Accurate prediction of flood events is important for flood control and risk management.Machine learning techniques contributed greatly to advances in flood predictions,and existing studies mainly focused on predicting...Accurate prediction of flood events is important for flood control and risk management.Machine learning techniques contributed greatly to advances in flood predictions,and existing studies mainly focused on predicting flood resource variables using single or hybrid machine learning techniques.However,class-based flood predictions have rarely been investigated,which can aid in quickly diagnosing comprehensive flood characteristics and proposing targeted management strategies.This study proposed a prediction approach of flood regime metrics and event classes coupling machine learning algorithms with clustering-deduced membership degrees.Five algorithms were adopted for this exploration.Results showed that the class membership degrees accurately determined event classes with class hit rates up to 100%,compared with the four classes clustered from nine regime metrics.The nonlinear algorithms(Multiple Linear Regression,Random Forest,and least squares-Support Vector Machine)outperformed the linear techniques(Multiple Linear Regression and Stepwise Regression)in predicting flood regime metrics.The proposed approach well predicted flood event classes with average class hit rates of 66.0%-85.4%and 47.2%-76.0%in calibration and validation periods,respectively,particularly for the slow and late flood events.The predictive capability of the proposed prediction approach for flood regime metrics and classes was considerably stronger than that of hydrological modeling approach.展开更多
Objective The Asia-Pacific region has a high chronic obstructive pulmonary disease(COPD)burden,but studies on its trends are limited.Using the Global Burden of Disease(GBD)2019 data,we analyzed COPD trends in 36 count...Objective The Asia-Pacific region has a high chronic obstructive pulmonary disease(COPD)burden,but studies on its trends are limited.Using the Global Burden of Disease(GBD)2019 data,we analyzed COPD trends in 36 countries and territories from 1990 to 2019 and predicted future incidence trends through 2034.Methods COPD data by age and sex from the GBD 2019 database were analyzed for incidence,prevalence,mortality,and disability-adjusted life years(DALY)rates from 1990 to 2019.Joinpoint regression identified significant annual trends,and age-standardized incidence rates were predicted through 2034 using age-period-cohort models.Results The incidence,prevalence,mortality,and disease burden of COPD have been decreasing,and the incidence rates will continue to decrease or remain stable until 2034 in most selected countries and territories,except for a few Southeastern Asian countries.The Lao People’s Democratic Republic and Vietnam are projected to experience an increase in COPD incidence from 165.3 per 100,000 in 2019 to 177 per 100,000 in 2034 and from 179.9 per 100,000 in 2019 to 192.5 per 100,000 in 2034,respectively.Older males had a higher incidence than any other sex or age group.The sex gap in incidence rates continues to widen,though it is smaller and less significant in the younger age group than in those in the older one.Conclusion COPD rates are expected to decline until 2034 but remain a health risk,especially in countries with rising rates.Urgent action on tobacco control,air pollution,and public education is needed.展开更多
As an effective strategy to address urban traffic congestion,traffic flow prediction has gained attention from Federated-Learning(FL)researchers due FL’s ability to preserving data privacy.However,existing methods fa...As an effective strategy to address urban traffic congestion,traffic flow prediction has gained attention from Federated-Learning(FL)researchers due FL’s ability to preserving data privacy.However,existing methods face challenges:some are too simplistic to capture complex traffic patterns effectively,and others are overly complex,leading to excessive communication overhead between cloud and edge devices.Moreover,the problem of single point failure limits their robustness and reliability in real-world applications.To tackle these challenges,this paper proposes a new method,CMBA-FL,a Communication-Mitigated and Blockchain-Assisted Federated Learning model.First,CMBA-FL improves the client model’s ability to capture temporal traffic patterns by employing the Encoder-Decoder framework for each edge device.Second,to reduce the communication overhead during federated learning,we introduce a verification method based on parameter update consistency,avoiding unnecessary parameter updates.Third,to mitigate the risk of a single point of failure,we integrate consensus mechanisms from blockchain technology.To validate the effectiveness of CMBA-FL,we assess its performance on two widely used traffic datasets.Our experimental results show that CMBA-FL reduces prediction error by 11.46%,significantly lowers communication overhead,and improves security.展开更多
