期刊文献+
共找到222,359篇文章
< 1 2 250 >
每页显示 20 50 100
Hierarchical framework for predictive maintenance of coking risk in fluid catalytic cracking units:A data and knowledge-driven method
1
作者 Nan Liu Chunmeng Zhu +3 位作者 Zeng Li Yunpeng Zhao Xiaogang Shi Xingying Lan 《Chinese Journal of Chemical Engineering》 2025年第8期35-46,共12页
The fractionating tower bottom in fluid catalytic cracking Unit (FCCU) is highly susceptible to coking due to the interplay of complex external operating conditions and internal physical properties. Consequently, quan... The fractionating tower bottom in fluid catalytic cracking Unit (FCCU) is highly susceptible to coking due to the interplay of complex external operating conditions and internal physical properties. Consequently, quantitative risk assessment (QRA) and predictive maintenance (PdM) are essential to effectively manage coking risks influenced by multiple factors. However, the inherent uncertainties of the coking process, combined with the mixed-frequency nature of distributed control systems (DCS) and laboratory information management systems (LIMS) data, present significant challenges for the application of data-driven methods and their practical implementation in industrial environments. This study proposes a hierarchical framework that integrates deep learning and fuzzy logic inference, leveraging data and domain knowledge to monitor the coking condition and inform prescriptive maintenance planning. The framework proposes the multi-layer fuzzy inference system to construct the coking risk index, utilizes multi-label methods to select the optimal feature dataset across the reactor-regenerator and fractionation system using coking risk factors as label space, and designs the parallel encoder-integrated decoder architecture to address mixed-frequency data disparities and enhance adaptation capabilities through extracting the operation state and physical properties information. Additionally, triple attention mechanisms, whether in parallel or temporal modules, adaptively aggregate input information and enhance intrinsic interpretability to support the disposal decision-making. Applied in the 2.8 million tons FCCU under long-period complex operating conditions, enabling precise coking risk management at the fractionating tower bottom. 展开更多
关键词 PETROLEUM Mixed-frequency data COKING Risk index Neural networks predictive maintenance
在线阅读 下载PDF
Research Progress in Predictive Maintenance of Offshore Platform Structures Based on Digital Twin Technology
2
作者 Jincheng Sha Jiancheng Leng +2 位作者 Houbin Mao Jinyuan Pei Kaixin Diao 《哈尔滨工程大学学报(英文版)》 2025年第5期877-899,共23页
Offshore platforms are large,complex structures designed for long-term service,and they are characterized by high risk and significant investment.Ensuring the safety and reliability of in-service offshore platforms re... Offshore platforms are large,complex structures designed for long-term service,and they are characterized by high risk and significant investment.Ensuring the safety and reliability of in-service offshore platforms requires intelligent operation and maintenance strategies.Digital twin technology can enable the accurate description and prediction of changes in the platform’s physical state through real-time monitoring data.This technology is expected to revolutionize the maintenance of existing offshore platform structures.A digital twin system is proposed for real-time assessment of structural health,prediction of residual life,formulation of maintenance plans,and extension of service life through predictive maintenance.The system integrates physical entities,digital models,intelligent predictive maintenance tools,a visualization platform,and interconnected modules to provide a comprehensive and efficient maintenance framework.This paper examines the current development status of core technologies in physical entity monitoring,digital model construction,and intelligent predictive maintenance.It also outlines future directions for the advancement of these technologies within the digital twin system,offering technical insights and practical references to support further research and applications of digital twin technology in offshore platform structures. 展开更多
关键词 Offshore platform Digital twin Physical entity monitoring Digital model construction predictive maintenance
在线阅读 下载PDF
An Explainable Autoencoder-Based Feature Extraction Combined with CNN-LSTM-PSO Model for Improved Predictive Maintenance
3
作者 Ishaani Priyadarshini 《Computers, Materials & Continua》 2025年第4期635-659,共25页
