)criteria.No restrictions were placed on language or publication date.Two in-dependent reviewers assessed eligible studies,and the RQS was calculated based on Lambin’s guidelines.The Preferred Reporting Items for Systematic Review and Meta-Analysis(PRISMA)2020 guidelines were followed.Seventeen studies involving 2744 patients met the inclusion criteria out of 200 identified.All studies were retrospective and utilizing various MRI scanners models with different field strength.The average RQS across studies was low(39.2%),with a maximum score of 19 points(52.7%).Radiomic-based models demonstrated superior predictive accuracy compared to clinical or visual assessment,with AUC values ranging from 0.74 to 0.92.Integration of clinical features such as Karnofsky performance status,dose,and isodose line further improved model performance.Deep learning models achieved the highest predictive accuracy,with AUC of 0.92.Radiomics demonstrate significant potential in predicting treatment outcomes with high accuracy,offering opportunities to advance personalized management for BM.To facilitate clinical adoption,future studies must prioritize adherence to standardized guidelines and robust model validation to ensure reproducibility.展开更多
BACKGROUND The trend of risk prediction models for diabetic peripheral neuropathy(DPN)is increasing,but few studies focus on the quality of the model and its practical application.AIM To conduct a comprehensive system...BACKGROUND The trend of risk prediction models for diabetic peripheral neuropathy(DPN)is increasing,but few studies focus on the quality of the model and its practical application.AIM To conduct a comprehensive systematic review and rigorous evaluation of prediction models for DPN.METHODS A meticulous search was conducted in PubMed,EMBASE,Cochrane,CNKI,Wang Fang DATA,and VIP Database to identify studies published until October 2023.The included and excluded criteria were applied by the researchers to screen the literature.Two investigators independently extracted data and assessed the quality using a data extraction form and a bias risk assessment tool.Disagreements were resolved through consultation with a third investigator.Data from the included studies were extracted utilizing the Checklist for Critical Appraisal and Data Extraction for Systematic Reviews of Prediction Modelling Studies.Additionally,the bias risk and applicability of the models were evaluated by the Prediction Model Risk of Bias Assessment Tool.RESULTS The systematic review included 14 studies with a total of 26 models.The area under the receiver operating characteristic curve of the 26 models was 0.629-0.938.All studies had high risks of bias,mainly due to participants,outcomes,and analysis.The most common predictors included glycated hemoglobin,age,duration of diabetes,lipid abnormalities,and fasting blood glucose.CONCLUSION The predictor model presented good differentiation,calibration,but there were significant methodological flaws and high risk of bias.Future studies should focus on improving the study design and study report,updating the model and verifying its adaptability and feasibility in clinical practice.展开更多
BACKGROUND Stomal complications though small in early postoperative period,but poses significant morbidity,therapeutic challenge,delay in adjuvant treatment and sometimes even leads to mortality.Predictive model for e...BACKGROUND Stomal complications though small in early postoperative period,but poses significant morbidity,therapeutic challenge,delay in adjuvant treatment and sometimes even leads to mortality.Predictive model for early detection of stomal complications is important to improve the outcome.A model including patients and disease related factors,intraoperative surgical techniques and biochemical markers would be a better determinant to anticipate early stomal complications.Incorporation of emerging tools and technology such as artificial intelligence(AI),will further improve the prediction.AIM To identify various risk factors and models for prediction of early post operative stomal complications in colorectal cancer(CRC)surgery.METHODS Published literatures on early postoperative stomal complications in CRC surgery were systematically reviewed between 1995 and 2024 from online search engines PubMed and MEDLINE.RESULTS Twenty-four observational studies focused on identifying various risk factors for early post operative stomal complications in CRC surgery were analyzed.Stomal complications in CRC are influenced by several factors such as disease factors,patient-specific characteristics,and surgical techniques.There are some biomarkers and tools loke AI which may play significant roles in early detection.CONCLUSION Careful analysis of these factors,changes in biochemical parameters,and application of AI,a predictive model for stomal complications can be generated,to help in early detection,prompt action to achieve better outcomes.展开更多
In recent years,there has been a growing demand for more efficient and robust control strategies in cooperative multi-robot systems.This paper introduces the cascade explicit tube model predictive controller(CET-MPC),...In recent years,there has been a growing demand for more efficient and robust control strategies in cooperative multi-robot systems.This paper introduces the cascade explicit tube model predictive controller(CET-MPC),a control architecture designed specifically for distributed aerial robot systems.By integrating an explicit model predictive controller(MPC)with a tube MPC,our approach significantly reduces online computational demands while enhancing robustness against disturbances such as wind and measurement noise,as well as uncertainties in inertia parameters.Further,we incorporate a cascade controller to minimize steady-state errors and improve system performance dynamically.The results of this assessment provide valuable insights into the effectiveness and reliability of the CET-MPC approach under realistic operating conditions.The simulation results of flight scenarios for multi-agent quadrotors demonstrate the controller’s stability and accurate tracking of the desired path.By addressing the complexities of quadrotors’six degrees of freedom,this controller serves as a versatile solution applicable to a wide range of multi-robot systems with varying degrees of freedom,demonstrating its adaptability and scalability beyond the quadrotor domain.展开更多