Species distribution patterns is one of the important topics in ecology and biological conservation.Although species distribution models have been intensively used in the research,the effects of spatial associations a...Species distribution patterns is one of the important topics in ecology and biological conservation.Although species distribution models have been intensively used in the research,the effects of spatial associations and spatial dependence have been rarely taken into account in the modeling processes.Recently,Joint Species Distribution Models(JSDMs)offer the opportunity to consider both environmental factors and interspecific relationships as well as the role of spatial structures.This study uses the HMSC(Hierarchical Modelling of Species Communities)framework to model the multispecies distribution of a marine fish assemblage,in which spatial associations and spatial dependence is deliberately accounted for.Three HMSC models were implemented with different structures of random effects to address the existence of spatial associations and spatial dependence,and the predictive performances at different levels of sample sizes were analyzed in the assessment.The results showed that the models with random effects could account for a larger proportion of explainable variance(32.8%),and particularly the spatial random effect model provided the best predictive performances(R_(mean)^(2)=0.31),indicating that spatial random effects could substantially influence the results of the joint species distribution.Increasing sample size had a strong effect(R_(mean)^(2)=0.24-0.31)on the predictive accuracy of the spatially-structured model than on the other models,suggesting that optimal model selection should be dependent on sample size.This study highlights the importance of incorporating spatial random effects for JSDM predictions and suggests that the choice of model structures should consider the data quality across species.展开更多
Objective:Knee osteoarthritis is one of the important causes of disability worldwide.This study aims to analyze the disease burden of knee osteoarthritis,attributable risk factors among Chinese residents from 1990 to ...Objective:Knee osteoarthritis is one of the important causes of disability worldwide.This study aims to analyze the disease burden of knee osteoarthritis,attributable risk factors among Chinese residents from 1990 to 2021,and predict the disease burden trend for 2035.Methods:Data related to knee osteoarthritis in China from 1990 to 2021,including the number of incident cases,incidence rate,number of prevalent cases,prevalence rate,and years lived with disability(YLDs),were collected from the Global Burden of Disease Study(GBD2021)database.Joinpoint regression analysis was used to assess time trends,and the Bayesian-Age-Period-Cohort(BAPC)regression model was employed for future predictions.Results:From 1990 to 2021,the number of incident cases of knee osteoarthritis among Chinese residents increased from 3.65 million to 8.51 million,a rise of 133.16%,with an average annual increase of 3.15%.The incidence rate increased from 310.33 per 100,000 to 598.31 per 100,000,a rise of 92.80%,with an average annual increase of 2.55%.The number of prevalent cases increased from 41.04 million to 110 million,a rise of 166.97%,with an average annual increase of 3.61%.The prevalence rate increased from 3488.78 per 100,000 to 7701.69 per 100,000,a rise of 120.76%,with an average annual increase of 3.00%.The number of YLDs increased from 1.34 million to 3.55 million,a rise of 165.32%,with an average annual increase of 3.59%.The YLD rate increased from 113.86 per 100,000 to 249.81 per 100,000,a rise of 119.39%,with an average annual increase of 2.99%.High BMI was the only significant attributable risk factor,with the proportion of YLDs it caused continuing to rise.Predictions for 2035:The number of incident cases is expected to decline slightly from 5.89 million in 2022 to 5.72 million in 2035.The number of prevalent cases is expected to peak at 72.42 million in 2029 and be around 72.69 million in 2035.The number of YLDs is expected to increase year by year,from 2.35 million in 2022 to 2.35 million in 2035.Conclusion:The study reveals the increasing prevalence and disease burden of knee osteoarthritis among Chinese residents,emphasizing the importance of interventions targeting controllable risk factors.Although the prediction shows a slight decline in the number of incident cases in 2035,the number of prevalent cases and years of disability are expected to remain high,indicating the need for continued monitoring and intervention.展开更多