Predictive maintenance plays a crucial role in preventing equipment failures and minimizing operational downtime in modern industries.However,traditional predictive maintenance methods often face challenges in adaptin... Predictive maintenance plays a crucial role in preventing equipment failures and minimizing operational downtime in modern industries.However,traditional predictive maintenance methods often face challenges in adapting to diverse industrial environments and ensuring the transparency and fairness of their predictions.This paper presents a novel predictive maintenance framework that integrates deep learning and optimization techniques while addressing key ethical considerations,such as transparency,fairness,and explainability,in artificial intelligence driven decision-making.The framework employs an Autoencoder for feature reduction,a Convolutional Neural Network for pattern recognition,and a Long Short-Term Memory network for temporal analysis.To enhance transparency,the decision-making process of the framework is made interpretable,allowing stakeholders to understand and trust the model’s predictions.Additionally,Particle Swarm Optimization is used to refine hyperparameters for optimal performance and mitigate potential biases in the model.Experiments are conducted on multiple datasets from different industrial scenarios,with performance validated using accuracy,precision,recall,F1-score,and training time metrics.The results demonstrate an impressive accuracy of up to 99.92%and 99.45%across different datasets,highlighting the framework’s effectiveness in enhancing predictive maintenance strategies.Furthermore,the model’s explainability ensures that the decisions can be audited for fairness and accountability,aligning with ethical standards for critical systems.By addressing transparency and reducing potential biases,this framework contributes to the responsible and trustworthy deployment of artificial intelligence in industrial environments,particularly in safety-critical applications.The results underscore its potential for wide application across various industrial contexts,enhancing both performance and ethical decision-making. 展开更多
关键词 Explainability feature reduction predictive maintenance OPTIMIZATION
在线阅读 下载PDF
Making Predictive Maintenance a Reality
4
作者 Subash Senthil Mohanvel 《Intelligent Control and Automation》 2025年第1期1-18,共18页
While Artificial Intelligence (AI) is leading the way in terms of hardware advancements, such as GPUs, memory, and processing power, real-time applications are still catching up. It is inevitable that when one aspect ... While Artificial Intelligence (AI) is leading the way in terms of hardware advancements, such as GPUs, memory, and processing power, real-time applications are still catching up. It is inevitable that when one aspect leads and other trails behind, they coexist in life, as is often the case. The trailing aspect cannot remain far behind because, without application and use, there would be a dead end. Everything, whether an object, software, or tool, must have a practical use for humans. Without this, it will become obsolete. We can see this in many instances, such as blockchain technology, which is superior yet faces challenges in practical implementation, leading to a decline in adoption. This publication aims to bridge the gap between AI advancements and maintenance, specifically focusing on making predictive maintenance a practical application. There are multiple building blocks that make predictive maintenance a practical application. Each block performs a function leading to an output. This output forms an input to the receiving block. There are also foundational parts for all these building blocks to perform a function. Eventually, once the building blocks are connected, they form a loop and start to lead the path to predictive maintenance. Predictive maintenance is indeed practically achievable, but one must comprehend all the building blocks necessary for its implementation. Although detailed explanations will be provided in the upcoming sections, it is important to understand that simply purchasing software and plugging it in might be a far-fetched approach. 展开更多
关键词 predictive predictive maintenance How to Achieve predictive maintenance
在线阅读 下载PDF
Leveraging Safe and Secure AI for Predictive Maintenance of Mechanical Devices Using Incremental Learning and Drift Detection
5
作者 Prashanth B.S Manoj Kumar M.V. +1 位作者 Nasser Almuraqab Puneetha B.H 《Computers, Materials & Continua》 2025年第6期4979-4998,共20页
Ever since the research in machine learning gained traction in recent years,it has been employed to address challenges in a wide variety of domains,including mechanical devices.Most of the machine learning models are ... Ever since the research in machine learning gained traction in recent years,it has been employed to address challenges in a wide variety of domains,including mechanical devices.Most of the machine learning models are built on the assumption of a static learning environment,but in practical situations,the data generated by the process is dynamic.This evolution of the data is termed concept drift.This research paper presents an approach for predictingmechanical failure in real-time using incremental learning based on the statistically calculated parameters of mechanical equipment.The method proposed here is applicable to allmechanical devices that are susceptible to failure or operational degradation.The proposed method in this paper is equipped with the capacity to detect the drift in data generation and adaptation.The proposed approach evaluates the machine learning and deep learning models for their efficacy in handling the errors related to industrial machines due to their dynamic nature.It is observed that,in the settings without concept drift in the data,methods like SVM and Random Forest performed better compared to deep neural networks.However,this resulted in poor sensitivity for the smallest drift in the machine data reported as a drift.In this perspective,DNN generated the stable drift detection method;it reported an accuracy of 84%and an AUC of 0.87 while detecting only a single drift point,indicating the stability to performbetter in detecting and adapting to new data in the drifting environments under industrial measurement settings. 展开更多
