期刊文献+
共找到156,199篇文章
< 1 2 250 >
每页显示 20 50 100
Flood predictions from metrics to classes by multiple machine learning algorithms coupling with clustering-deduced membership degree
1
作者 ZHAI Xiaoyan ZHANG Yongyong +5 位作者 XIA Jun ZHANG Yongqiang TANG Qiuhong SHAO Quanxi CHEN Junxu ZHANG Fan 《Journal of Geographical Sciences》 2026年第1期149-176,共28页
Accurate prediction of flood events is important for flood control and risk management.Machine learning techniques contributed greatly to advances in flood predictions,and existing studies mainly focused on predicting... Accurate prediction of flood events is important for flood control and risk management.Machine learning techniques contributed greatly to advances in flood predictions,and existing studies mainly focused on predicting flood resource variables using single or hybrid machine learning techniques.However,class-based flood predictions have rarely been investigated,which can aid in quickly diagnosing comprehensive flood characteristics and proposing targeted management strategies.This study proposed a prediction approach of flood regime metrics and event classes coupling machine learning algorithms with clustering-deduced membership degrees.Five algorithms were adopted for this exploration.Results showed that the class membership degrees accurately determined event classes with class hit rates up to 100%,compared with the four classes clustered from nine regime metrics.The nonlinear algorithms(Multiple Linear Regression,Random Forest,and least squares-Support Vector Machine)outperformed the linear techniques(Multiple Linear Regression and Stepwise Regression)in predicting flood regime metrics.The proposed approach well predicted flood event classes with average class hit rates of 66.0%-85.4%and 47.2%-76.0%in calibration and validation periods,respectively,particularly for the slow and late flood events.The predictive capability of the proposed prediction approach for flood regime metrics and classes was considerably stronger than that of hydrological modeling approach. 展开更多
关键词 flood regime metrics class prediction machine learning algorithms hydrological model
原文传递
Disease Burden and Trends of COPD in the Asia-Pacific Region(1990-2019)and Predictions to 2034 被引量:1
2
作者 Jing Ma Hong Mi 《Biomedical and Environmental Sciences》 2025年第5期557-570,共14页
Objective The Asia-Pacific region has a high chronic obstructive pulmonary disease(COPD)burden,but studies on its trends are limited.Using the Global Burden of Disease(GBD)2019 data,we analyzed COPD trends in 36 count... Objective The Asia-Pacific region has a high chronic obstructive pulmonary disease(COPD)burden,but studies on its trends are limited.Using the Global Burden of Disease(GBD)2019 data,we analyzed COPD trends in 36 countries and territories from 1990 to 2019 and predicted future incidence trends through 2034.Methods COPD data by age and sex from the GBD 2019 database were analyzed for incidence,prevalence,mortality,and disability-adjusted life years(DALY)rates from 1990 to 2019.Joinpoint regression identified significant annual trends,and age-standardized incidence rates were predicted through 2034 using age-period-cohort models.Results The incidence,prevalence,mortality,and disease burden of COPD have been decreasing,and