Monolayer CrI_(3),crystalizing in the P31m space group,is a prototypical two-dimensional(2D)material for observing intrinsic ferromagnetic order.However,its relatively low Curie temperature(T_(C))of 45 K severely limi...Monolayer CrI_(3),crystalizing in the P31m space group,is a prototypical two-dimensional(2D)material for observing intrinsic ferromagnetic order.However,its relatively low Curie temperature(T_(C))of 45 K severely limits its practical applications,highlighting the need to explore novel metastable polymorphs with enhanced magnetic properties.In this study,we employ a global crystal structure search technique combined with first-principles calculations to systematically investigate new monolayer CrI_(3)phases.Our structural predictions identify two novel polymorphs with Cm and P2/m space groups,both of which are dynamically stable and exhibit significantly higher T_(C)values of 145 K and 81 K,respectively.Electronic property calculations show that the Cm phase is a half-metal,while the P2/m phase is semiconducting with a bandgap of 0.14 eV.Monte Carlo simulations attribute these enhanced T_(C)values to a notable increase in exchange interactions.These findings expand the known phase space of CrI_(3)and provide a promising pathway for designing hightemperature 2D ferromagnets for next-generation spintronic applications.展开更多
We analyzed accident factors in a 2020 ship collision case that occurred off Kii Oshima Island using the SHELL model analysis and examined corresponding collision prevention measures.The SHELL model analysis is a fram...We analyzed accident factors in a 2020 ship collision case that occurred off Kii Oshima Island using the SHELL model analysis and examined corresponding collision prevention measures.The SHELL model analysis is a framework for identifying accident factors related to human abilities and characteristics,hardware,software,and the environment.Beyond assessing the accident factors in each element,we also examined the interrelationship between humans and each element.This study highlights the importance of(1)training to enhance situational awareness,(2)improving decision-making skills,and(3)establishing structured decision-making procedures to prevent maritime collision accidents.Additionally,we considered safety measures through(4)hardware enhancements and(5)environmental measures.Furthermore,to prevent accidents,implementing measures grounded in(6)predictions is deemed effective.This study identified accident factors through prediction alongside the SHELL model analysis and proposed countermeasures based on the findings.By applying these predictions,more countermeasures can be derived,which,when combined strategically,can significantly aid in preventing maritime collision accidents.展开更多
Advancing the integration of artificial intelligence and polymer science requires high-quality,open-source,and large-scale datasets.However,existing polymer databases often suffer from data sparsity,lack of polymer-pr...Advancing the integration of artificial intelligence and polymer science requires high-quality,open-source,and large-scale datasets.However,existing polymer databases often suffer from data sparsity,lack of polymer-property labels,and limited accessibility,hindering system-atic modeling across property prediction tasks.Here,we present OpenPoly,a curated experimental polymer database derived from extensive lit-erature mining and manual validation,comprising 3985 unique polymer-property data points spanning 26 key properties.We further develop a multi-task benchmarking framework that evaluates property prediction using four encoding methods and eight representative models.Our re-sults highlight that the optimized degree-of-polymerization encoding coupled with Morgan fingerprints achieves an optimal trade-off between computational cost and accuracy.In data-scarce condition,XGBoost outperforms deep learning models on key properties such as dielectric con-stant,glass transition temperature,melting point,and mechanical strength,achieving R2 scores of 0.65-0.87.To further showcase the practical utility of the database,we propose potential polymers for two energy-relevant applications:high temperature polymer dielectrics and fuel cell membranes.By offering a consistent and accessible benchmark and database,OpenPoly paves the way for more accurate polymer-property modeling and fosters data-driven advances in polymer genome engineering.展开更多