In this work,a self-healing predictive control method for discrete-time nonlinear systems is presented to ensure the system can be safely operated under abnormal states.First,a robust MPC controller for the normal cas...In this work,a self-healing predictive control method for discrete-time nonlinear systems is presented to ensure the system can be safely operated under abnormal states.First,a robust MPC controller for the normal case is constructed,which can drive the system to the equilibrium point when the closed-loop states are in the predetermined safe set.In this controller,the tubes are built based on the incremental Lyapunov function to tighten nominal constraints.To deal with the infeasible controller when abnormal states occur,a self-healing predictive control method is further proposed to realize self-healing by driving the system towards the safe set.This is achieved by an auxiliary softconstrained recovery mechanism that can solve the constraint violation caused by the abnormal states.By extending the discrete-time robust control barrier function theory,it is proven that the auxiliary problem provides a predictive control barrier bounded function to make the system asymptotically stable towards the safe set.The theoretical properties of robust recursive feasibility and bounded stability are further analyzed.The efficiency of the proposed controller is verified by a numerical simulation of a continuous stirred-tank reactor process.展开更多
The acquisition,tracking,and pointing(ATP)system is widely used in target tracking,counter-UAV operations,and other related fields.As UAV technology develops,there is a growing demand to enhance the tracking capabilit...The acquisition,tracking,and pointing(ATP)system is widely used in target tracking,counter-UAV operations,and other related fields.As UAV technology develops,there is a growing demand to enhance the tracking capabilities of ATP systems.However,in practical applications,ATP systems face various design constraints and functional limitations,making it infeasible to indefinitely improve hardware performance to meet tracking requirements.As a result,tracking algorithms are required to execute increasingly complex tasks.This study introduces a multi-rate feedforward predictive controller to address issues such as low image feedback frequency and significant delays in ATP systems,which lead to tracking jitter,poor tracking performance,low precision,and target loss.At the same time,the pro-posed approach aims to improve the tracking capabilities of ATP systems for high-speed and highly maneuverable targets under conditions of low sampling feedback rates and high feedback delays.The method suggested is also characterized by its low order,fast response,and robustness to model parameter variations.In this study,an actual ATP system is built for target tracking test,and the proposed algorithm is fully validated in terms of simulation and actual system application verification.Results from both simulations and experiments demonstrate that the method effectively compensates for delays and low sampling rates.For targets with relative angular velocities ranging from 0 to 90°/s and angular accelerations between 0 and 470°/s^(2),the system improved tracking accuracy by 70.0%-89.9%at a sampling frequency of 50 Hz and a delay of 30 m s.Moreover,the compensation algorithm demonstrated consistent performance across actuators with varying characteristics,further confirming its robustness to model insensitivity.In summary,the proposed algorithm considerably enhances the tracking accuracy and capability of ATP systems for high-speed and highly maneuverable targets,reducing the probability of target loss from high speed.This approach offers a practical solution for future multi-target tracking across diverse operational scenarios.展开更多
The rapid development and increased installed capacity of new energy sources such as wind and solar power pose new challenges for power grid fault diagnosis.This paper presents an innovative framework,the Intelligent ...The rapid development and increased installed capacity of new energy sources such as wind and solar power pose new challenges for power grid fault diagnosis.This paper presents an innovative framework,the Intelligent Power Stability and Scheduling(IPSS)System,which is designed to enhance the safety,stability,and economic efficiency of power systems,particularly those integrated with green energy sources.The IPSS System is distinguished by its integration of a CNN-Transformer predictive model,which leverages the strengths of Convolutional Neural Networks(CNN)for local feature extraction and Transformer architecture for global dependency modeling,offering significant potential in power safety diagnostics.TheIPSS System optimizes the economic and stability objectives of the power grid through an improved Zebra Algorithm,which aims tominimize operational costs and grid instability.Theperformance of the predictive model is comprehensively evaluated using key metrics such as Root Mean Square Error(RMSE),Mean Absolute Percentage Error(MAPE),and Coefficient of Determination(R2).Experimental results demonstrate the superiority of the CNN-Transformer model,with the lowest RMSE and MAE values of 0.0063 and 0.00421,respectively,on the training set,and an R2 value approaching 1,at 0.99635,indicating minimal prediction error and strong data interpretability.On the test set,the model maintains its excellence with the lowest RMSE and MAE values of 0.009 and 0.00673,respectively,and an R2 value of 0.97233.The IPSS System outperforms other models in terms of prediction accuracy and explanatory power and validates its effectiveness in economic and stability analysis through comparative studies with other optimization algorithms.The system’s efficacy is further supported by experimental results,highlighting the proposed scheme’s capability to reduce operational costs and enhance system stability,making it a valuable contribution to the field of green energy systems.展开更多
