期刊文献+
共找到225,842篇文章
< 1 2 250 >
每页显示 20 50 100
Hierarchical framework for predictive maintenance of coking risk in fluid catalytic cracking units:A data and knowledge-driven method
1
作者 Nan Liu Chunmeng Zhu +3 位作者 Zeng Li Yunpeng Zhao Xiaogang Shi Xingying Lan 《Chinese Journal of Chemical Engineering》 2025年第8期35-46,共12页
The fractionating tower bottom in fluid catalytic cracking Unit (FCCU) is highly susceptible to coking due to the interplay of complex external operating conditions and internal physical properties. Consequently, quan... The fractionating tower bottom in fluid catalytic cracking Unit (FCCU) is highly susceptible to coking due to the interplay of complex external operating conditions and internal physical properties. Consequently, quantitative risk assessment (QRA) and predictive maintenance (PdM) are essential to effectively manage coking risks influenced by multiple factors. However, the inherent uncertainties of the coking process, combined with the mixed-frequency nature of distributed control systems (DCS) and laboratory information management systems (LIMS) data, present significant challenges for the application of data-driven methods and their practical implementation in industrial environments. This study proposes a hierarchical framework that integrates deep learning and fuzzy logic inference, leveraging data and domain knowledge to monitor the coking condition and inform prescriptive maintenance planning. The framework proposes the multi-layer fuzzy inference system to construct the coking risk index, utilizes multi-label methods to select the optimal feature dataset across the reactor-regenerator and fractionation system using coking risk factors as label space, and designs the parallel encoder-integrated decoder architecture to address mixed-frequency data disparities and enhance adaptation capabilities through extracting the operation state and physical properties information. Additionally, triple attention mechanisms, whether in parallel or temporal modules, adaptively aggregate input information and enhance intrinsic interpretability to support the disposal decision-making. Applied in the 2.8 million tons FCCU under long-period complex operating conditions, enabling precise coking risk management at the fractionating tower bottom. 展开更多
关键词 PETROLEUM Mixed-frequency data COKING Risk index Neural networks predictive maintenance
在线阅读 下载PDF
Research Progress in Predictive Maintenance of Offshore Platform Structures Based on Digital Twin Technology
2
作者 Jincheng Sha Jiancheng Leng +2 位作者 Houbin Mao Jinyuan Pei Kaixin Diao 《哈尔滨工程大学学报(英文版)》 2025年第5期877-899,共23页
Offshore platforms are large,complex structures designed for long-term service,and they are characterized by high risk and significant investment.Ensuring the safety and reliability of in-service offshore platforms re... Offshore platforms are large,complex structures designed for long-term service,and they are characterized by high risk and significant investment.Ensuring the safety and reliability of in-service offshore platforms requires intelligent operation and maintenance strategies.Digital twin technology can enable the accurate description and prediction of changes in the platform’s physical state through real-time monitoring data.This technology is expected to revolutionize the maintenance of existing offshore platform structures.A digital twin system is proposed for real-time assessment of structural health,prediction of residual life,formulation of maintenance plans,and extension of service life through predictive maintenance.The system integrates physical entities,digital models,intelligent predictive maintenance tools,a visualization platform,and interconnected modules to provide a comprehensive and efficient maintenance framework.This paper examines the current development status of core technologies in physical entity monitoring,digital model construction,and intelligent predictive maintenance.It also outlines future directions for the advancement of these technologies within the digital twin system,offering technical insights and practical references to support further research and applications of digital twin technology in offshore platform structures. 展开更多
关键词 Offshore platform Digital twin Physical entity monitoring Digital model construction predictive maintenance
在线阅读 下载PDF
An Explainable Autoencoder-Based Feature Extraction Combined with CNN-LSTM-PSO Model for Improved Predictive Maintenance
3
作者 Ishaani Priyadarshini 《Computers, Materials & Continua》 2025年第4期635-659,共25页