Rotor blade is one of the most significant components of helicopters. But due to its highspeed rotation characteristics, it is difficult to collect the vibration signals during the flight stage.Moreover, sensors are h...Rotor blade is one of the most significant components of helicopters. But due to its highspeed rotation characteristics, it is difficult to collect the vibration signals during the flight stage.Moreover, sensors are highly susceptible to damage resulting in the failure of the measurement.In order to make signal predictions for the damaged sensors, an operational modal analysis(OMA) together with the virtual sensing(VS) technology is proposed in this paper. This paper discusses two situations, i.e., mode shapes measured by all sensors(both normal and damaged) can be obtained using OMA, and mode shapes measured by some sensors(only including normal) can be obtained using OMA. For the second situation, it is necessary to use finite element(FE) analysis to supplement the missing mode shapes of damaged sensor. In order to improve the correlation between the FE model and the real structure, the FE mode shapes are corrected using the local correspondence(LC) principle and mode shapes measured by some sensors(only including normal).Then, based on the VS technology, the vibration signals of the damaged sensors during the flight stage can be accurately predicted using the identified mode shapes(obtained based on OMA and FE analysis) and the normal sensors signals. Given the high degrees of freedom(DOFs) in the FE mode shapes, this approach can also be used to predict vibration data at locations without sensors. The effectiveness and robustness of the proposed method is verified through finite element simulation, experiment as well as the actual flight test. The present work can be further used in the fault diagnosis and damage identification for rotor blade of helicopters.展开更多
农机备件是农机维修的重要基础,是农机故障及时维修和农业生产正常开展的必要保障,因此,对农机备件需求量的精准预测至关重要。然而,农机备件的需求量具有非平稳性、非线性、多零值、波动大等特点,使得预测任务变得困难。本文提出了一...农机备件是农机维修的重要基础,是农机故障及时维修和农业生产正常开展的必要保障,因此,对农机备件需求量的精准预测至关重要。然而,农机备件的需求量具有非平稳性、非线性、多零值、波动大等特点,使得预测任务变得困难。本文提出了一种基于卷积神经网络的时间序列高效卷积网络(Time series efficient convolution network,TECNet),用于农机备件需求量的预测。该模型首先利用快速傅里叶变换对原始一维序列进行周期性提取,然后根据周期性构建二维时间序列卷积模块进行特征提取,最后将二维特征重塑回一维特征,并通过线性变换得到预测值。利用某农机备件供应商4种不同备件类型的销售数据进行了评估验证,并引入均方根缩放误差作为衡量指标,以统一不同序列间的预测效果。试验结果表明,提出的模型预测效果显著优于其他参考模型,4种不同备件需求量预测的均方根缩放误差分别为0.775、1.349、0.822、0.205,均表现出良好的预测效果。该模型能有效考虑时间序列中的时间依赖关系,具有捕捉时间序列数据中非线性模式的能力,对不同农机备件类型的预测任务均能取得良好的效果,可为预测农机备件需求量提供参考。展开更多
基金National Key Research and Development Program of China,No.2023YFC3006704National Natural Science Foundation of China,No.42171047CAS-CSIRO Partnership Joint Project of 2024,No.177GJHZ2023097MI。
文摘Accurate prediction of flood events is important for flood control and risk management.Machine learning techniques contributed greatly to advances in flood predictions,and existing studies mainly focused on predicting flood resource variables using single or hybrid machine learning techniques.However,class-based flood predictions have rarely been investigated,which can aid in quickly diagnosing comprehensive flood characteristics and proposing targeted management strategies.This study proposed a prediction approach of flood regime metrics and event classes coupling machine learning algorithms with clustering-deduced membership degrees.Five algorithms were adopted for this exploration.Results showed that the class membership degrees accurately determined event classes with class hit rates up to 100%,compared with the four classes clustered from nine regime metrics.The nonlinear algorithms(Multiple Linear Regression,Random Forest,and least squares-Support Vector Machine)outperformed the linear techniques(Multiple Linear Regression and Stepwise Regression)in predicting flood regime metrics.The proposed approach well predicted flood event classes with average class hit rates of 66.0%-85.4%and 47.2%-76.0%in calibration and validation periods,respectively,particularly for the slow and late flood events.The predictive capability of the proposed prediction approach for flood regime metrics and classes was considerably stronger than that of hydrological modeling approach.
基金supported by a major project of the Zhejiang Natural Science Foundation(LD21G030001).