the incidence rates will continue to decrease or remain stable until 2034 in most selected countries and territories,except for a few Southeastern Asian countries.The Lao People’s Democratic Republic and Vietnam are projected to experience an increase in COPD incidence from 165.3 per 100,000 in 2019 to 177 per 100,000 in 2034 and from 179.9 per 100,000 in 2019 to 192.5 per 100,000 in 2034,respectively.Older males had a higher incidence than any other sex or age group.The sex gap in incidence rates continues to widen,though it is smaller and less significant in the younger age group than in those in the older one.Conclusion COPD rates are expected to decline until 2034 but remain a health risk,especially in countries with rising rates.Urgent action on tobacco control,air pollution,and public education is needed. 展开更多
关键词 COPD ASIA-PACIFIC INCIDENCE Disease burden TRENDS Prediction
暂未订购
CMBA-FL: Communication-mitigated and blockchain-assisted federated learning for traffic flow predictions 被引量:1
3
作者 Kaiyin Zhu Mingming Lu +2 位作者 Haifeng Li Neal NXiong Wenyong He 《Digital Communications and Networks》 2025年第3期724-733,共10页
As an effective strategy to address urban traffic congestion,traffic flow prediction has gained attention from Federated-Learning(FL)researchers due FL’s ability to preserving data privacy.However,existing methods fa... As an effective strategy to address urban traffic congestion,traffic flow prediction has gained attention from Federated-Learning(FL)researchers due FL’s ability to preserving data privacy.However,existing methods face challenges:some are too simplistic to capture complex traffic patterns effectively,and others are overly complex,leading to excessive communication overhead between cloud and edge devices.Moreover,the problem of single point failure limits their robustness and reliability in real-world applications.To tackle these challenges,this paper proposes a new method,CMBA-FL,a Communication-Mitigated and Blockchain-Assisted Federated Learning model.First,CMBA-FL improves the client model’s ability to capture temporal traffic patterns by employing the Encoder-Decoder framework for each edge device.Second,to reduce the communication overhead during federated learning,we introduce a verification method based on parameter update consistency,avoiding unnecessary parameter updates.Third,to mitigate the risk of a single point of failure,we integrate consensus mechanisms from blockchain technology.To validate the effectiveness of CMBA-FL,we assess its performance on two widely used traffic datasets.Our experimental results show that CMBA-FL reduces prediction error by 11.46%,significantly lowers communication overhead,and improves security. 展开更多
关键词 Blockchain Communication mitigating Federated learning Traffic flow prediction
在线阅读 下载PDF
Spatial Random Effects Improve the Predictions of Multispecies Distribution in a Marine Fish Assemblage
4
作者 XU Tianheng ZHANG Chongliang +3 位作者 XU Binduo XUE Ying JI Yupeng REN Yiping 《Journal of Ocean University of China》 2025年第2期471-482,共12页