Predictive maintenance plays a crucial role in preventing equipment failures and minimizing operational downtime in modern industries.However,traditional predictive maintenance methods often face challenges in adaptin... Predictive maintenance plays a crucial role in preventing equipment failures and minimizing operational downtime in modern industries.However,traditional predictive maintenance methods often face challenges in adapting to diverse industrial environments and ensuring the transparency and fairness of their predictions.This paper presents a novel predictive maintenance framework that integrates deep learning and optimization techniques while addressing key ethical considerations,such as transparency,fairness,and explainability,in artificial intelligence driven decision-making.The framework employs an Autoencoder for feature reduction,a Convolutional Neural Network for pattern recognition,and a Long Short-Term Memory network for temporal analysis.To enhance transparency,the decision-making process of the framework is made interpretable,allowing stakeholders to understand and trust the model’s predictions.Additionally,Particle Swarm Optimization is used to refine hyperparameters for optimal performance and mitigate potential biases in the model.Experiments are conducted on multiple datasets from different industrial scenarios,with performance validated using accuracy,precision,recall,F1-score,and training time metrics.The results demonstrate an impressive accuracy of up to 99.92%and 99.45%across different datasets,highlighting the framework’s effectiveness in enhancing predictive maintenance strategies.Furthermore,the model’s explainability ensures that the decisions can be audited for fairness and accountability,aligning with ethical standards for critical systems.By addressing transparency and reducing potential biases,this framework contributes to the responsible and trustworthy deployment of artificial intelligence in industrial environments,particularly in safety-critical applications.The results underscore its potential for wide application across various industrial contexts,enhancing both performance and ethical decision-making. 展开更多
关键词 Explainability feature reduction predictive maintenance OPTIMIZATION
在线阅读 下载PDF
Making Predictive Maintenance a Reality
4
作者 Subash Senthil Mohanvel 《Intelligent Control and Automation》 2025年第1期1-18,共18页
While Artificial Intelligence (AI) is leading the way in terms of hardware advancements, such as GPUs, memory, and processing power, real-time applications are still catching up. It is inevitable that when one aspect ... While Artificial Intelligence (AI) is leading the way in terms of hardware advancements, such as GPUs, memory, and processing power, real-time applications are still catching up. It is inevitable that when one aspect leads and other trails behind, they coexist in life, as is often the case. The trailing aspect cannot remain far behind because, without application and use, there would be a dead end. Everything, whether an object, software, or tool, must have a practical use for humans. Without this, it will become obsolete. We can see this in many instances, such as blockchain technology, which is superior yet faces challenges in practical implementation, leading to a decline in adoption. This publication aims to bridge the gap between AI advancements and maintenance, specifically focusing on making predictive maintenance a practical application. There are multiple building blocks that make predictive maintenance a practical application. Each block performs a function leading to an output. This output forms an input to the receiving block. There are also foundational parts for all these building blocks to perform a function. Eventually, once the building blocks are connected, they form a loop and start to lead the path to predictive maintenance. Predictive maintenance is indeed practically achievable, but one must comprehend all the building blocks necessary for its implementation. Although detailed explanations will be provided in the upcoming sections, it is important to understand that simply purchasing software and plugging it in might be a far-fetched approach. 展开更多
关键词 predictive predictive maintenance How to Achieve predictive maintenance
在线阅读 下载PDF
Leveraging Safe and Secure AI for Predictive Maintenance of Mechanical Devices Using Incremental Learning and Drift Detection
5
作者 Prashanth B.S Manoj Kumar M.V. +1 位作者 Nasser Almuraqab Puneetha B.H 《Computers, Materials & Continua》 2025年第6期4979-4998,共20页
Ever since the research in machine learning gained traction in recent years,it has been employed to address challenges in a wide variety of domains,including mechanical devices.Most of the machine learning models are ... Ever since the research in machine learning gained traction in recent years,it has been employed to address challenges in a wide variety of domains,including mechanical devices.Most of the machine learning models are built on the assumption of a static learning environment,but in practical situations,the data generated by the process is dynamic.This evolution of the data is termed concept drift.This research paper presents an approach for predictingmechanical failure in real-time using incremental learning based on the statistically calculated parameters of mechanical equipment.The method proposed here is applicable to allmechanical devices that are susceptible to failure or operational degradation.The proposed method in this paper is equipped with the capacity to detect the drift in data generation and adaptation.The proposed approach evaluates the machine learning and deep learning models for their efficacy in handling the errors related to industrial machines due to their dynamic nature.It is observed that,in the settings without concept drift in the data,methods like SVM and Random Forest performed better compared to deep neural networks.However,this resulted in poor sensitivity for the smallest drift in the machine data reported as a drift.In this perspective,DNN generated the stable drift detection method;it reported an accuracy of 84%and an AUC of 0.87 while detecting only a single drift point,indicating the stability to performbetter in detecting and adapting to new data in the drifting environments under industrial measurement settings. 展开更多