Dear Editor,This letter proposes a convex optimization-based model predictive control(MPC)autonomous guidance method for the Mars ascent vehicle(MAV).We use the modified chebyshev-picard iteration(MCPI)to solve optimi...Dear Editor,This letter proposes a convex optimization-based model predictive control(MPC)autonomous guidance method for the Mars ascent vehicle(MAV).We use the modified chebyshev-picard iteration(MCPI)to solve optimization sub-problems within the MPC framework,eliminating the dynamic constraints in solving the optimal control problem and enhancing the convergence performance of the algorithm.Moreover,this method can repeatedly perform trajectory optimization calculations at a high frequency,achieving timely correction of the optimal control command.Numerical simulations demonstrate that the method can satisfy the requirements of rapid computation and reliability for the MAV system when considering uncertainties and perturbations.展开更多
With the development of More Electric Aircraft(MEA),the Permanent Magnet Synchronous Motor(PMSM)is widely used in the MEA field.The PMSM control system of MEA needs to consider the system reliability,and the inverter ...With the development of More Electric Aircraft(MEA),the Permanent Magnet Synchronous Motor(PMSM)is widely used in the MEA field.The PMSM control system of MEA needs to consider the system reliability,and the inverter switching frequency of the inverter is one of the impacting factors.At the same time,the control accuracy of the system also needs to be considered,and the torque ripple and flux ripple are usually considered to be its important indexes.This paper proposes a three-stage series Model Predictive Torque and Flux Control system(three-stage series MPTFC)based on fast optimal voltage vector selection to reduce switching frequency and suppress torque ripple and flux ripple.Firstly,the analytical model of the PMSM is established and the multi-stage series control method is used to reduce the switching frequency.Secondly,selectable voltage vectors are extended from 8 to 26 and a fast selection method for optimal voltage vector sectors is designed based on the hysteresis comparator,which can suppress the torque ripple and flux ripple to improve the control accuracy.Thirdly,a three-stage series control is obtained by expanding the two-stage series control using the P-Q torque decomposition theory.Finally,a model predictive torque and flux control experimental platform is built,and the feasibility and effectiveness of this method are verified through comparison experiments.展开更多
Permanent magnet synchronous motor(PMSM)is widely used in alternating current servo systems as it provides high eficiency,high power density,and a wide speed regulation range.The servo system is placing higher demands...Permanent magnet synchronous motor(PMSM)is widely used in alternating current servo systems as it provides high eficiency,high power density,and a wide speed regulation range.The servo system is placing higher demands on its control performance.The model predictive control(MPC)algorithm is emerging as a potential high-performance motor control algorithm due to its capability of handling multiple-input and multipleoutput variables and imposed constraints.For the MPC used in the PMSM control process,there is a nonlinear disturbance caused by the change of electromagnetic parameters or load disturbance that may lead to a mismatch between the nominal model and the controlled object,which causes the prediction error and thus affects the dynamic stability of the control system.This paper proposes a data-driven MPC strategy in which the historical data in an appropriate range are utilized to eliminate the impact of parameter mismatch and further improve the control performance.The stability of the proposed algorithm is proved as the simulation demonstrates the feasibility.Compared with the classical MPC strategy,the superiority of the algorithm has also been verified.展开更多
Distributed drive electric vehicles(DDEVs)endow the ability to improve vehicle stability performance through direct yaw-moment control(DYC).However,the nonlinear characteristics pose a great challenge to vehicle dynam...Distributed drive electric vehicles(DDEVs)endow the ability to improve vehicle stability performance through direct yaw-moment control(DYC).However,the nonlinear characteristics pose a great challenge to vehicle dynamics control.For this purpose,this paper studies the DYC through the Takagi-Sugeno(T-S)fuzzy-based model predictive control to deal with the nonlinear challenge.First,a T-S fuzzy-based vehicle dynamics model is established to describe the time-varying tire cornering stiffness and vehicle speeds,and thus the uncertain parameters can be represented by the norm-bounded uncertainties.Then,a robust model predictive control(MPC)is developed to guarantee vehicle handling stability.A feasible solution can be obtained through a set of linear matrix inequalities(LMIs).Finally,the tests are conducted by the Carsim/Simulink joint platform to verify the proposed method.The comparative results show that the proposed strategy can effectively guarantee the vehicle’s lateral stability while handling the nonlinear challenge.展开更多
In this paper, the containment control problem in nonlinear multi-agent systems(NMASs) under denial-of-service(DoS) attacks is addressed. Firstly, a prediction model is obtained using the broad learning technique to t...In this paper, the containment control problem in nonlinear multi-agent systems(NMASs) under denial-of-service(DoS) attacks is addressed. Firstly, a prediction model is obtained using the broad learning technique to train historical data generated by the system offline without DoS attacks. Secondly, the dynamic linearization method is used to obtain the equivalent linearization model of NMASs. Then, a novel model-free adaptive predictive control(MFAPC) framework based on historical and online data generated by the system is proposed, which combines the trained prediction model with the model-free adaptive control method. The development of the MFAPC method motivates a much simpler robust predictive control solution that is convenient to use in the case of DoS attacks. Meanwhile, the MFAPC algorithm provides a unified predictive framework for solving consensus tracking and containment control problems. The boundedness of the containment error can be proven by using the contraction mapping principle and the mathematical induction method. Finally, the proposed MFAPC is assessed through comparative experiments.展开更多