Species distribution patterns is one of the important topics in ecology and biological conservation.Although species distribution models have been intensively used in the research,the effects of spatial associations a... Species distribution patterns is one of the important topics in ecology and biological conservation.Although species distribution models have been intensively used in the research,the effects of spatial associations and spatial dependence have been rarely taken into account in the modeling processes.Recently,Joint Species Distribution Models(JSDMs)offer the opportunity to consider both environmental factors and interspecific relationships as well as the role of spatial structures.This study uses the HMSC(Hierarchical Modelling of Species Communities)framework to model the multispecies distribution of a marine fish assemblage,in which spatial associations and spatial dependence is deliberately accounted for.Three HMSC models were implemented with different structures of random effects to address the existence of spatial associations and spatial dependence,and the predictive performances at different levels of sample sizes were analyzed in the assessment.The results showed that the models with random effects could account for a larger proportion of explainable variance(32.8%),and particularly the spatial random effect model provided the best predictive performances(R_(mean)^(2)=0.31),indicating that spatial random effects could substantially influence the results of the joint species distribution.Increasing sample size had a strong effect(R_(mean)^(2)=0.24-0.31)on the predictive accuracy of the spatially-structured model than on the other models,suggesting that optimal model selection should be dependent on sample size.This study highlights the importance of incorporating spatial random effects for JSDM predictions and suggests that the choice of model structures should consider the data quality across species. 展开更多
关键词 HMSC spatial autocorrelation JSDM sample size PREDICTABILITY
在线阅读 下载PDF
Analysis of the Disease Burden of Knee Osteoarthritis in China from 1990 to 2021, Attributable Risk Factors, and Predictions for 2035
5
作者 Weigang Liu Qian Wu Heqing Tang 《Journal of Clinical and Nursing Research》 2025年第9期360-369,共10页
Objective:Knee osteoarthritis is one of the important causes of disability worldwide.This study aims to analyze the disease burden of knee osteoarthritis,attributable risk factors among Chinese residents from 1990 to ... Objective:Knee osteoarthritis is one of the important causes of disability worldwide.This study aims to analyze the disease burden of knee osteoarthritis,attributable risk factors among Chinese residents from 1990 to 2021,and predict the disease burden trend for 2035.Methods:Data related to knee osteoarthritis in China from 1990 to 2021,including the number of incident cases,incidence rate,number of prevalent cases,prevalence rate,and years lived with disability(YLDs),were collected from the Global Burden of Disease Study(GBD2021)database.Joinpoint regression analysis was used to assess time trends,and the Bayesian-Age-Period-Cohort(BAPC)regression model was employed for future predictions.Results:From 1990 to 2021,the number of incident cases of knee osteoarthritis among Chinese residents increased from 3.65 million to 8.51 million,a rise of 133.16%,with an average annual increase of 3.15%.The incidence rate increased from 310.33 per 100,000 to 598.31 per 100,000,a rise of 92.80%,with an average annual