关键词 Incremental learning drift detection real-time failure prediction deep neural network proactive machine health monitoring
在线阅读 下载PDF
A Predictive Model for the Elastic Modulus of High-Strength Concrete Based on Coarse Aggregate Characteristics
6
作者 LI Liangshun LI Huajian +2 位作者 HUANG Fali YANG Zhiqiang DONG Haoliang 《Journal of Wuhan University of Technology(Materials Science)》 2026年第1期121-137,共17页
To investigate the influence of coarse aggregate parent rock properties on the elastic modulus of concrete,the mineralogical properties and stress-strain curves of granite and dolomite parent rocks,as well as the stre... To investigate the influence of coarse aggregate parent rock properties on the elastic modulus of concrete,the mineralogical properties and stress-strain curves of granite and dolomite parent rocks,as well as the strength and elastic modulus of mortar and concrete prepared with mechanism aggregates of the corresponding lithology,and the stress-strain curves of concrete were investigated.In this paper,a coarse aggregate and mortar matrix bonding assumption is proposed,and a prediction model for the elastic modulus of mortar is established by considering the lithology of the mechanism sand and the slurry components.An equivalent coarse aggregate elastic modulus model was established by considering factors such as coarse aggregate particle size,volume fraction,and mortar thickness between coarse aggregates.Based on the elastic modulus of the equivalent coarse aggregate and the remaining mortar,a prediction model for the elastic modulus of the two and three components of concrete in series and then in parallel was established,and the predicted values differed from the measured values within 10%.It is proposed that the coarse aggregate elastic modulus in highstrength concrete is the most critical factor affecting the elastic modulus of concrete,and as the coarse aggregate elastic modulus increases by 27.7%,the concrete elastic modulus increases by 19.5%. 展开更多
关键词 elastic modulus prediction model MINERALOGICAL influence mechanism
原文传递
An Integrated Approach to Condition-Based Maintenance Decision-Making of Planetary Gearboxes: Combining Temporal Convolutional Network Auto Encoders with Wiener Process
7
作者 Bo Zhu Enzhi Dong +3 位作者 Zhonghua Cheng Xianbiao Zhan Kexin Jiang Rongcai Wang 《Computers, Materials & Continua》 2026年第1期661-686,共26页
With the increasing complexity of industrial automation,planetary gearboxes play a vital role in largescale equipment transmission systems,directly impacting operational efficiency and safety.Traditional maintenance s... With the increasing complexity of industrial automation,planetary gearboxes play a vital role in largescale equipment transmission systems,directly impacting operational efficiency and safety.Traditional maintenance strategies often struggle to accurately predict the degradation process of equipment,leading to excessive maintenance costs or potential failure risks.However,existing prediction methods based on statistical models are difficult to adapt to nonlinear degradation processes.To address these challenges,this study proposes a novel condition-based maintenance framework for planetary gearboxes.A comprehensive full-lifecycle degradation experiment was conducted to collect raw vibration signals,which were then processed using a temporal convolutional network autoencoder with multi-scale perception capability to extract deep temporal degradation features,enabling the collaborative extraction of longperiod meshing frequencies and short-term impact features from the vibration signals.Kernel principal component analysis was employed to fuse and normalize these features,enhancing the characterization of degradation progression.A nonlinear Wiener process was used to model the degradation trajectory,with a threshold decay function introduced to dynamically adjust maintenance strategies,and model parameters optimized through maximum likelihood estimation.Meanwhile,the maintenance strategy was optimized to minimize costs per unit time,determining the optimal maintenance timing and preventive maintenance threshold.The comprehensive indicator of degradation trends extracted by this method reaches 0.756,which is 41.2%higher than that of traditional time-domain features;the dynamic threshold strategy reduces the maintenance cost per unit time to 55.56,which is 8.9%better than that of the static threshold optimization.Experimental results demonstrate significant reductions in maintenance costs while enhancing system reliability and safety.This study realizes the organic integration of deep learning and reliability theory in the maintenance of planetary gearboxes,provides an interpretable solution for the predictive maintenance of complex mechanical systems,and promotes the development of condition-based maintenance strategies for planetary gearboxes. 展开更多