This paper aims to fuse two well-established and,at the same time,opposed control techniques,namely,model predictive control(MPC)and active disturbance rejection control(ADRC),to develop a dynamic motion controller fo...This paper aims to fuse two well-established and,at the same time,opposed control techniques,namely,model predictive control(MPC)and active disturbance rejection control(ADRC),to develop a dynamic motion controller for a laser beam steering system.The proposed technique uses the ADRC philosophy to lump disturbances and model uncertainties into a total disturbance.Then,the total disturbance is estimated via a discrete extended state disturbance observer(ESO),and it is used to(1)handle the system constraints in a quadratic optimization problem and(2)injected as a feedforward term to the plant to reject the total disturbance,together with the feedback term obtained by the MPC.The main advantage of the proposed approach is that the MPC is designed based on a straightforward integrator-chain model such that a simple convex optimization problem is performed.Several experiments show the real-time closed-loop performance regarding trajectory tracking and disturbance rejection.Owing to simplicity,the self-contained approach MPC+ESO becomes a Frugal MPC,which is computationally economical,adaptable,efficient,resilient,and suitable for applications where on-board computational resources are limited.展开更多
Dear Editor,This letter investigates the problem of multi-dimension formation tracking(MDFT)for the cross-domain unmanned systems,including several interconnected agents,namely,unmanned aerial vehicles(UAVs)and unmann...Dear Editor,This letter investigates the problem of multi-dimension formation tracking(MDFT)for the cross-domain unmanned systems,including several interconnected agents,namely,unmanned aerial vehicles(UAVs)and unmanned surface vehicles(USVs).We assume that each agent suffers from by the mixed constraints on its velocity,control input and Euler angle.Solving the MDFT problem implies that 1)The virtual state of each USV is determined in the earth coordinate by expanding its 2D work space to the 3D space.展开更多
基金Supported by the Medical and Health Science Foundation of PLA During the 10th five-year plan period, No. 01Z038
文摘AIM: The aims of this study were to explore individualized treatment method for hepatocellular carcinoma (HCC) patients whose maximum tumor size was less than 5 cm to improve prognosis and survival quality. METHODS: Thirty cases of primary HCC patients undergoing tumor resection were retrospectively analyzed (resection group). All the tumors were proved as primary HCC with pathologic examination. The patients were divided into two groups according to follow-up results: group A, with tumor recurrence within 1 year after resection; group B, without tumor recurrence within 1 year. Immunohist-ochemical stainings were performed using 11 kinds of monoclonal antibodies (AFP, c-erbB2, c-met, c-myc, HBsAg, HCV, Ki-67, MMP-2, nm23-H1, P53, and VEGF), and expressing intensities were quantitatively analyzed. Regression equation using factors affecting prognosis of HCC was constructed with binary logistic method. HCC patients undergoing percutaneous microwave coagulation therapy (PMCT) were also retrospectively analyzed (PMCT group). Immunohistochemical stainings of tumor biopsy samples were performed with molecules related to HCC prognosis, staining intensities were quantitatively analyzed, coincidence rate of prediction was calculated. RESULTS: In resection group, the expressing intensities of c-myc, Ki-67, MMP-2 and VEGF in cancer tissue in group A were significantly higher than those in group B (t = 2.97, P= 0.01; t = 2.42, P= 0.03<0.05; t = 2.57, P= 0.02<0.05; t = 3.43, P = 0.004<0.01, respectively); the expressing intensities of 11 kinds of detected molecules in para-cancer tissue in groups A and B were not significantly different (P>0.05). The regression equation predicting prognosis of HCC is as follows: P(1) = 1/[1+e-(3.663-0.412mycc-2.187kl-67c-0.397vegfc)]. It demonstrates that prognosis of HCC in resection group was related with c-myc, Ki-67 and VEGF expressing intensity in cancer tissue. In PMCT group, the expressing intensities of c-myc, Ki-67 and VEGF in cancer tissue in group A were significantly higher than those in group B (t = 4.57, P= 0.000<0.01; t = 2.08, P= 0.04<0.05; t = 2.38, P= 0.02<0.05, respectively); the expressing intensities of c-myc, Ki-67 and VEGF in para-cancer tissue in groups A and B were not significantly different (P>0.05). The coincidence rate of patients undergoing PMCT in group A was 88.00% (22/25), in group B 68.75% (11/16), the total coincidence rate was 80.49% (33/41). CONCLUSION: The regression equation is accurate and feasible and could be used for predicting prognosis of HCC, it helps to select treatment method (resection or PMCT) for HCC patients to realize individualized treatment to improve prognosis.
基金supported in part by the National Natural Science Foundation of China(62173255,62188101)Shenzhen Key Laboratory of Control Theory and Intelligent Systems(ZDSYS20220330161800001)
文摘Dear Editor,In this letter,a constrained networked predictive control strategy is proposed for the optimal control problem of complex nonlinear highorder fully actuated(HOFA)systems with noises.The method can effectively deal with nonlinearities,constraints,and noises in the system,optimize the performance metric,and present an upper bound on the stable output of the system.