increase of 2.55%.The number of prevalent cases increased from 41.04 million to 110 million,a rise of 166.97%,with an average annual increase of 3.61%.The prevalence rate increased from 3488.78 per 100,000 to 7701.69 per 100,000,a rise of 120.76%,with an average annual increase of 3.00%.The number of YLDs increased from 1.34 million to 3.55 million,a rise of 165.32%,with an average annual increase of 3.59%.The YLD rate increased from 113.86 per 100,000 to 249.81 per 100,000,a rise of 119.39%,with an average annual increase of 2.99%.High BMI was the only significant attributable risk factor,with the proportion of YLDs it caused continuing to rise.Predictions for 2035:The number of incident cases is expected to decline slightly from 5.89 million in 2022 to 5.72 million in 2035.The number of prevalent cases is expected to peak at 72.42 million in 2029 and be around 72.69 million in 2035.The number of YLDs is expected to increase year by year,from 2.35 million in 2022 to 2.35 million in 2035.Conclusion:The study reveals the increasing prevalence and disease burden of knee osteoarthritis among Chinese residents,emphasizing the importance of interventions targeting controllable risk factors.Although the prediction shows a slight decline in the number of incident cases in 2035,the number of prevalent cases and years of disability are expected to remain high,indicating the need for continued monitoring and intervention. 展开更多
关键词 Knee osteoarthritis Disease burden Attributable risk factors PREDICTION China
暂未订购
Swarm-intelligent predictions of high-T_(C)polymorphs in monolayer CrI_(3)above 77 K
6
作者 Ying Luo Shuangyi Xu +1 位作者 Yanan Wang Yunwei Zhang 《Chinese Physics B》 2025年第11期492-497,共6页
Monolayer CrI_(3),crystalizing in the P31m space group,is a prototypical two-dimensional(2D)material for observing intrinsic ferromagnetic order.However,its relatively low Curie temperature(T_(C))of 45 K severely limi... Monolayer CrI_(3),crystalizing in the P31m space group,is a prototypical two-dimensional(2D)material for observing intrinsic ferromagnetic order.However,its relatively low Curie temperature(T_(C))of 45 K severely limits its practical applications,highlighting the need to explore novel metastable polymorphs with enhanced magnetic properties.In this study,we employ a global crystal structure search technique combined with first-principles calculations to systematically investigate new monolayer CrI_(3)phases.Our structural predictions identify two novel polymorphs with Cm and P2/m space groups,both of which are dynamically stable and exhibit significantly higher T_(C)values of 145 K and 81 K,respectively.Electronic property calculations show that the Cm phase is a half-metal,while the P2/m phase is semiconducting with a bandgap of 0.14 eV.Monte Carlo simulations attribute these enhanced T_(C)values to a notable increase in exchange interactions.These findings expand the known phase space of CrI_(3)and provide a promising pathway for designing hightemperature 2D ferromagnets for next-generation spintronic applications. 展开更多
关键词 chromium triiodide 2D magnets structure prediction first-principles calculations monolayer structure
原文传递
Proposed Measures to Prevent Maritime Collision Accidents-Analysis Combining the SHELL Model with Predictions