关键词 Temporal convolutional network autoencoder full lifecycle degradation experiment nonlinear Wiener process condition-based maintenance decision-making fault monitoring
在线阅读 下载PDF
Hybrid AI-IoT Framework with Digital Twin Integration for Predictive Urban Infrastructure Management in Smart Cities
8
作者 Abdullah Alourani Mehtab Alam +2 位作者 Ashraf Ali Ihtiram Raza Khan Chandra Kanta Samal 《Computers, Materials & Continua》 2026年第1期462-493,共32页
The evolution of cities into digitally managed environments requires computational systems that can operate in real time while supporting predictive and adaptive infrastructure management.Earlier approaches have often... The evolution of cities into digitally managed environments requires computational systems that can operate in real time while supporting predictive and adaptive infrastructure management.Earlier approaches have often advanced one dimension—such as Internet of Things(IoT)-based data acquisition,Artificial Intelligence(AI)-driven analytics,or digital twin visualization—without fully integrating these strands into a single operational loop.As a result,many existing solutions encounter bottlenecks in responsiveness,interoperability,and scalability,while also leaving concerns about data privacy unresolved.This research introduces a hybrid AI–IoT–Digital Twin framework that combines continuous sensing,distributed intelligence,and simulation-based decision support.The design incorporates multi-source sensor data,lightweight edge inference through Convolutional Neural Networks(CNN)and Long ShortTerm Memory(LSTM)models,and federated learning enhanced with secure aggregation and differential privacy to maintain confidentiality.A digital twin layer extends these capabilities by simulating city assets such as traffic flows and water networks,generating what-if scenarios,and issuing actionable control signals.Complementary modules,including model compression and synchronization protocols,are embedded to ensure reliability in bandwidth-constrained and heterogeneous urban environments.The framework is validated in two urban domains:traffic management,where it adapts signal cycles based on real-time congestion patterns,and pipeline monitoring,where it anticipates leaks through pressure and vibration data.Experimental results show a 28%reduction in response time,a 35%decrease in maintenance costs,and a marked reduction in false positives relative to conventional baselines.The architecture also demonstrates stability across 50+edge devices under federated training and resilience to uneven node participation.The proposed system provides a scalable and privacy-aware foundation for predictive urban infrastructure management.By closing the loop between sensing,learning,and control,it reduces operator dependence,enhances resource efficiency,and supports transparent governance models for emerging smart cities. 展开更多
关键词 Smart cities digital twin AI-IOT framework predictive infrastructure management edge computing reinforcement learning optimization methods federated learning urban systems modeling smart governance
在线阅读 下载PDF
Aircraft air conditioning system health state estimation and prediction for predictive maintenance 被引量:9
9
作者 Jianzhong SUN Fangyuan WANG Shungang NING 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2020年第3期947-955,共9页
The vast potential of system health monitoring and condition based maintenance on modern commercial aircraft is being realized through the innovative use of Airplane Condition Monitoring System(ACMS) data.However ther... The vast potential of system health monitoring and condition based maintenance on modern commercial aircraft is being realized through the innovative use of Airplane Condition Monitoring System(ACMS) data.However there are few methods addressing the issues of failure prognostics and predictive maintenance for commercial aircraft Air Conditioning System(ACS).This study developed a Bayesian failure prognostics approach using ACMS data for predictive maintenance of ACS.First, a health index characterizing the ACS health state is inferred from a multiple sensor signals using a data driven method.Then a dynamic linear model is proposed to describe the degradation process for failure prognostics.Bayesian inference formulas are carried out for degradation estimation and prediction.The developed approach is applied on a passenger aircraft fleet with ACMS data recorded for one year.The analysis of the case study shows that the developed method can produce satisfactory prognostics results, where all the ACS failure precursors are identified in advance, and the relative errors for the failure time prediction made when just entering the degradation warning stage are less than 8%.This would allow operators to proactively plan future maintenance. 展开更多
关键词 Aircraft air conditioning system Bayesian method Failure prognostics Health index predictive maintenance
原文传递
Reliability-based Maintenance Optimization under Imperfect Predictive Maintenance 被引量:6
10
作者 LI Changyou ZHANG Yimin XU Minqiang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2012年第1期160-165,共6页