关键词 Incremental learning drift detection real-time failure prediction deep neural network proactive machine health monitoring
在线阅读 下载PDF
Predictive maintenance and its applications in civil engineering structures:A review 被引量:5
6
作者 Shan Jiazeng Zhang Xi +2 位作者 Loong Cheng Ning Liu Yanzhe Hu Xinyue 《Journal of Southeast University(English Edition)》 EI CAS 2024年第3期245-256,共12页
Structural health monitoring and performance prediction are crucial for smart disaster mitigation and intelligent management of structures throughout their lifespan.Recent advancements in predictive maintenance strate... Structural health monitoring and performance prediction are crucial for smart disaster mitigation and intelligent management of structures throughout their lifespan.Recent advancements in predictive maintenance strategies within the industrial manufacturing industry have inspired similar innovations in civil engineering,aiming to improve structural performance evaluation,damage diagnosis,and capacity prediction.This review delves into the framework of predictive maintenance and examines various existing solutions,focusing on critical areas such as data acquisition,condition monitoring,damage prognosis,and maintenance planning.Results from real-world applications of predictive maintenance in civil engineering,covering high-rise structures,deep foundation pits,and other infrastructure,are presented.The challenges of implementing predictive maintenance in civil engineering structures under current technology,such as model interpretability of data-driven methods and standards for predictive maintenance,are explored.Future research prospects within this area are also discussed. 展开更多
关键词 predictive maintenance civil engineering structural health monitoring machine learning
在线阅读 下载PDF
Model-free Predictive Control of Motor Drives:A Review 被引量:2
7
作者 Chenhui Zhou Yongchang Zhang Haitao Yang 《CES Transactions on Electrical Machines and Systems》 2025年第1期76-90,共15页
Model predictive control(MPC)has been deemed as an attractive control method in motor drives by virtue of its simple structure,convenient multi-objective optimization,and satisfactory dynamic performance.However,the s... Model predictive control(MPC)has been deemed as an attractive control method in motor drives by virtue of its simple structure,convenient multi-objective optimization,and satisfactory dynamic performance.However,the strong reliance on mathematical models seriously restrains its practical application.Therefore,improving the robustness of MPC has attained significant attentions in the last two decades,followed by which,model-free predictive control(MFPC)comes into existence.This article aims to reveal the current state of MFPC strategies for motor drives and give the categorization from the perspective of implementation.Based on this review,the principles of the reported MFPC strategies are introduced in detail,as well as the challenges encountered in technology realization.In addition,some of typical and important concepts are experimentally validated via case studies to evaluate the performance and highlight their features.Finally,the future trends of MFPC are discussed based on the current state and reported developments. 展开更多
关键词 Model predictive control Motor drives Parameter robustness Model-free predictive control
在线阅读 下载PDF
A Bayesian Optimized Stacked Long Short-Term Memory Framework for Real-Time Predictive Condition Monitoring of Heavy-Duty Industrial Motors
8
作者 Mudasir Dilawar Muhammad Shahbaz 《Computers, Materials & Continua》 2025年第6期5091-5114,共24页
In the era of Industry 4.0,conditionmonitoring has emerged as an effective solution for process industries to optimize their operational efficiency.Condition monitoring helps minimize unplanned downtime,extending equi... In the era of Industry 4.0,conditionmonitoring has emerged as an effective solution for process industries to optimize their operational efficiency.Condition monitoring helps minimize unplanned downtime,extending equipment lifespan,reducing maintenance costs,and improving production quality and safety.This research focuses on utilizing Bayesian search-based machine learning and deep learning approaches for the condition monitoring of industrial equipment.The study aims to enhance predictive maintenance for industrial equipment by forecasting vibration values based on domain-specific feature engineering.Early prediction of vibration enables proactive interventions to minimize downtime and extend the lifespan of critical assets.A data set of load information and vibration values from a heavy-duty industrial slip ring induction motor(4600 kW)and gearbox equipped with vibration sensors is used as a case study.The study implements and compares six machine learning models with the proposed