7
作者 Yoshiaki Kunied Akihiro Nunome +1 位作者 Emi Kanayama Naruphun Chotechaung 《Journal of Civil Engineering and Architecture》 2025年第11期547-559,共13页
We analyzed accident factors in a 2020 ship collision case that occurred off Kii Oshima Island using the SHELL model analysis and examined corresponding collision prevention measures.The SHELL model analysis is a fram... We analyzed accident factors in a 2020 ship collision case that occurred off Kii Oshima Island using the SHELL model analysis and examined corresponding collision prevention measures.The SHELL model analysis is a framework for identifying accident factors related to human abilities and characteristics,hardware,software,and the environment.Beyond assessing the accident factors in each element,we also examined the interrelationship between humans and each element.This study highlights the importance of(1)training to enhance situational awareness,(2)improving decision-making skills,and(3)establishing structured decision-making procedures to prevent maritime collision accidents.Additionally,we considered safety measures through(4)hardware enhancements and(5)environmental measures.Furthermore,to prevent accidents,implementing measures grounded in(6)predictions is deemed effective.This study identified accident factors through prediction alongside the SHELL model analysis and proposed countermeasures based on the findings.By applying these predictions,more countermeasures can be derived,which,when combined strategically,can significantly aid in preventing maritime collision accidents. 展开更多
关键词 Maritime collision accidents SHELL model analysis prediction situational awareness decision-making ability
在线阅读 下载PDF
OpenPoly:A Polymer Database Empowering Benchmarking and MultipropertyPredictions
8
作者 Ji-Feng Wang Yu-Bo Sun +4 位作者 Qiu-Tong Chen Fei-Fan Ji Yuan-Yuan Song Meng-Yuan Ruan Ying Wang 《Chinese Journal of Polymer Science》 2025年第10期1749-1760,共12页
Advancing the integration of artificial intelligence and polymer science requires high-quality,open-source,and large-scale datasets.However,existing polymer databases often suffer from data sparsity,lack of polymer-pr... Advancing the integration of artificial intelligence and polymer science requires high-quality,open-source,and large-scale datasets.However,existing polymer databases often suffer from data sparsity,lack of polymer-property labels,and limited accessibility,hindering system-atic modeling across property prediction tasks.Here,we present OpenPoly,a curated experimental polymer database derived from extensive lit-erature mining and manual validation,comprising 3985 unique polymer-property data points spanning 26 key properties.We further develop a multi-task benchmarking framework that evaluates property prediction using four encoding methods and eight representative models.Our re-sults highlight that the optimized degree-of-polymerization encoding coupled with Morgan fingerprints achieves an optimal trade-off between computational cost and accuracy.In data-scarce condition,XGBoost outperforms deep learning models on key properties such as dielectric con-stant,glass transition temperature,melting point,and mechanical strength,achieving R2 scores of 0.65-0.87.To further showcase the practical utility of the database,we propose potential polymers for two energy-relevant applications:high temperature polymer dielectrics and fuel cell membranes.By offering a consistent and accessible benchmark and database,OpenPoly paves the way for more accurate polymer-property modeling and fosters data-driven advances in polymer genome engineering. 展开更多