文摘Objective The Asia-Pacific region has a high chronic obstructive pulmonary disease(COPD)burden,but studies on its trends are limited.Using the Global Burden of Disease(GBD)2019 data,we analyzed COPD trends in 36 countries and territories from 1990 to 2019 and predicted future incidence trends through 2034.Methods COPD data by age and sex from the GBD 2019 database were analyzed for incidence,prevalence,mortality,and disability-adjusted life years(DALY)rates from 1990 to 2019.Joinpoint regression identified significant annual trends,and age-standardized incidence rates were predicted through 2034 using age-period-cohort models.Results The incidence,prevalence,mortality,and disease burden of COPD have been decreasing,and the incidence rates will continue to decrease or remain stable until 2034 in most selected countries and territories,except for a few Southeastern Asian countries.The Lao People’s Democratic Republic and Vietnam are projected to experience an increase in COPD incidence from 165.3 per 100,000 in 2019 to 177 per 100,000 in 2034 and from 179.9 per 100,000 in 2019 to 192.5 per 100,000 in 2034,respectively.Older males had a higher incidence than any other sex or age group.The sex gap in incidence rates continues to widen,though it is smaller and less significant in the younger age group than in those in the older one.Conclusion COPD rates are expected to decline until 2034 but remain a health risk,especially in countries with rising rates.Urgent action on tobacco control,air pollution,and public education is needed.
基金supported by the National Natural Science Foundation of China under Grant No.U20A20182.
文摘As an effective strategy to address urban traffic congestion,traffic flow prediction has gained attention from Federated-Learning(FL)researchers due FL’s ability to preserving data privacy.However,existing methods face challenges:some are too simplistic to capture complex traffic patterns effectively,and others are overly complex,leading to excessive communication overhead between cloud and edge devices.Moreover,the problem of single point failure limits their robustness and reliability in real-world applications.To tackle these challenges,this paper proposes a new method,CMBA-FL,a Communication-Mitigated and Blockchain-Assisted Federated Learning model.First,CMBA-FL improves the client model’s ability to capture temporal traffic patterns by employing the Encoder-Decoder framework for each edge device.Second,to reduce the communication overhead during federated learning,we introduce a verification method based on parameter update consistency,avoiding unnecessary parameter updates.Third,to mitigate the risk of a single point of failure,we integrate consensus mechanisms from blockchain technology.To validate the effectiveness of CMBA-FL,we assess its performance on two widely used traffic datasets.Our experimental results show that CMBA-FL reduces prediction error by 11.46%,significantly lowers communication overhead,and improves security.
基金supported by the National Key R&D Program of China(No.2022YFD2401301)。
文摘Species distribution patterns is one of the important topics in ecology and biological conservation.Although species distribution models have been intensively used in the research,the effects of spatial associations and spatial dependence have been rarely taken into account in the modeling processes.Recently,Joint Species Distribution Models(JSDMs)offer the opportunity to consider both environmental factors and interspecific relationships as well as the role of spatial structures.This study uses the HMSC(Hierarchical Modelling of Species Communities)framework to model the multispecies distribution of a marine fish assemblage,in which spatial associations and spatial dependence is deliberately accounted for.Three HMSC models were implemented with different structures of random effects to address the existence of spatial associations and spatial dependence,and the predictive performances at different levels of sample sizes were analyzed in the assessment.The results showed that the models with random effects could account for a larger proportion of explainable variance(32.8%),and particularly the spatial random effect model provided the best predictive performances(R_(mean)^(2)=0.31),indicating that spatial random effects could substantially influence the results of the joint species distribution.Increasing sample size had a strong effect(R_(mean)^(2)=0.24-0.31)on the predictive accuracy of the spatially-structured model than on the other models,suggesting that optimal model selection should be dependent on sample size.This study highlights the importance of incorporating spatial random effects for JSDM predictions and suggests that the choice of model structures should consider the data quality across species.