Bayesian-optimized stacked Long Short-Term Memory(LSTM)model.The hyperparameters used in the implementation of models are selected based on the Bayesian optimization technique.Comparative analysis reveals that the proposed Bayesian optimized stacked LSTM outperforms other models,showcasing its capability to learn temporal features as well as long-term dependencies in time series information.The implemented machine learning models:Linear Regression(LR),RandomForest(RF),Gradient Boosting Regressor(GBR),ExtremeGradient Boosting(XGBoost),Light Gradient Boosting Machine(LightGBM),and Support Vector Regressor(SVR)displayed a mean squared error of 0.9515,0.4654,0.1849,0.0295,0.2127 and 0.0273,respectively.The proposed model predicts the future vibration characteristics with a mean squared error of 0.0019 on the dataset containing motor load information and vibration characteristics.The results demonstrate that the proposed model outperforms other models in terms of other evaluation metrics with a mean absolute error of 0.0263 and 0.882 as a coefficient of determination.Current research not only contributes to the comparative performance of machine learning models in condition monitoring but also showcases the practical implications of employing these techniques.By transitioning fromreactive to proactive maintenance strategies,industries canminimize downtime,reduce costs,and prolong the lifespan of crucial assets.This study demonstrates the practical advantages of transitioning from reactive to proactive maintenance strategies using ML-based condition monitoring. 展开更多
关键词 Machine learning deep learning predictive maintenance conditionmonitoring Industry 4.0 domainspecific features
在线阅读 下载PDF
Integration of on-board monitoring data into infrastructure management for effective decision-making in railway maintenance
9
作者 Tzu-Hao Yan Cyprien Hoelzl +2 位作者 Francesco Corman Vasilis Dertimanis Eleni Chatzi 《Railway Engineering Science》 2025年第2期151-168,共18页
Railway infrastructure is a crucial asset for the mobility of people and goods.The increased traffic frequency imposes higher loads and speeds,leading to accelerated infrastructure degradation.Asset managers require t... Railway infrastructure is a crucial asset for the mobility of people and goods.The increased traffic frequency imposes higher loads and speeds,leading to accelerated infrastructure degradation.Asset managers require timely information regarding the current(diagnosis)and future(prognosis)condition of their assets to make informed decisions on maintenance and renewal actions.In recent years,in-service vehicles equipped with on-board monitoring(OBM)measuring devices,such as accelerometers,have been introduced on railroad networks,traversing the network almost daily.This article explores the application of state-of-the-art OBM-based track quality indicators for railway infrastructure condition assessment and prediction,primarily under the prism of track geometry quality.The results highlight the similarities and advantages of applying track quality indicators generated from OBM measurements(high frequency and relatively lower accuracy data)compared to those generated from higher precision,yet temporally sparser,data collected by traditional track recording vehicles(TRVs)for infrastructure management purposes.The findings demonstrate the performance of the two approaches,further revealing the value of OBM information for monitoring the track status degradation process.This work makes a case for the advantageous use of OBM data for railway infrastructure management,and attempts to aid understanding in the application of OBM techniques for engineers and operators. 展开更多
关键词 On-board monitoring Structural health monitoring Railway systems and dynamics predictive maintenance
在线阅读 下载PDF
Efficient Spatio-Temporal Predictive Learning for Massive MIMO CSI Prediction 被引量:2
10
作者 CHENG Jiaming CHEN Wei +1 位作者 LI Lun AI Bo 《ZTE Communications》 2025年第1期3-10,共8页
Accurate channel state information(CSI)is crucial for 6G wireless communication systems to accommodate the growing demands of mobile broadband services.In massive multiple-input multiple-output(MIMO)systems,traditiona... Accurate channel state information(CSI)is crucial for 6G wireless communication systems to accommodate the growing demands of mobile broadband services.In massive multiple-input multiple-output(MIMO)systems,traditional CSI feedback approaches face challenges such as performance degradation due to feedback delay and channel aging caused by user mobility.To address these issues,we propose a novel spatio-temporal predictive network(STPNet)that jointly integrates CSI feedback and prediction modules.STPNet employs stacked Inception modules to learn the spatial correlation and temporal evolution of CSI,which captures both the local and the global spatiotemporal features.In addition,the signal-to-noise ratio(SNR)adaptive module is designed to adapt flexibly to diverse feedback channel conditions.Simulation results demonstrate that STPNet outperforms existing channel prediction methods under various channel conditions. 展开更多
关键词 massive MIMO deep learning CSI prediction CSI feedback
在线阅读 下载PDF
A review of intelligent technologies for underground construction and infrastructure maintenance 被引量:1