基金co-supported by the National Key R&D Program of China(No.2023YFB4704400)the Zhejiang Provincial Natural Science Foundation of China(No.LQ24F030012)the National Natural Science Foundation of China General Project(No.62373033)。
文摘A composite anti-disturbance predictive control strategy employing a Multi-dimensional Taylor Network(MTN)is presented for unmanned systems subject to time-delay and multi-source disturbances.First,the multi-source disturbances are addressed according to their specific characteristics as follows:(A)an MTN data-driven model,which is used for uncertainty description,is designed accompanied with the mechanism model to represent the unmanned systems;(B)an adaptive MTN filter is used to remove the influence of the internal disturbance;(C)an MTN disturbance observer is constructed to estimate and compensate for the influence of the external disturbance;(D)the Extended Kalman Filter(EKF)algorithm is utilized as the learning mechanism for MTNs.Second,to address the time-delay effect,a recursiveτstep-ahead MTN predictive model is designed utilizing recursive technology,aiming to mitigate the impact of time-delay,and the EKF algorithm is employed as its learning mechanism.Then,the MTN predictive control law is designed based on the quadratic performance index.By implementing the proposed composite controller to unmanned systems,simultaneous feedforward compensation and feedback suppression to the multi-source disturbances are conducted.Finally,the convergence of the MTN and the stability of the closed-loop system are established utilizing the Lyapunov theorem.Two exemplary applications of unmanned systems involving unmanned vehicle and rigid spacecraft are presented to validate the effectiveness of the proposed approach.
基金supported by the National Natural Science Foundation of China(Project No.52377082)the Scientific Research Program of Jilin Provincial Department of Education(Project No.JJKH20230123KJ).
文摘Large-scale new energy grid connection leads to the weakening of the system frequency regulation capability,and the system frequency stability is facing unprecedented challenges.In order to solve rapid frequency fluctuation caused by new energy units,this paper proposes a new energy power system frequency regulation strategy with multiple units including the doubly-fed pumped storage unit(DFPSU).Firstly,based on the model predictive control(MPC)theory,the state space equations are established by considering the operating characteristics of the units and the dynamic behavior of the system;secondly,the proportional-differential control link is introduced to minimize the frequency deviation to further optimize the frequency modulation(FM)output of the DFPSU and inhibit the rapid fluctuation of the frequency;lastly,it is verified on theMatlab/Simulink simulation platform,and the results show that the model predictive control with proportional-differential control link can further release the FM potential of the DFPSU,increase the depth of its FM,effectively reduce the frequency deviation of the system and its rate of change,realize the optimization of the active output of the DFPSU and that of other units,and improve the frequency response capability of the system.
基金supported by the National Natural Science Foundation of China(62473020).
文摘Dear Editor,This letter presents a novel approach to the data-driven control of unknown nonlinear systems.By leveraging online sparse identification based on the Koopman operator,a high-dimensional linear system model approximating the actual system is obtained online.The upper bound of the discrepancy between the identified model and the actual system is estimated using real-time prediction error,which is then utilized in the design of a tube-based robust model predictive controller.The effectiveness of the proposed approach is validated by numerical simulation.
文摘Radiomics and machine learning(ML)are increasingly utilized to predict treatment response by uncovering latent information in medical images.This study systematically reviews radiomics studies on brain metastasis treated with stereotactic radio-surgery(SRS)and quantifies their radiomic quality score(RQS).A systematic search on Scopus,Web of Science,and PubMed was conducted to identify original studies on radiomics for predicting treatment response,adhering to predefined patient,intervention,comparator,and outcome(PICO)criteria.No restrictions were placed on language or publication date.Two in-dependent reviewers assessed eligible studies,and the RQS was calculated based on Lambin’s guidelines.The Preferred Reporting Items for Systematic Review and Meta-Analysis(PRISMA)2020 guidelines were followed.Seventeen studies involving 2744 patients met the inclusion criteria out of 200 identified.All studies were retrospective and utilizing various MRI scanners models with different field strength.The average RQS across studies was low(39.2%),with a maximum score of 19 points(52.7%).Radiomic-based models demonstrated superior predictive accuracy compared to clinical or visual assessment,with AUC values ranging from 0.74 to 0.92.Integration of clinical features such as Karnofsky performance status,dose,and isodose line further improved model performance.Deep learning models achieved the highest predictive accuracy,with AUC of 0.92.Radiomics demonstrate significant potential in predicting treatment outcomes with high accuracy,offering opportunities to advance personalized management for BM.To facilitate clinical adoption,future studies must prioritize adherence to standardized guidelines and robust model validation to ensure reproducibility.
基金Supported by Capital’s Funds for Health Improvement and Research,No.2024-4-4135.