文摘Objective:Knee osteoarthritis is one of the important causes of disability worldwide.This study aims to analyze the disease burden of knee osteoarthritis,attributable risk factors among Chinese residents from 1990 to 2021,and predict the disease burden trend for 2035.Methods:Data related to knee osteoarthritis in China from 1990 to 2021,including the number of incident cases,incidence rate,number of prevalent cases,prevalence rate,and years lived with disability(YLDs),were collected from the Global Burden of Disease Study(GBD2021)database.Joinpoint regression analysis was used to assess time trends,and the Bayesian-Age-Period-Cohort(BAPC)regression model was employed for future predictions.Results:From 1990 to 2021,the number of incident cases of knee osteoarthritis among Chinese residents increased from 3.65 million to 8.51 million,a rise of 133.16%,with an average annual increase of 3.15%.The incidence rate increased from 310.33 per 100,000 to 598.31 per 100,000,a rise of 92.80%,with an average annual increase of 2.55%.The number of prevalent cases increased from 41.04 million to 110 million,a rise of 166.97%,with an average annual increase of 3.61%.The prevalence rate increased from 3488.78 per 100,000 to 7701.69 per 100,000,a rise of 120.76%,with an average annual increase of 3.00%.The number of YLDs increased from 1.34 million to 3.55 million,a rise of 165.32%,with an average annual increase of 3.59%.The YLD rate increased from 113.86 per 100,000 to 249.81 per 100,000,a rise of 119.39%,with an average annual increase of 2.99%.High BMI was the only significant attributable risk factor,with the proportion of YLDs it caused continuing to rise.Predictions for 2035:The number of incident cases is expected to decline slightly from 5.89 million in 2022 to 5.72 million in 2035.The number of prevalent cases is expected to peak at 72.42 million in 2029 and be around 72.69 million in 2035.The number of YLDs is expected to increase year by year,from 2.35 million in 2022 to 2.35 million in 2035.Conclusion:The study reveals the increasing prevalence and disease burden of knee osteoarthritis among Chinese residents,emphasizing the importance of interventions targeting controllable risk factors.Although the prediction shows a slight decline in the number of incident cases in 2035,the number of prevalent cases and years of disability are expected to remain high,indicating the need for continued monitoring and intervention.
基金supported by the National Key Research and Development Program of China(Grant No.2023YFA1610000)the National Natural Science Foundation of China(Grant Nos.12304036 and 12304265)+1 种基金the Basic and Applied Basic Research Foundation of Guangdong Province,China(Grant No.2023A1515010071)the Fundamental Research Funds for the Central Universities to Sun Yat-sen University(Grant No.23xkjc016).
文摘Monolayer CrI_(3),crystalizing in the P31m space group,is a prototypical two-dimensional(2D)material for observing intrinsic ferromagnetic order.However,its relatively low Curie temperature(T_(C))of 45 K severely limits its practical applications,highlighting the need to explore novel metastable polymorphs with enhanced magnetic properties.In this study,we employ a global crystal structure search technique combined with first-principles calculations to systematically investigate new monolayer CrI_(3)phases.Our structural predictions identify two novel polymorphs with Cm and P2/m space groups,both of which are dynamically stable and exhibit significantly higher T_(C)values of 145 K and 81 K,respectively.Electronic property calculations show that the Cm phase is a half-metal,while the P2/m phase is semiconducting with a bandgap of 0.14 eV.Monte Carlo simulations attribute these enhanced T_(C)values to a notable increase in exchange interactions.These findings expand the known phase space of CrI_(3)and provide a promising pathway for designing hightemperature 2D ferromagnets for next-generation spintronic applications.
文摘We analyzed accident factors in a 2020 ship collision case that occurred off Kii Oshima Island using the SHELL model analysis and examined corresponding collision prevention measures.The SHELL model analysis is a framework for identifying accident factors related to human abilities and characteristics,hardware,software,and the environment.Beyond assessing the accident factors in each element,we also examined the interrelationship between humans and each element.This study highlights the importance of(1)training to enhance situational awareness,(2)improving decision-making skills,and(3)establishing structured decision-making procedures to prevent maritime collision accidents.Additionally,we considered safety measures through(4)hardware enhancements and(5)environmental measures.Furthermore,to prevent accidents,implementing measures grounded in(6)predictions is deemed effective.This study identified accident factors through prediction alongside the SHELL model analysis and proposed countermeasures based on the findings.By applying these predictions,more countermeasures can be derived,which,when combined strategically,can significantly aid in preventing maritime collision accidents.