The reliability-based maintenance optimization model has been focused by the engineers and scholars but it has never been solved effectively to formulate the effect of a maintenance action on the optimization model. I... The reliability-based maintenance optimization model has been focused by the engineers and scholars but it has never been solved effectively to formulate the effect of a maintenance action on the optimization model. In existing works, the system reliability was assumed to be increased to 1 after a predictive maintenance. However, it is very difficult in the most practical systems. Therefore, a new reliability-based maintenance optimization model under imperfect predictive maintenance (PM) is proposed in this paper. In the model, the system reliability is only restored to R i (0<R i <1, i∈N, N is natural number set) after the ith PM. The system uptimes and the corresponding probability in two cases whether there is an unexpected fault in one cycle are derived respectively and the system expected uptime model is given. To formulate the system expected downtime, the probability of each imperfect PM number in one cycle is calculated. Then, the system expected total time model is obtained. The total expected long-term operation cost is composed of the expected maintenance cost, the expected loss due to the downtime and the expected additional cost due to the occurrence of an unexpected failure. They are modeled respectively in this work. Jointing the system expected total time and long-term operation cost in one cycle, the expected long-term operation cost per time could be computed. Then, the proposed maintenance optimization model is formulated where the objective function is to minimize the expected long-term operation cost per time. The results of numerical example show that the proposed model could scheme the optimal maintenance actions for the considered system when the required parameters are given and the optimal solution of the proposed model is sensitive to the parameters of effective age model and insensitive to other parameters. The proposed model effectively solves the problem of evaluating the effect of an imperfect PM on the system reliability and presents a more practical optimization method for the reliability-based maintenance strategy than the existing works. 展开更多
关键词 imperfect predictive maintenance RELIABILITY maintenance optimization COST
在线阅读 下载PDF
A Risk-Averse Remaining Useful Life Estimation for Predictive Maintenance 被引量:7
11
作者 Chuang Chen Ningyun Lu +1 位作者 Bin Jiang Cunsong Wang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2021年第2期412-422,共11页
Remaining useful life(RUL)prediction is an advanced technique for system maintenance scheduling.Most of existing RUL prediction methods are only interested in the precision of RUL estimation;the adverse impact of over... Remaining useful life(RUL)prediction is an advanced technique for system maintenance scheduling.Most of existing RUL prediction methods are only interested in the precision of RUL estimation;the adverse impact of overestimated RUL on maintenance scheduling is not of concern.In this work,an RUL estimation method with risk-averse adaptation is developed which can reduce the over-estimation rate while maintaining a reasonable under-estimation level.The proposed method includes a module of degradation feature selection to obtain crucial features which reflect system degradation trends.Then,the latent structure between the degradation features and the RUL labels is modeled by a support vector regression(SVR)model and a long short-term memory(LSTM)network,respectively.To enhance the prediction robustness and increase its marginal utility,the SVR model and the LSTM model are integrated to generate a hybrid model via three connection parameters.By designing a cost function with penalty mechanism,the three parameters are determined using a modified grey wolf optimization algorithm.In addition,a cost metric is proposed to measure the benefit of such a risk-averse predictive maintenance method.Verification is done using an aero-engine data set from NASA.The results show the feasibility and effectiveness of the proposed RUL estimation method and the predictive maintenance strategy. 展开更多
关键词 Long short-term memory(LSTM)network predictive maintenance remaining useful life(RUL)estimation risk-averse adaptation support vector regression(SVR)
在线阅读 下载PDF
Predictive maintenance and its applications in civil engineering structures:A review 被引量:5
12
作者 Shan Jiazeng Zhang Xi +2 位作者 Loong Cheng Ning Liu Yanzhe Hu Xinyue 《Journal of Southeast University(English Edition)》 EI CAS 2024年第3期245-256,共12页