11
作者 Weiqiang Xie Wenzhao Meng Wei Wu 《Intelligent Geoengineering》 2025年第1期22-34,共13页
Scientific and technological advancements are rapidly transforming underground engineering,shifting from labor-intensive,time-consuming methods to automated,real-time systems.This timely and comprehensive review cover... Scientific and technological advancements are rapidly transforming underground engineering,shifting from labor-intensive,time-consuming methods to automated,real-time systems.This timely and comprehensive review covers in-situ testing,intelligent monitoring,and geophysical testing methods,highlighting fundamental principles,testing apparatuses,data processing techniques,and engineering applications.The state-of-the-art summary emphasizes not only cutting-edge innovations for complex and harsh environments but also the transformative role of artificial intelligence and machine learning in data interpretations.The integration of big data and advanced algorithms is particularly impactful,enabling the identification,prediction,and mitigation of potential risks in underground projects.Key aspects of the discussion include detection capabilities,method integration,and data convergence of intelligent technologies to drive enhanced safety,operational efficiency,and predictive reliability.The review also examines future trends in intelligent technologies,emphasizing unified platforms that combine multiple methods,real-time data,and predictive analytics.These advancements are shaping the evolution of underground construction and maintenance,aiming for risk-free,high-efficiency underground engineering. 展开更多
关键词 Underground construction Infrastructure maintenance In-situ testing Intelligent monitoring Geophysical investigation
在线阅读 下载PDF
Correlation between anxiety, depression, self-perceived burden, and psychological resilience in patients with chronic renal failure on maintenance hemodialysis 被引量:1
12
作者 Yin-Yin Ye Liang-Fei Tao +3 位作者 Yan-Lang Yang Yu-Wei Wang Xiao-Ming Yang Hai-Hong Xu 《World Journal of Psychiatry》 2025年第7期103-110,共8页
BACKGROUND Research examining the relationships among anxiety,depression,self-perceived burden(SPB),and psychological resilience(PR),along with the determinants of PR,in patients with chronic renal failure(CRF)receivi... BACKGROUND Research examining the relationships among anxiety,depression,self-perceived burden(SPB),and psychological resilience(PR),along with the determinants of PR,in patients with chronic renal failure(CRF)receiving maintenance hemodia-lysis(MHD)is limited.AIM To investigate the correlation between anxiety,depression,SPB,and PR in pati-ents with CRF on MHD.METHODS This study included 225 patients with CRF on MHD who were admitted between June 2021 and June 2024.The anxiety level was evaluated using the Self-Rating Anxiety Scale(SAS);the depression status was assessed using the Self-Rating Depression Scale(SDS);the SPB was measured using the SPB Scale(SPBS);and the PR was determined using the Connor–Davidson Resilience Scale(CD-RISC).The correlations among the SAS,SDS,SPB,and CD-RISC were analyzed using Pearson’s correlation coefficients.Univariate and multivariate analyses were performed to identify the factors that influence the PR of patients with CRF on MHD.RESULTS The SAS,SDS,SPB,and CD-RISC scores of the 225 patients were 45.25±15.36,54.81±14.68,32.31±11.52,and 66.48±9.18,respectively.Significant negative correlations were observed between SAS,SDS,SPB,and CD-RISC.Furthermore,longer dialysis vintage(P=0.015),the absence of religious beliefs(P=0.020),lower monthly income(P=0.008),higher SAS score(P=0.013),and higher SDS score(P=0.006)were all independent factors that adversely affected the PR of patients with CRF on MHD.CONCLUSION Patients with CRF on MHD present with varying degrees of anxiety,depression,and SPB,all of which exhibit a significant negative correlation with their PR.Moreover,longer dialysis vintage,the absence of religious beliefs,lower monthly income,higher SAS score,and higher SDS score were factors that negatively affected the PR of patients with CRF on MHD. 展开更多
关键词 Chronic renal failure maintenance hemodialysis ANXIETY DEPRESSION Self-perceived burden Psychological resilience
暂未订购
Development and validation of a predictive model for the pathological upgrading of gastric low-grade intraepithelial neoplasia 被引量:2
13
作者 Kun-Ming Lyu Qian-Qian Chen +4 位作者 Yi-Fan Xu Yao-Qian Yuan Jia-Feng Wang Jun Wan En-Qiang Ling-Hu 《World Journal of Gastroenterology》 2025年第11期63-73,共11页