文摘BACKGROUND The trend of risk prediction models for diabetic peripheral neuropathy(DPN)is increasing,but few studies focus on the quality of the model and its practical application.AIM To conduct a comprehensive systematic review and rigorous evaluation of prediction models for DPN.METHODS A meticulous search was conducted in PubMed,EMBASE,Cochrane,CNKI,Wang Fang DATA,and VIP Database to identify studies published until October 2023.The included and excluded criteria were applied by the researchers to screen the literature.Two investigators independently extracted data and assessed the quality using a data extraction form and a bias risk assessment tool.Disagreements were resolved through consultation with a third investigator.Data from the included studies were extracted utilizing the Checklist for Critical Appraisal and Data Extraction for Systematic Reviews of Prediction Modelling Studies.Additionally,the bias risk and applicability of the models were evaluated by the Prediction Model Risk of Bias Assessment Tool.RESULTS The systematic review included 14 studies with a total of 26 models.The area under the receiver operating characteristic curve of the 26 models was 0.629-0.938.All studies had high risks of bias,mainly due to participants,outcomes,and analysis.The most common predictors included glycated hemoglobin,age,duration of diabetes,lipid abnormalities,and fasting blood glucose.CONCLUSION The predictor model presented good differentiation,calibration,but there were significant methodological flaws and high risk of bias.Future studies should focus on improving the study design and study report,updating the model and verifying its adaptability and feasibility in clinical practice.
文摘BACKGROUND Stomal complications though small in early postoperative period,but poses significant morbidity,therapeutic challenge,delay in adjuvant treatment and sometimes even leads to mortality.Predictive model for early detection of stomal complications is important to improve the outcome.A model including patients and disease related factors,intraoperative surgical techniques and biochemical markers would be a better determinant to anticipate early stomal complications.Incorporation of emerging tools and technology such as artificial intelligence(AI),will further improve the prediction.AIM To identify various risk factors and models for prediction of early post operative stomal complications in colorectal cancer(CRC)surgery.METHODS Published literatures on early postoperative stomal complications in CRC surgery were systematically reviewed between 1995 and 2024 from online search engines PubMed and MEDLINE.RESULTS Twenty-four observational studies focused on identifying various risk factors for early post operative stomal complications in CRC surgery were analyzed.Stomal complications in CRC are influenced by several factors such as disease factors,patient-specific characteristics,and surgical techniques.There are some biomarkers and tools loke AI which may play significant roles in early detection.CONCLUSION Careful analysis of these factors,changes in biochemical parameters,and application of AI,a predictive model for stomal complications can be generated,to help in early detection,prompt action to achieve better outcomes.
文摘In recent years,there has been a growing demand for more efficient and robust control strategies in cooperative multi-robot systems.This paper introduces the cascade explicit tube model predictive controller(CET-MPC),a control architecture designed specifically for distributed aerial robot systems.By integrating an explicit model predictive controller(MPC)with a tube MPC,our approach significantly reduces online computational demands while enhancing robustness against disturbances such as wind and measurement noise,as well as uncertainties in inertia parameters.Further,we incorporate a cascade controller to minimize steady-state errors and improve system performance dynamically.The results of this assessment provide valuable insights into the effectiveness and reliability of the CET-MPC approach under realistic operating conditions.The simulation results of flight scenarios for multi-agent quadrotors demonstrate the controller’s stability and accurate tracking of the desired path.By addressing the complexities of quadrotors’six degrees of freedom,this controller serves as a versatile solution applicable to a wide range of multi-robot systems with varying degrees of freedom,demonstrating its adaptability and scalability beyond the quadrotor domain.
基金supported in part the National Key Research and Development Program of China(2021YFC2902703)Open Foundation of State Key Laboratory of Process Automation in Mining&Metallurgy/Beijing Key Laboratory of Process Automation in Mining&Metallurgy(BGRIMM-KZSKL-2022-6)the National Natural Science Foundation of China(62173078,61873049).
文摘In this work,a self-healing predictive control method for discrete-time nonlinear systems is presented to ensure the system can be safely operated under abnormal states.First,a robust MPC controller for the normal case is constructed,which can drive the system to the equilibrium point when the closed-loop states are in the predetermined safe set.In this controller,the tubes are built based on the incremental Lyapunov function to tighten nominal constraints.To deal with the infeasible controller when abnormal states occur,a self-healing predictive control method is further proposed to realize self-healing by driving the system towards the safe set.This is achieved by an auxiliary softconstrained recovery mechanism that can solve the constraint violation caused by the abnormal states.By extending the discrete-time robust control barrier function theory,it is proven that the auxiliary problem provides a predictive control barrier bounded function to make the system asymptotically stable towards the safe set.The theoretical properties of robust recursive feasibility and bounded stability are further analyzed.The efficiency of the proposed controller is verified by a numerical simulation of a continuous stirred-tank reactor process.
基金supported by the National Natural Science Foun-dation of China(Grant No.52275099).