Structural health monitoring and performance prediction are crucial for smart disaster mitigation and intelligent management of structures throughout their lifespan.Recent advancements in predictive maintenance strate... Structural health monitoring and performance prediction are crucial for smart disaster mitigation and intelligent management of structures throughout their lifespan.Recent advancements in predictive maintenance strategies within the industrial manufacturing industry have inspired similar innovations in civil engineering,aiming to improve structural performance evaluation,damage diagnosis,and capacity prediction.This review delves into the framework of predictive maintenance and examines various existing solutions,focusing on critical areas such as data acquisition,condition monitoring,damage prognosis,and maintenance planning.Results from real-world applications of predictive maintenance in civil engineering,covering high-rise structures,deep foundation pits,and other infrastructure,are presented.The challenges of implementing predictive maintenance in civil engineering structures under current technology,such as model interpretability of data-driven methods and standards for predictive maintenance,are explored.Future research prospects within this area are also discussed. 展开更多
关键词 predictive maintenance civil engineering structural health monitoring machine learning
在线阅读 下载PDF
Data-Driven Predictive Maintenance Approach for Spinning Cyber-Physical Production System 被引量:2
13
作者 FAROOQ Basit BAO Jinsong +2 位作者 LI Jie LIU Tianyuan YIN Shiyong 《Journal of Shanghai Jiaotong university(Science)》 EI 2020年第4期453-462,共10页
The fundamental process of predictive maintenance is prognostics and health management,and it is the tool resulting in the development of many algorithms to predict the remaining useful life of industrial equipment.A ... The fundamental process of predictive maintenance is prognostics and health management,and it is the tool resulting in the development of many algorithms to predict the remaining useful life of industrial equipment.A new data-driven predictive maintenance and an architectural impulse,based on a regularized deep neural network using predictive analytics,are proposed successfully for ring spinning technology.The paradigm shift in computational infrastructures enormously puts pressure on large-scale linear and non-linear automated assembly systems to eliminate and cut down unscheduled downtime and unexpected stoppages.The sensor network designed for the scheduling process comprises different critical components of the same spinning machine frames containing more than thousands of spindles attached to them.We established a genetic algorithm based on multi-sensor performance assessment and prediction procedure for the spinning system.Results show that it operates with a relatively less amount of training data sets but takes advantage of larger volumes of data.This integrated system aims to prognosticate abnormalities,disturbances,and failures by providing condition-based monitoring for each component,which makes it more accurate to locate the defined component failures in the current spinning spindles by using smart agents during the operations through the neural sensing network.A case study has provided to demonstrate the feasibility of the proposed predictive model for highly dynamic,high-speed textile spinning system through real-time data sensing and signal processing via the industrial Internet of Things. 展开更多
关键词 predictive maintenance prognostics and health management smart spinning manufacturing cyberphysical production system
原文传递
A cost driven predictive maintenance policy for structural airframe maintenance 被引量:4
14
作者 Yiwei WANG Christian GOGU +3 位作者 Nicolas BINAUD Christian BES Raphael T.HAFTKA Nam H.KIM 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2017年第3期1242-1257,共16页
Airframe maintenance is traditionally performed at scheduled maintenance stops.The decision to repair a fuselage panel is based on a fixed crack size threshold,which allows to ensure the aircraft safety until the next... Airframe maintenance is traditionally performed at scheduled maintenance stops.The decision to repair a fuselage panel is based on a fixed crack size threshold,which allows to ensure the aircraft safety until the next scheduled maintenance stop.With progress in sensor technology and data processing techniques,structural health monitoring(SHM) systems are increasingly being considered in the aviation industry.SHM systems track the aircraft health state continuously,leading to the possibility of planning maintenance based on an actual state of aircraft rather than on a fixed schedule.This paper builds upon a model-based prognostics framework that the authors developed in their previous work,which couples the Extended Kalman filter(EKF) with a firstorder perturbation(FOP) method.By using the information given by this prognostics method,a novel cost driven predictive maintenance(CDPM) policy is proposed,which ensures the aircraft safety while minimizing the maintenance cost.The proposed policy is formally derived based on the trade-off between probabilities of occurrence of scheduled and unscheduled maintenance.A numerical case study simulating the maintenance process of an entire fleet of aircrafts is implemented.Under the condition of assuring the same safety level,the CDPM is compared in terms of cost with two other maintenance policies:scheduled maintenance and threshold based SHM maintenance.The comparison results show CDPM could lead to significant cost savings. 展开更多
关键词 Extended Kalman filter First-order perturbation method Model-based prognostic predictive maintenance Structural airframe maintenance
原文传递
An Efficient IIoT-Based Smart Sensor Node for Predictive Maintenance of Induction Motors
15