基金financially supported by the National Natural Science Foundation of China (Nos. 92372126,52373203)the Excellent Young Scientists Fund Program
文摘Advancing the integration of artificial intelligence and polymer science requires high-quality,open-source,and large-scale datasets.However,existing polymer databases often suffer from data sparsity,lack of polymer-property labels,and limited accessibility,hindering system-atic modeling across property prediction tasks.Here,we present OpenPoly,a curated experimental polymer database derived from extensive lit-erature mining and manual validation,comprising 3985 unique polymer-property data points spanning 26 key properties.We further develop a multi-task benchmarking framework that evaluates property prediction using four encoding methods and eight representative models.Our re-sults highlight that the optimized degree-of-polymerization encoding coupled with Morgan fingerprints achieves an optimal trade-off between computational cost and accuracy.In data-scarce condition,XGBoost outperforms deep learning models on key properties such as dielectric con-stant,glass transition temperature,melting point,and mechanical strength,achieving R2 scores of 0.65-0.87.To further showcase the practical utility of the database,we propose potential polymers for two energy-relevant applications:high temperature polymer dielectrics and fuel cell membranes.By offering a consistent and accessible benchmark and database,OpenPoly paves the way for more accurate polymer-property modeling and fosters data-driven advances in polymer genome engineering.
基金supported by grants from the High-Level Oversea Talent Introduction Plan,Chinathe Special Fund for Basic Scientific Research in Central Universities of China-Doctoral Research and Innovation Fund Project,China(No.3072023CFJ0206).
文摘Rotor blade is one of the most significant components of helicopters. But due to its highspeed rotation characteristics, it is difficult to collect the vibration signals during the flight stage.Moreover, sensors are highly susceptible to damage resulting in the failure of the measurement.In order to make signal predictions for the damaged sensors, an operational modal analysis(OMA) together with the virtual sensing(VS) technology is proposed in this paper. This paper discusses two situations, i.e., mode shapes measured by all sensors(both normal and damaged) can be obtained using OMA, and mode shapes measured by some sensors(only including normal) can be obtained using OMA. For the second situation, it is necessary to use finite element(FE) analysis to supplement the missing mode shapes of damaged sensor. In order to improve the correlation between the FE model and the real structure, the FE mode shapes are corrected using the local correspondence(LC) principle and mode shapes measured by some sensors(only including normal).Then, based on the VS technology, the vibration signals of the damaged sensors during the flight stage can be accurately predicted using the identified mode shapes(obtained based on OMA and FE analysis) and the normal sensors signals. Given the high degrees of freedom(DOFs) in the FE mode shapes, this approach can also be used to predict vibration data at locations without sensors. The effectiveness and robustness of the proposed method is verified through finite element simulation, experiment as well as the actual flight test. The present work can be further used in the fault diagnosis and damage identification for rotor blade of helicopters.
文摘农机备件是农机维修的重要基础,是农机故障及时维修和农业生产正常开展的必要保障,因此,对农机备件需求量的精准预测至关重要。然而,农机备件的需求量具有非平稳性、非线性、多零值、波动大等特点,使得预测任务变得困难。本文提出了一种基于卷积神经网络的时间序列高效卷积网络(Time series efficient convolution network,TECNet),用于农机备件需求量的预测。该模型首先利用快速傅里叶变换对原始一维序列进行周期性提取,然后根据周期性构建二维时间序列卷积模块进行特征提取,最后将二维特征重塑回一维特征,并通过线性变换得到预测值。利用某农机备件供应商4种不同备件类型的销售数据进行了评估验证,并引入均方根缩放误差作为衡量指标,以统一不同序列间的预测效果。试验结果表明,提出的模型预测效果显著优于其他参考模型,4种不同备件需求量预测的均方根缩放误差分别为0.775、1.349、0.822、0.205,均表现出良好的预测效果。该模型能有效考虑时间序列中的时间依赖关系,具有捕捉时间序列数据中非线性模式的能力,对不同农机备件类型的预测任务均能取得良好的效果,可为预测农机备件需求量提供参考。