文摘The acquisition,tracking,and pointing(ATP)system is widely used in target tracking,counter-UAV operations,and other related fields.As UAV technology develops,there is a growing demand to enhance the tracking capabilities of ATP systems.However,in practical applications,ATP systems face various design constraints and functional limitations,making it infeasible to indefinitely improve hardware performance to meet tracking requirements.As a result,tracking algorithms are required to execute increasingly complex tasks.This study introduces a multi-rate feedforward predictive controller to address issues such as low image feedback frequency and significant delays in ATP systems,which lead to tracking jitter,poor tracking performance,low precision,and target loss.At the same time,the pro-posed approach aims to improve the tracking capabilities of ATP systems for high-speed and highly maneuverable targets under conditions of low sampling feedback rates and high feedback delays.The method suggested is also characterized by its low order,fast response,and robustness to model parameter variations.In this study,an actual ATP system is built for target tracking test,and the proposed algorithm is fully validated in terms of simulation and actual system application verification.Results from both simulations and experiments demonstrate that the method effectively compensates for delays and low sampling rates.For targets with relative angular velocities ranging from 0 to 90°/s and angular accelerations between 0 and 470°/s^(2),the system improved tracking accuracy by 70.0%-89.9%at a sampling frequency of 50 Hz and a delay of 30 m s.Moreover,the compensation algorithm demonstrated consistent performance across actuators with varying characteristics,further confirming its robustness to model insensitivity.In summary,the proposed algorithm considerably enhances the tracking accuracy and capability of ATP systems for high-speed and highly maneuverable targets,reducing the probability of target loss from high speed.This approach offers a practical solution for future multi-target tracking across diverse operational scenarios.
基金The research project,“Research on Power Safety Assisted Decision System Based on Large Language Models”(Project Number:JSDL24051414020001)acknowledges with gratitude the financial and logistical support it has received.
文摘The rapid development and increased installed capacity of new energy sources such as wind and solar power pose new challenges for power grid fault diagnosis.This paper presents an innovative framework,the Intelligent Power Stability and Scheduling(IPSS)System,which is designed to enhance the safety,stability,and economic efficiency of power systems,particularly those integrated with green energy sources.The IPSS System is distinguished by its integration of a CNN-Transformer predictive model,which leverages the strengths of Convolutional Neural Networks(CNN)for local feature extraction and Transformer architecture for global dependency modeling,offering significant potential in power safety diagnostics.TheIPSS System optimizes the economic and stability objectives of the power grid through an improved Zebra Algorithm,which aims tominimize operational costs and grid instability.Theperformance of the predictive model is comprehensively evaluated using key metrics such as Root Mean Square Error(RMSE),Mean Absolute Percentage Error(MAPE),and Coefficient of Determination(R2).Experimental results demonstrate the superiority of the CNN-Transformer model,with the lowest RMSE and MAE values of 0.0063 and 0.00421,respectively,on the training set,and an R2 value approaching 1,at 0.99635,indicating minimal prediction error and strong data interpretability.On the test set,the model maintains its excellence with the lowest RMSE and MAE values of 0.009 and 0.00673,respectively,and an R2 value of 0.97233.The IPSS System outperforms other models in terms of prediction accuracy and explanatory power and validates its effectiveness in economic and stability analysis through comparative studies with other optimization algorithms.The system’s efficacy is further supported by experimental results,highlighting the proposed scheme’s capability to reduce operational costs and enhance system stability,making it a valuable contribution to the field of green energy systems.
基金supported by the National Defense Basic Scientific Research Program(JCKY2021603B030)the National Natural Science Foundation of China(62273118,12150008)the Natural Science Foundation of Heilongjiang Province(LH2022F023).
文摘Dear Editor,This letter proposes a convex optimization-based model predictive control(MPC)autonomous guidance method for the Mars ascent vehicle(MAV).We use the modified chebyshev-picard iteration(MCPI)to solve optimization sub-problems within the MPC framework,eliminating the dynamic constraints in solving the optimal control problem and enhancing the convergence performance of the algorithm.Moreover,this method can repeatedly perform trajectory optimization calculations at a high frequency,achieving timely correction of the optimal control command.Numerical simulations demonstrate that the method can satisfy the requirements of rapid computation and reliability for the MAV system when considering uncertainties and perturbations.
基金co-supported by the National Natural Science Foundation of China(No.52477063)the National Key Research and Development Program of China(No.2023YFF0719100)。
文摘With the development of More Electric Aircraft(MEA),the Permanent Magnet Synchronous Motor(PMSM)is widely used in the MEA field.The PMSM control system of MEA needs to consider the system reliability,and the inverter switching frequency of the inverter is one of the impacting factors.At the same time,the control accuracy of the system also needs to be considered,and the torque ripple and flux ripple are usually considered to be its important indexes.This paper proposes a three-stage series Model Predictive Torque and Flux Control system(three-stage series MPTFC)based on fast optimal voltage vector selection to reduce switching frequency and suppress torque ripple and flux ripple.Firstly,the analytical model of the PMSM is established and the multi-stage series control method is used to reduce the switching frequency.Secondly,selectable voltage vectors are extended from 8 to 26 and a fast selection method for optimal voltage vector sectors is designed based on the hysteresis comparator,which can suppress the torque ripple and flux ripple to improve the control accuracy.Thirdly,a three-stage series control is obtained by expanding the two-stage series control using the P-Q torque decomposition theory.Finally,a model predictive torque and flux control experimental platform is built,and the feasibility and effectiveness of this method are verified through comparison experiments.