BACKGROUND The discrepancy between endoscopic biopsy pathology and the overall pathology of gastric low-grade intraepithelial neoplasia(LGIN)presents challenges in developing diagnostic and treatment protocols.AIM To ... BACKGROUND The discrepancy between endoscopic biopsy pathology and the overall pathology of gastric low-grade intraepithelial neoplasia(LGIN)presents challenges in developing diagnostic and treatment protocols.AIM To develop a risk prediction model for the pathological upgrading of gastric LGIN to aid clinical diagnosis and treatment.METHODS We retrospectively analyzed data from patients newly diagnosed with gastric LGIN who underwent complete endoscopic resection within 6 months at the First Medical Center of Chinese People’s Liberation Army General Hospital between January 2008 and December 2023.A risk prediction model for the pathological progression of gastric LGIN was constructed and evaluated for accuracy and clinical applicability.RESULTS A total of 171 patients were included in this study:93 patients with high-grade intraepithelial neoplasia or early gastric cancer and 78 with LGIN.The logistic stepwise regression model demonstrated a sensitivity and specificity of 0.868 and 0.800,respectively,while the least absolute shrinkage and selection operator(LASSO)regression model showed sensitivity and specificity values of 0.842 and 0.840,respectively.The area under the curve(AUC)for the logistic model was 0.896,slightly lower than the AUC of 0.904 for the LASSO model.Internal validation with 30%of the data yielded AUC scores of 0.908 for the logistic model and 0.905 for the LASSO model.The LASSO model provided greater utility in clinical decision-making.CONCLUSION A risk prediction model for the pathological upgrading of gastric LGIN based on white-light and magnifying endoscopic features can accurately and effectively guide clinical diagnosis and treatment. 展开更多
关键词 Endoscopic resection Gastric low-grade intraepithelial neoplasia Early gastric cancer Pathological upgrade Prediction model
暂未订购
Constrained Networked Predictive Control for Nonlinear Systems Using a High-Order Fully Actuated System Approach 被引量:1
14
作者 Yi Huang Guo-Ping Liu +1 位作者 Yi Yu Wenshan Hu 《IEEE/CAA Journal of Automatica Sinica》 2025年第2期478-480,共3页
Dear Editor,In this letter,a constrained networked predictive control strategy is proposed for the optimal control problem of complex nonlinear highorder fully actuated(HOFA)systems with noises.The method can effectiv... Dear Editor,In this letter,a constrained networked predictive control strategy is proposed for the optimal control problem of complex nonlinear highorder fully actuated(HOFA)systems with noises.The method can effectively deal with nonlinearities,constraints,and noises in the system,optimize the performance metric,and present an upper bound on the stable output of the system. 展开更多
关键词 optimal control problem constrained networked predictive control strategy Performance Optimization present upper bound Nonlinear Systems NOISES Constrained Networked predictive Control High Order Fully Actuated Systems
在线阅读 下载PDF
Predictive value of magnetic resonance imaging parameters combined with tumor markers for rectal cancer recurrence risk after surgery 被引量:1
15
作者 Lei Wu Jing-Jie Zhu +2 位作者 Xiao-Han Liang He Tong Yan Song 《World Journal of Gastrointestinal Surgery》 2025年第2期161-172,共12页
BACKGROUND An increasing number of studies to date have found preoperative magnetic resonance imaging(MRI)features valuable in predicting the prognosis of rectal cancer(RC).However,research is still lacking on the cor... BACKGROUND An increasing number of studies to date have found preoperative magnetic resonance imaging(MRI)features valuable in predicting the prognosis of rectal cancer(RC).However,research is still lacking on the correlation between preoperative MRI features and the risk of recurrence after radical resection of RC,urgently necessitating further in-depth exploration.AIM To investigate the correlation between preoperative MRI parameters and the risk of recurrence after radical resection of RC to provide an effective tool for predicting postoperative recurrence.METHODS The data of 90 patients who were diagnosed with RC by surgical pathology and underwent radical surgical resection at the Second Affiliated Hospital of Bengbu Medical University between May 2020 and December 2023 were collected through retrospective analysis.General demographic data,MRI data,and tumor markers levels were collected.According to the reviewed data of patients six months after surgery,the clinicians comprehensively assessed the recurrence risk and divided the patients into high recurrence risk(37 cases)and low recurrence risk(53 cases)groups.Independent sample t-test andχ2 test were used to analyze differences between the two groups.A logistic regression model was used to explore the risk factors of the high recurrence risk group,and a clinical prediction model was constructed.The clinical prediction model is presented in the form of a nomogram.The receiver operating characteristic curve,Hosmer-Lemeshow goodness of fit test,calibration curve,and decision curve analysis were used to evaluate the efficacy of the clinical prediction model.RESULTS The detection of positive extramural vascular invasion through preoperative MRI[odds ratio(OR)=4.29,P=0.045],along with elevated carcinoembryonic antigen(OR=1.08,P=0.041),carbohydrate antigen 125(OR=1.19,P=0.034),and carbohydrate antigen 199(OR=1.27,P<0.001)levels,are independent risk factors for increased postoperative recurrence risk in patients with RC.Furthermore,there was a correlation between magnetic resonance based T staging,magnetic resonance based N staging,and circumferential resection margin results determined by MRI and the postoperative recurrence risk.Additionally,when extramural vascular invasion was integrated with tumor markers,the resulting clinical prediction model more effectively identified patients at high risk for postoperative recurrence,thereby providing robust support for clinical decision-making.CONCLUSION The results of this study indicate that preoperative MRI detection is of great importance for predicting the risk of postoperative recurrence in patients with RC.Monitoring these markers helps clinicians identify patients at high risk,allowing for more aggressive treatment and monitoring strategies to improve patient outcomes. 展开更多