关键词 Polymer database Polymer structure encoding Property prediction Functional reverse design Benchmark models
原文传递
Vibration signal predictions of damaged sensors on rotor blades based on operational modal analysis and virtual sensing
9
作者 Yuhan SUN Zhiguang SONG +2 位作者 Jie LI Guochen CAI Zefeng WANG 《Chinese Journal of Aeronautics》 2025年第6期462-486,共25页
Rotor blade is one of the most significant components of helicopters. But due to its highspeed rotation characteristics, it is difficult to collect the vibration signals during the flight stage.Moreover, sensors are h... Rotor blade is one of the most significant components of helicopters. But due to its highspeed rotation characteristics, it is difficult to collect the vibration signals during the flight stage.Moreover, sensors are highly susceptible to damage resulting in the failure of the measurement.In order to make signal predictions for the damaged sensors, an operational modal analysis(OMA) together with the virtual sensing(VS) technology is proposed in this paper. This paper discusses two situations, i.e., mode shapes measured by all sensors(both normal and damaged) can be obtained using OMA, and mode shapes measured by some sensors(only including normal) can be obtained using OMA. For the second situation, it is necessary to use finite element(FE) analysis to supplement the missing mode shapes of damaged sensor. In order to improve the correlation between the FE model and the real structure, the FE mode shapes are corrected using the local correspondence(LC) principle and mode shapes measured by some sensors(only including normal).Then, based on the VS technology, the vibration signals of the damaged sensors during the flight stage can be accurately predicted using the identified mode shapes(obtained based on OMA and FE analysis) and the normal sensors signals. Given the high degrees of freedom(DOFs) in the FE mode shapes, this approach can also be used to predict vibration data at locations without sensors. The effectiveness and robustness of the proposed method is verified through finite element simulation, experiment as well as the actual flight test. The present work can be further used in the fault diagnosis and damage identification for rotor blade of helicopters. 展开更多
关键词 Composite helicopter rotor blades Operational modal analysis Virtual sensing Vibration prediction Model updating Finite element method
原文传递
基于改进变分模态分解与Informer组合模型的风电功率多步预测研究
10
作者 郭晓鹏 赵琪 张国维 《现代电力》 北大核心 2026年第1期20-29,共10页
保证风电功率预测的准确性是提高风能利用效率、实现电力系统可持续发展的关键工作。因此,该文提出一种基于改进变分模态分解与Informer组合模型的风电功率多步预测模型。首先,采用随机森林模型对风速、风向、压强等原始气象因素进行筛... 保证风电功率预测的准确性是提高风能利用效率、实现电力系统可持续发展的关键工作。因此,该文提出一种基于改进变分模态分解与Informer组合模型的风电功率多步预测模型。首先,采用随机森林模型对风速、风向、压强等原始气象因素进行筛选。其次,通过鹈鹕优化算法改进后的变分模态分解算法对风电功率信号进行分解,从而提高风电序列预测精准性。第三,基于Informer模型对风电功率进行多步预测。最后,通过与其他模型进行对比分析,验证该模型在风电功率多步预测中的优越性。算例结果表明,基于改进变分模态分解与Informer组合模型的风电功率多步预测模型具有良好的预测性能,可为风电功率的预测提供参考。 展开更多
关键词 风电功率预测 随机森林 鹈鹕优化算法 信号分解 多步预测
原文传递
典型断层形变前兆异常的落实与思考