文摘Permanent magnet synchronous motor(PMSM)is widely used in alternating current servo systems as it provides high eficiency,high power density,and a wide speed regulation range.The servo system is placing higher demands on its control performance.The model predictive control(MPC)algorithm is emerging as a potential high-performance motor control algorithm due to its capability of handling multiple-input and multipleoutput variables and imposed constraints.For the MPC used in the PMSM control process,there is a nonlinear disturbance caused by the change of electromagnetic parameters or load disturbance that may lead to a mismatch between the nominal model and the controlled object,which causes the prediction error and thus affects the dynamic stability of the control system.This paper proposes a data-driven MPC strategy in which the historical data in an appropriate range are utilized to eliminate the impact of parameter mismatch and further improve the control performance.The stability of the proposed algorithm is proved as the simulation demonstrates the feasibility.Compared with the classical MPC strategy,the superiority of the algorithm has also been verified.
基金Supported by National Natural Science Foundation of China(Grant Nos.52402497,52025121 and 52002066)Young Scientists Project and General Project of Applied Basic Research in Yunnan Province(Grant Nos.202501AT070296,202401AU070196)+1 种基金The Key Laboratory of Modern Agricultural Engineering of Ordinary Colleges and Universities of Education Department of Autonomous Region(Grant No.TDNG2023108)Jiangsu Provincial Achievements Transformation Project(Grant No.BA2018023).
文摘Distributed drive electric vehicles(DDEVs)endow the ability to improve vehicle stability performance through direct yaw-moment control(DYC).However,the nonlinear characteristics pose a great challenge to vehicle dynamics control.For this purpose,this paper studies the DYC through the Takagi-Sugeno(T-S)fuzzy-based model predictive control to deal with the nonlinear challenge.First,a T-S fuzzy-based vehicle dynamics model is established to describe the time-varying tire cornering stiffness and vehicle speeds,and thus the uncertain parameters can be represented by the norm-bounded uncertainties.Then,a robust model predictive control(MPC)is developed to guarantee vehicle handling stability.A feasible solution can be obtained through a set of linear matrix inequalities(LMIs).Finally,the tests are conducted by the Carsim/Simulink joint platform to verify the proposed method.The comparative results show that the proposed strategy can effectively guarantee the vehicle’s lateral stability while handling the nonlinear challenge.
基金supported in part by the National Natural Science Foundation of China(62403396,62433018,62373113)the Guangdong Basic and Applied Basic Research Foundation(2023A1515011527,2023B1515120010)the Postdoctoral Fellowship Program of CPSF(GZB20240621)
文摘In this paper, the containment control problem in nonlinear multi-agent systems(NMASs) under denial-of-service(DoS) attacks is addressed. Firstly, a prediction model is obtained using the broad learning technique to train historical data generated by the system offline without DoS attacks. Secondly, the dynamic linearization method is used to obtain the equivalent linearization model of NMASs. Then, a novel model-free adaptive predictive control(MFAPC) framework based on historical and online data generated by the system is proposed, which combines the trained prediction model with the model-free adaptive control method. The development of the MFAPC method motivates a much simpler robust predictive control solution that is convenient to use in the case of DoS attacks. Meanwhile, the MFAPC algorithm provides a unified predictive framework for solving consensus tracking and containment control problems. The boundedness of the containment error can be proven by using the contraction mapping principle and the mathematical induction method. Finally, the proposed MFAPC is assessed through comparative experiments.
基金support through his Master scholarshipThe Vicerrectoría de Investigación y Estudios de Posgrado(VIEP-BUAP)partially funded this work under grant number 00593-PV/2025.
文摘This paper aims to fuse two well-established and,at the same time,opposed control techniques,namely,model predictive control(MPC)and active disturbance rejection control(ADRC),to develop a dynamic motion controller for a laser beam steering system.The proposed technique uses the ADRC philosophy to lump disturbances and model uncertainties into a total disturbance.Then,the total disturbance is estimated via a discrete extended state disturbance observer(ESO),and it is used to(1)handle the system constraints in a quadratic optimization problem and(2)injected as a feedforward term to the plant to reject the total disturbance,together with the feedback term obtained by the MPC.The main advantage of the proposed approach is that the MPC is designed based on a straightforward integrator-chain model such that a simple convex optimization problem is performed.Several experiments show the real-time closed-loop performance regarding trajectory tracking and disturbance rejection.Owing to simplicity,the self-contained approach MPC+ESO becomes a Frugal MPC,which is computationally economical,adaptable,efficient,resilient,and suitable for applications where on-board computational resources are limited.
基金supported in part by the National Natural Science Foundation of China(62073301,62373162,62473349,U24A20268,62233007)the Shenzhen Science and Technology Program(JCYJ20240813114007010).
文摘Dear Editor,This letter investigates the problem of multi-dimension formation tracking(MDFT)for the cross-domain unmanned systems,including several interconnected agents,namely,unmanned aerial vehicles(UAVs)and unmanned surface vehicles(USVs).We assume that each agent suffers from by the mixed constraints on its velocity,control input and Euler angle.Solving the MDFT problem implies that 1)The virtual state of each USV is determined in the earth coordinate by expanding its 2D work space to the 3D space.