作者 Majida Kazmi Maria Tabasum Shoaib +2 位作者 Arshad Aziz Hashim Raza Khan Saad Ahmed Qazi 《Computer Systems Science & Engineering》 SCIE EI 2023年第10期255-272,共18页
Predictive maintenance is a vital aspect of the industrial sector,and the use of Industrial Internet of Things(IIoT)sensor nodes is becoming increasingly popular for detecting motor faults and monitoring motor conditi... Predictive maintenance is a vital aspect of the industrial sector,and the use of Industrial Internet of Things(IIoT)sensor nodes is becoming increasingly popular for detecting motor faults and monitoring motor conditions.An integrated approach for acquiring,processing,and wirelessly transmitting a large amount of data in predictive maintenance applications remains a significant challenge.This study presents an IIoT-based sensor node for industrial motors.The sensor node is designed to acquire vibration data on the radial and axial axes of the motor and utilizes a hybrid approach for efficient data processing via edge and cloud platforms.The initial step of signal processing is performed on the node at the edge,reducing the burden on a centralized cloud for processing data from multiple sensors.The proposed architecture utilizes the lightweight Message Queue Telemetry Transport(MQTT)communication protocol for seamless data transmission from the node to the local and main brokers.The broker’s bridging allows for data backup in case of connection loss.The proposed sensor node is rigorously tested on a motor testbed in a laboratory setup and an industrial setting in a rice industry for validation,ensuring its performance and accuracy in real-world industrial environments.The data analysis and results from both testbed and industrial motors were discussed using vibration analysis for identifying faults.The proposed sensor node is a significant step towards improving the efficiency and reliability of industrial motors through realtime monitoring and early fault detection,ultimately leading to minimized unscheduled downtime and cost savings. 展开更多
关键词 IIoT sensor node condition monitoring fault classification predictive maintenance MQTT
在线阅读 下载PDF
An Ordinal Multi-Dimensional Classification(OMDC)for Predictive Maintenance
16
作者 Pelin Yildirim Taser 《Computer Systems Science & Engineering》 SCIE EI 2023年第2期1499-1516,共18页
Predictive Maintenance is a type of condition-based maintenance that assesses the equipment's states and estimates its failure probability and when maintenance should be performed.Although machine learning techniq... Predictive Maintenance is a type of condition-based maintenance that assesses the equipment's states and estimates its failure probability and when maintenance should be performed.Although machine learning techniques have been frequently implemented in this area,the existing studies disregard to the nat-ural order between the target attribute values of the historical sensor data.Thus,these methods cause losing the inherent order of the data that positively affects the prediction performances.To deal with this problem,a novel approach,named Ordinal Multi-dimensional Classification(OMDC),is proposed for estimating the conditions of a hydraulic system's four components by taking into the natural order of class values.To demonstrate the prediction ability of the proposed approach,eleven different multi-dimensional classification algorithms(traditional Binary Relevance(BR),Classifier Chain(CC),Bayesian Classifier Chain(BCC),Monte Carlo Classifier Chain(MCC),Probabilistic Classifier Chain(PCC),Clas-sifier Dependency Network(CDN),Classifier Trellis(CT),Classifier Dependency Trellis(CDT),Label Powerset(LP),Pruned Sets(PS),and Random k-Labelsets(RAKEL))were implemented using the Ordinal Class Classifier(OCC)algorithm.Besides,seven different classification algorithms(Multilayer Perceptron(MLP),Support Vector Machine(SVM),k-Nearest Neighbour(kNN),Decision Tree(C4.5),Bagging,Random Forest(RF),and Adaptive Boosting(AdaBoost))were chosen as base learners for the OCC algorithm.The experimental results present that the proposed OMDC approach using binary relevance multi-dimensional classification methods predicts the conditions of a hydraulic system's multiple components with high accuracy.Also,it is clearly seen from the results that the OMDC models that utilize ensemble-based classification algorithms give more reliable prediction performances with an average Hamming score of 0.853 than the others that use traditional algorithms as base learners. 展开更多
关键词 Machine learning multi-dimensional classification ordinal classification predictive maintenance
在线阅读 下载PDF
THE PRELIMINARY ATTEMPT TO DEVELOP PREVENTIVE-PREDICTIVE MAINTENANCE
17
作者 Bu Yingyong Zhang Huailiang(College of Mechanical and Electrical Engineering, Central South University of Technology, Changsha, 410083, China) 《Journal of Central South University》 SCIE EI CAS 1995年第2期32-36,共5页
This paper presents a conception of Preventive-Predictive Maintenance, describes a living instance which combines the technology of equipment condition supervising and failure diagnosing with the system of computer a... This paper presents a conception of Preventive-Predictive Maintenance, describes a living instance which combines the technology of equipment condition supervising and failure diagnosing with the system of computer aided equipment management, and then es 展开更多