11
作者 薄万举 徐东卓 +1 位作者 李腊月 陈长云 《地震研究》 北大核心 2026年第1期65-74,共10页
对中国大陆自1966年邢台7.2级地震以来在各主要地震带建立的跨断层测量场地获得的断层形变资料进行了梳理,对其中出现的单项断层形变异常、群体性准同步断层形变异常的特点及其在地震分析预测中的应用分别给出了实例;利用预测100 km内1... 对中国大陆自1966年邢台7.2级地震以来在各主要地震带建立的跨断层测量场地获得的断层形变资料进行了梳理,对其中出现的单项断层形变异常、群体性准同步断层形变异常的特点及其在地震分析预测中的应用分别给出了实例;利用预测100 km内1年内可能发生7级以上强震的预测指标(即满足K≥5),对所有资料出现的巨大幅度的断层形变异常变化进行了检索,共得到5项异常(同一测量场地出现多个相关异常按1项计算),简称为“巨幅异常”。结果表明:5项巨幅异常中有3项符合7级以上强震的预测指标,分别对应了1976年唐山7.8级地震、1996年丽江7.0级地震和2008年汶川8.0级地震。最后给出了结论建议,供跨断层形变资料分析、跨断层场地维护改造、强震预测及相关对策研究等工作参考。 展开更多
关键词 断层形变 强震预测 形变 前兆异常
在线阅读 下载PDF
基于多模型障碍物轨迹融合预测的自动驾驶横纵向联合运动规划算法
12
作者 刘本学 左富豪 +3 位作者 张红军 侯俊峰 吴涛 李霞 《现代制造工程》 北大核心 2026年第1期74-86,共13页
针对传统运动规划算法中交通参与者的轨迹预测不适用于复杂行驶场景且未能与后续运动规划有效结合,以实现障碍物位置信息充分利用的问题,提出了一种基于多模型障碍物轨迹融合预测的自动驾驶横纵向联合运动规划算法。首先,通过选择恒定... 针对传统运动规划算法中交通参与者的轨迹预测不适用于复杂行驶场景且未能与后续运动规划有效结合,以实现障碍物位置信息充分利用的问题,提出了一种基于多模型障碍物轨迹融合预测的自动驾驶横纵向联合运动规划算法。首先,通过选择恒定加速度(Constant Acceleration,CA)模型与恒定转弯率和速度(Constant Turn Rate and Velocity,CTRV)模型分别作为长期预测模型和短期预测模型,进行交通参与者的轨迹预测,通过基于卡尔曼滤波器的方法将预测结果融合处理;其次,预测时域内的时空占用情况被栅格化,借助融合预测得到的障碍物轨迹,执行动态规划算法,以获取新的可行边界;然后,通过建立线性时变(Linear Time-Varying,LTV)车辆动力学模型,并对自车全局轨迹进行参数化表示,构建了经典的模型预测控制问题,借助二次规划实现横纵向联合运动规划,以得到符合预期的自车无碰撞运动;最后,使用基于CarSim软件和Simulink软件的验证平台进行了联合仿真,搭建了三车道行驶场景,结果表明,基于多模型障碍物轨迹融合预测的自动驾驶横纵向联合运动规划算法可以有效整合障碍物车辆的轨迹预测以及自车的横纵向联合运动生成任务,其中融合预测算法在处理连续变道场景时表现出更为快速的响应和更小的预测误差,为研究自动驾驶车辆在动态障碍物环境下的运动规划问题提供了参考。 展开更多
关键词 自动驾驶车辆 轨迹融合预测 卡尔曼滤波器 动态规划 可行边界 车辆动力学 模型预测控制
在线阅读 下载PDF
基于机器学习算法的雷州半岛桉树复层混交林土壤呼吸模拟
13
作者 竹万宽 王志超 +4 位作者 许宇星 黄润霞 陶怡 钟源源 杜阿朋 《林业科学》 北大核心 2026年第1期67-82,共16页
【目的】利用桉树复层混交林固定样地土壤呼吸及其1年期环境因子连续观测数据,构建并筛选多因子土壤呼吸预测模型,明确影响该地区人工林土壤呼吸时空变异的关键环境因素,为提升人工林碳排放模拟精度及大尺度预测模型的校准提供科学依据... 【目的】利用桉树复层混交林固定样地土壤呼吸及其1年期环境因子连续观测数据,构建并筛选多因子土壤呼吸预测模型,明确影响该地区人工林土壤呼吸时空变异的关键环境因素,为提升人工林碳排放模拟精度及大尺度预测模型的校准提供科学依据。【方法】以雷州半岛桉树-灰木莲复层混交林为研究对象,引入6种机器学习算法(随机森林、时间卷积神经网络、长短期记忆网络、支持向量机回归、极限学习机、BP神经网络)和2种传统经验模型(Q10模型、Gamma模型),在1 h和24 h尺度上模拟土壤呼吸变化,比较模型精度评价指标,筛选适合研究区的最优模型算法。【结果】桉树复层混交林土壤呼吸表现为雨季高于旱季,土壤呼吸累积通量在雨季为616.83 g·m^(-2),在旱季为319.81 g·m^(-2),全年为936.64 g·m^(-2),旱季土壤呼吸波动程度高于雨季。6种机器学习算法和2种经验模型均能成功模拟桉树复层混交林土壤呼吸变化,但机器学习模型模拟结果明显优于经验模型。机器学习算法中随机森林模型表现最稳定,当输入变量为土壤温、湿度双自变量时,决定系数R^(2)为0.89(训练集)和0.76(测试集),当输入变量增加土壤电导率、土壤热通量、空气温度、空气相对湿度、太阳总辐射、光合有效辐射后,模型决定系数R^(2)提高至0.99(训练集)和0.93(测试集)。除土壤温、湿度外,土壤电导率对土壤呼吸变化具有显著影响。【结论】桉树复层混交林土壤呼吸具有明显的旱雨季变化特征,机器学习算法相比于传统经验模型在预测土壤呼吸变化时更具优势,其中随机森林模型表现最佳;通过增加土壤电导率等输入变量能大幅提高随机森林模型的预测能力,考虑增加这些因素能更好地预测土壤呼吸的变化,为评估人工林碳收支状况提供可靠依据。 展开更多
关键词 土壤呼吸 预测模型 随机森林 桉树 复层混交林
在线阅读 下载PDF
组织蛋白酶F有潜力成为脑卒中风险预测血清生物标记物:GWAS数据库数据分析
14
作者 田梦 娄天伟 +1 位作者 张永臣 贾红玲 《中国组织工程研究》 北大核心 2026年第10期2662-2670,共9页
背景:研究证实组织蛋白酶与脑卒中之间存在关联,然而二者的因果关系尚不确定。目的:使用孟德尔随机化分析评估组织蛋白酶与脑卒中之间的因果关系。方法:组织蛋白酶数据来源于INTERVAL研究,脑卒中数据来源于GWAS数据库(由美国国家人类基... 背景:研究证实组织蛋白酶与脑卒中之间存在关联,然而二者的因果关系尚不确定。目的:使用孟德尔随机化分析评估组织蛋白酶与脑卒中之间的因果关系。方法:组织蛋白酶数据来源于INTERVAL研究,脑卒中数据来源于GWAS数据库(由美国国家人类基因组研究学会和欧洲生物信息学研究所联合开发),通过单变量和多变量孟德尔随机化方法,探讨不同类型的组织蛋白酶对脑卒中及其亚型发病风险的因果关系,采用逆方差加权法作为评估因果关联效应的主要方法,采用加权中位数法和MR-Egger回归来评估结果的可靠性和稳定性。结果与结论:①单变量孟德尔随机分析表明,较高的组织蛋白酶S水平对心源性栓塞性脑卒中的发生具有抑制作用(OR=0.901,95%CI:0.832-0.976,P=0.010),然而上述因果关系在反向孟德尔随机化分析中未达到统计学显著性。反向孟德尔随机分析表明,心源性栓塞性脑卒中可能导致组织蛋白酶L2水平下降(P=0.020,OR=0.984,95%CI:0.972-0.998),但该结果在多变量分析中未呈现统计学意义。一项使用9种组织蛋白酶作为变量的多变量分析显示,组织蛋白酶F水平升高会增加全因脑卒中和缺血性脑卒中的发病风险(OR=4.667,95%CI=1.000-21.782,P=0.050;OR=4.771,95%CI:1.044-21.804,P=0.044)。排除可能存在的混杂因素后,孟德尔随机化分析仍然显示组织蛋白酶F有潜力成为脑卒中的风险预测血清生物标志物。②研究主要基于国际数据库和欧洲人群数据进行分析,结果可为中国大型队列研究提供参考,为中国开展精准医学研究提供技术支持。然而,在借鉴过程中需注意中国人群的遗传背景、环境因素和生活方式等差异,开展符合中国人群特点的生物医学研究。 展开更多