关键词 Rectal cancer Magnetic resonance imaging RECURRENCE Prediction model Tumor markers
暂未订购
Composite anti-disturbance predictive control of unmanned systems with time-delay using multi-dimensional Taylor network 被引量:1
16
作者 Chenlong LI Wenshuo LI Zejun ZHANG 《Chinese Journal of Aeronautics》 2025年第7期589-600,共12页
A composite anti-disturbance predictive control strategy employing a Multi-dimensional Taylor Network(MTN)is presented for unmanned systems subject to time-delay and multi-source disturbances.First,the multi-source di... A composite anti-disturbance predictive control strategy employing a Multi-dimensional Taylor Network(MTN)is presented for unmanned systems subject to time-delay and multi-source disturbances.First,the multi-source disturbances are addressed according to their specific characteristics as follows:(A)an MTN data-driven model,which is used for uncertainty description,is designed accompanied with the mechanism model to represent the unmanned systems;(B)an adaptive MTN filter is used to remove the influence of the internal disturbance;(C)an MTN disturbance observer is constructed to estimate and compensate for the influence of the external disturbance;(D)the Extended Kalman Filter(EKF)algorithm is utilized as the learning mechanism for MTNs.Second,to address the time-delay effect,a recursiveτstep-ahead MTN predictive model is designed utilizing recursive technology,aiming to mitigate the impact of time-delay,and the EKF algorithm is employed as its learning mechanism.Then,the MTN predictive control law is designed based on the quadratic performance index.By implementing the proposed composite controller to unmanned systems,simultaneous feedforward compensation and feedback suppression to the multi-source disturbances are conducted.Finally,the convergence of the MTN and the stability of the closed-loop system are established utilizing the Lyapunov theorem.Two exemplary applications of unmanned systems involving unmanned vehicle and rigid spacecraft are presented to validate the effectiveness of the proposed approach. 展开更多
关键词 Multi-dimensional Taylor network Composite anti-disturbance predictive control Unmanned systems Multi-source disturbances TIME-DELAY
原文传递
Construction and evaluation of a predictive model for the degree of coronary artery occlusion based on adaptive weighted multi-modal fusion of traditional Chinese and western medicine data 被引量:1
17
作者 Jiyu ZHANG Jiatuo XU +1 位作者 Liping TU Hongyuan FU 《Digital Chinese Medicine》 2025年第2期163-173,共11页
Objective To develop a non-invasive predictive model for coronary artery stenosis severity based on adaptive multi-modal integration of traditional Chinese and western medicine data.Methods Clinical indicators,echocar... Objective To develop a non-invasive predictive model for coronary artery stenosis severity based on adaptive multi-modal integration of traditional Chinese and western medicine data.Methods Clinical indicators,echocardiographic data,traditional Chinese medicine(TCM)tongue manifestations,and facial features were collected from patients who underwent coro-nary computed tomography angiography(CTA)in the Cardiac Care Unit(CCU)of Shanghai Tenth People's Hospital between May 1,2023 and May 1,2024.An adaptive weighted multi-modal data fusion(AWMDF)model based on deep learning was constructed to predict the severity of coronary artery stenosis.The model was evaluated using metrics including accura-cy,precision,recall,F1 score,and the area under the receiver operating characteristic(ROC)curve(AUC).Further performance assessment was conducted through comparisons with six ensemble machine learning methods,data ablation,model component ablation,and various decision-level fusion strategies.Results A total of 158 patients were included in the study.The AWMDF model achieved ex-cellent predictive performance(AUC=0.973,accuracy=0.937,precision=0.937,recall=0.929,and F1 score=0.933).Compared with model ablation,data ablation experiments,and various traditional machine learning models,the AWMDF model demonstrated superior per-formance.Moreover,the adaptive weighting strategy outperformed alternative approaches,including simple weighting,averaging,voting,and fixed-weight schemes.Conclusion The AWMDF model demonstrates potential clinical value in the non-invasive prediction of coronary artery disease and could serve as a tool for clinical decision support. 展开更多
关键词 Coronary artery disease Deep learning MULTI-MODAL Clinical prediction Traditional Chinese medicine diagnosis
暂未订购
Fault-observer-based iterative learning model predictive controller for trajectory tracking of hypersonic vehicles 被引量:2
18
作者 CUI Peng GAO Changsheng AN Ruoming 《Journal of Systems Engineering and Electronics》 2025年第3期803-813,共11页