关键词 EQUIPMENT MANAGEMENT maintenance COMPUTER
在线阅读 下载PDF
A Teleoperation System Based on Predictive Simulation and Its Application to Spacecraft Maintenance 被引量:1
18
作者 LI Ming-fu LI Shi-qi ZHAO Di ZHU Wen-ge 《International Journal of Plant Engineering and Management》 2008年第1期1-9,共9页
A teleoperation system based on predictive simulation is proposed for the sake of compensating the large time delay in the process of teleoperation to a degree and providing a friendly operating interface. The framewo... A teleoperation system based on predictive simulation is proposed for the sake of compensating the large time delay in the process of teleoperation to a degree and providing a friendly operating interface. The framework and function architecture of the system is discussed firstly. Then, the operator interface and a graphics simulation system is described in detail. Furthermore, a predictive algorithm aiming at position control based teleoperation is studied in our research, and the relative framework of predictive simulation is discussed. Finally, the system is applied to spacecraft breakdown maintenance; multi-agent reinforcement learning based semi-autonomous teleoperation is discussed at the same time for safe operation. 展开更多
关键词 TELEOPERATION predictive simulation virtual reality reinforcement learning
在线阅读 下载PDF
Predictive Maintenance of Manned Spacecraft Through Remaining Useful Life Estimation Technique
19
作者 CHEN Runfeng YANG Hong 《Aerospace China》 2018年第3期3-10,共8页
Manned spacecraft pose challenges in terms of extremely high safety and reliability, and with the growth of system complexity and longer on-orbit operation time, the traditional management mode, such as monitoring the... Manned spacecraft pose challenges in terms of extremely high safety and reliability, and with the growth of system complexity and longer on-orbit operation time, the traditional management mode, such as monitoring the threshold of parameter passively, is difficult to meet the required safety standards. Predictive maintenance, which analyzes the system heath trend and estimates remaining useful life(RUL) to establish maintenance strategies ahead of time before failure occurs, is a new mode to approach maintenance tasks. Here, a predictive maintenance strategy for complex manned spacecraft is proposed based on the remaining useful life estimation technique. Firstly, a health index is established based on an abundance of telemetry data, reflecting the system's current health state. Secondly, we map the health index to the remaining useful life through system degradation modelling, taking into consideration both the system's stochastic deterioration and uncertainty. The maintenance and management strategies are then made based on the calculated distribution of RUL time. Finally, a case study on Chinese space station energy system predictive maintenance is presented. 展开更多
关键词 REMAINING useful LIFE predictive maintenance CHINESE SPACE STATION
在线阅读 下载PDF
Pavement performance model for road maintenance and repair planning: a review of predictive techniques
20
作者 Krishna Singh Basnet Jagat Kumar Shrestha Rabindra Nath Shrestha 《Digital Transportation and Safety》 2023年第4期253-267,共15页
This paper provides a review of predictive analytics for roads,identifying gaps and limitations in current methodologies.It explores the implications of these limitations on accuracy and application,while also discuss... This paper provides a review of predictive analytics for roads,identifying gaps and limitations in current methodologies.It explores the implications of these limitations on accuracy and application,while also discussing how advanced predictive analytics can address these challenges.The article acknowledges the transformative shift brought about by technological advancements and increased computational capabilities.The degradation of pavement surfaces due to increased road users has resulted in safety and comfort issues.Researchers have conducted studies to assess pavement condition and predict future changes in pavement structure.Pavement Management Systems are crucial in developing prediction performance models that estimate pavement condition and degradation severity over time.Machine learning algorithms,artificial neural networks,and regression models have been used,with strengths and weaknesses.Researchers generally agree on their accuracy in estimating pavement condition considering factors like traffic,pavement age,and weather conditions.However,it is important to carefully select an appropriate prediction model to achieve a high-quality prediction performance system.Understanding the strengths and weaknesses of each model enables informed decisions for implementing prediction models that suit specific needs.The advancement of prediction models,coupled with innovative technologies,will contribute to improved pavement management and the overall safety and comfort of road users. 展开更多
关键词 Road maintenance Prediction Model Deterministic Model Probabilistic Model Machine Learning Model
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部