This work proposes the application of an iterative learning model predictive control(ILMPC)approach based on an adaptive fault observer(FOBILMPC)for fault-tolerant control and trajectory tracking in air-breathing hype... This work proposes the application of an iterative learning model predictive control(ILMPC)approach based on an adaptive fault observer(FOBILMPC)for fault-tolerant control and trajectory tracking in air-breathing hypersonic vehicles.In order to increase the control amount,this online control legislation makes use of model predictive control(MPC)that is based on the concept of iterative learning control(ILC).By using offline data to decrease the linearized model’s faults,the strategy may effectively increase the robustness of the control system and guarantee that disturbances can be suppressed.An adaptive fault observer is created based on the suggested ILMPC approach in order to enhance overall fault tolerance by estimating and compensating for actuator disturbance and fault degree.During the derivation process,a linearized model of longitudinal dynamics is established.The suggested ILMPC approach is likely to be used in the design of hypersonic vehicle control systems since numerical simulations have demonstrated that it can decrease tracking error and speed up convergence when compared to the offline controller. 展开更多
关键词 hypersonic vehicle actuator fault tracking control iterative learning control(ILC) model predictive control(MPC) fault observer
在线阅读 下载PDF
Modeling and control of automatic voltage regulation for a hydropower plant using advanced model predictive control 被引量:1
19
作者 Ebunle Akupan Rene Willy Stephen Tounsi Fokui 《Global Energy Interconnection》 2025年第2期269-285,共17页
Fluctuating voltage levels in power grids necessitate automatic voltage regulators(AVRs)to ensure stability.This study examined the modeling and control of AVR in hydroelectric power plants using model predictive cont... Fluctuating voltage levels in power grids necessitate automatic voltage regulators(AVRs)to ensure stability.This study examined the modeling and control of AVR in hydroelectric power plants using model predictive control(MPC),which utilizes an extensive mathe-matical model of the voltage regulation system to optimize the control actions over a defined prediction horizon.This predictive feature enables MPC to minimize voltage deviations while accounting for operational constraints,thereby improving stability and performance under dynamic conditions.Thefindings were compared with those derived from an optimal proportional integral derivative(PID)con-troller designed using the artificial bee colony(ABC)algorithm.Although the ABC-PID method adjusts the PID parameters based on historical data,it may be difficult to adapt to real-time changes in system dynamics under constraints.Comprehensive simulations assessed both frameworks,emphasizing performance metrics such as disturbance rejection,response to load changes,and resilience to uncertainties.The results show that both MPC and ABC-PID methods effectively achieved accurate voltage regulation;however,MPC excelled in controlling overshoot and settling time—recording 0.0%and 0.25 s,respectively.This demonstrates greater robustness compared to conventional control methods that optimize PID parameters based on performance criteria derived from actual system behavior,which exhibited settling times and overshoots exceeding 0.41 s and 5.0%,respectively.The controllers were implemented using MATLAB/Simulink software,indicating a significant advancement for power plant engineers pursuing state-of-the-art automatic voltage regulations. 展开更多
关键词 Automatic voltage regulation Artificial bee colony Evolutionary techniques Model predictive control PID controller HYDROPOWER
在线阅读 下载PDF
Development of Aircraft Maintenance Glossaries in Higher Education:Exploring Methodological Paths to Corpus-Driven Analysis of Key Keywords
20
作者 Malila PRADO Daniela TERENZI Diego BRITO 《中国科技术语》 2025年第1期83-93,共11页
This paper presents a project aimed at developing a trilingual visual dictionary for aircraft maintenance professionals and students.The project addresses the growing demand for accurate communication and technical te... This paper presents a project aimed at developing a trilingual visual dictionary for aircraft maintenance professionals and students.The project addresses the growing demand for accurate communication and technical terminology in the aviation industry,particularly in Brazil and China.The study employs a corpus-driven approach,analyzing a large corpus of aircraft maintenance manuals to extract key technical terms and their collocates.Using specialized subcorpora and a comparative analysis,this paper demonstrates challenges and solutions into the identification of high-frequency keywords and explores their contextual use in aviation documentation,emphasizing the need for clear and accurate technical communication.By incorporating these findings into a trilingual visual dictionary,the project aims to enhance the understanding and usage of aviation terminology. 展开更多
关键词 aircraft maintenance CORPUS keyword extraction
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部