关键词 组织蛋白酶 脑卒中 孟德尔随机化 多变量分析 风险预测 生物标记物
暂未订购
基于井数据驱动的储层厚度预测方法及其应用
15
作者 裴占松 金贤镐 +4 位作者 王春尧 崔建峰 石东义 王志强 左松林 《大庆石油地质与开发》 北大核心 2026年第1期87-92,共6页
提高已开发区块加密调整井方案编制的科学性与可操作性,精确预测储层厚度是核心任务之一。针对常规反距离加权插值算法在储层厚度预测中精度不足的问题,创新构建了权重反距离幂指数插值数学模型,该模型结合数据归一化和截断2步清洗,利... 提高已开发区块加密调整井方案编制的科学性与可操作性,精确预测储层厚度是核心任务之一。针对常规反距离加权插值算法在储层厚度预测中精度不足的问题,创新构建了权重反距离幂指数插值数学模型,该模型结合数据归一化和截断2步清洗,利用已知井的储层厚度数据,通过计算值与已知井间的绝对误差最小化,实现距离幂指数的优化,并考虑每个老井井点的权重。通过该模型,储层厚度的预测精度得到了显著提升,符合率达到85.3%,相比常规反距离加权插值法提高了15百分点。实际应用表明,权重反距离幂指数插值数学模型在密井网区块储层厚度预测中表现优异,能够较好地解决加密调整井设计中的精度要求问题,满足了单井设计工作需求。研究成果为储层厚度预测提供了一种高精度、可操作的技术方案,具有重要的应用价值。 展开更多
关键词 加密井 厚度预测 反距离 幂指数 权重系数
在线阅读 下载PDF
颞肌横截面积和颞肌厚度预测急性缺血性脑卒中患者肌肉衰减状态的研究
16
作者 曹磊 刘学春 +3 位作者 江伟 陈炎 严孙宏 杜静 《中国全科医学》 北大核心 2026年第8期997-1007,共11页
背景急性缺血性脑卒中(AIS)患者合并肌肉衰减状态与临床不良预后显著相关,因此,发掘简便易行且可操作性强的临床指标辅助筛查高危人群,已成为当前卒中康复与临床营养领域的交叉研究热点。目的探讨颞肌横截面积(TMA)和颞肌厚度(TMT)评估... 背景急性缺血性脑卒中(AIS)患者合并肌肉衰减状态与临床不良预后显著相关,因此,发掘简便易行且可操作性强的临床指标辅助筛查高危人群,已成为当前卒中康复与临床营养领域的交叉研究热点。目的探讨颞肌横截面积(TMA)和颞肌厚度(TMT)评估AIS患者肌肉衰减状态的可行性及临床价值。方法纳入2022年1月—2025年8月安徽医科大学第二附属医院收治的531例AIS患者(男347例,女184例),通过颅脑CT或MRI测量双侧TMA和TMT,并根据亚洲肌肉衰减症工作组(AWGS 2019)标准诊断肌肉衰减症。采用单因素及多因素Logistic回归分析筛选独立预测因素,构建预测模型并通过受试者工作特征曲线(ROC曲线)、校准曲线及临床决策曲线分析评估其效能。结果AIS患者肌肉衰减症患病率为19.96%(106/531),根据诊断标准将患者分为肌肉衰减组(n=106)与无肌肉衰减组(n=425)。肌肉衰减组患者TMA、TMT均低于无肌肉衰减组(P<0.001)。多因素Logistic回归分析结果显示,年龄(OR=1.717,95%CI=1.223~2.410)、美国国立卫生研究院卒中量表(NIHSS)评分(OR=3.213,95%CI=1.829~5.643)、营养风险筛查量表(NRS 2002)评分(OR=1.337,95%CI=1.045~1.711)及TMA(OR=0.781,95%CI=0.639~0.955)为AIS出现肌肉衰减症的独立影响因素(P<0.05)。为构建并验证肌肉衰减症风险预测模型,将所有研究对象按3∶1的比例随机分为训练集(n=398)与验证集(n=133)。基于多因素Logistic回归分析构建的最终模型公式为:Logit(P)=46.22122+0.08211×年龄+2.07856×(NRS 2002=1)-0.14480×TMA+18.32780×(NIHSS=1),并生成预测肌肉衰减症风险的列线图。预测模型在训练集中的ROC曲线下面积(AUC)为0.884(95%CI=0.782~0.947),在验证集中的AUC为0.808(95%CI=0.679~0.882)。校准曲线显示模型预测概率与实际概率一致性良好,临床决策曲线表明模型在广泛阈值概率范围内具有临床净获益。结论颞肌测量是评估AIS患者肌肉衰减状态的有效方法,基于年龄、NIHSS评分、NRS 2002评分和TMA构建的预测模型具有良好的判别效能与临床适用性,可作为AIS患者肌肉衰减症的早期识别的实用工具。 展开更多
关键词 缺血性脑卒中 颞肌 肌肉衰减症 预测模型 影响因素分析
暂未订购
基于时间序列高效卷积神经网络的农机备件需求预测方法
17
作者 张智刚 张嘉锐 +3 位作者 张闻宇 何维胜 潘健坤 吴思进 《农业机械学报》 北大核心 2026年第1期300-310,共11页
农机备件是农机维修的重要基础,是农机故障及时维修和农业生产正常开展的必要保障,因此,对农机备件需求量的精准预测至关重要。然而,农机备件的需求量具有非平稳性、非线性、多零值、波动大等特点,使得预测任务变得困难。本文提出了一... 农机备件是农机维修的重要基础,是农机故障及时维修和农业生产正常开展的必要保障,因此,对农机备件需求量的精准预测至关重要。然而,农机备件的需求量具有非平稳性、非线性、多零值、波动大等特点,使得预测任务变得困难。本文提出了一种基于卷积神经网络的时间序列高效卷积网络(Time series efficient convolution network,TECNet),用于农机备件需求量的预测。该模型首先利用快速傅里叶变换对原始一维序列进行周期性提取,然后根据周期性构建二维时间序列卷积模块进行特征提取,最后将二维特征重塑回一维特征,并通过线性变换得到预测值。利用某农机备件供应商4种不同备件类型的销售数据进行了评估验证,并引入均方根缩放误差作为衡量指标,以统一不同序列间的预测效果。试验结果表明,提出的模型预测效果显著优于其他参考模型,4种不同备件需求量预测的均方根缩放误差分别为0.775、1.349、0.822、0.205,均表现出良好的预测效果。该模型能有效考虑时间序列中的时间依赖关系,具有捕捉时间序列数据中非线性模式的能力,对不同农机备件类型的预测任务均能取得良好的效果,可为预测农机备件需求量提供参考。 展开更多
关键词 农机备件 需求预测 时序预测 高效卷积神经网络
在线阅读 下载PDF
干旱区含氟地下水微生物群落特征及其环境响应
18
作者 李玲 范廷玉 +2 位作者 周金龙 杨长德 宫云晓 《中国环境科学》 北大核心 2026年第1期354-364,共11页
为查明干旱区含氟地下水中微生物群落结构、功能特征及其与水化学环境因子之间的作用关系,以和田河流域绿洲区LF组(ρ(F^(-))≤1.0mg/L)、MF组(1.0mg/L<ρ(F^(-))≤2.0mg/L)、HF组(ρ(F^(-))>2.0mg/L)3组地下水为研究对象,采用16s... 为查明干旱区含氟地下水中微生物群落结构、功能特征及其与水化学环境因子之间的作用关系,以和田河流域绿洲区LF组(ρ(F^(-))≤1.0mg/L)、MF组(1.0mg/L<ρ(F^(-))≤2.0mg/L)、HF组(ρ(F^(-))>2.0mg/L)3组地下水为研究对象,采用16s RNA高通量测序技术探究不同氟(F^(-))含量水平下地下水细菌群落多样性、结构及功能差异.结果表明:(1)3组地下水中细菌群落多样性指数受F^(-)含量影响较小,但群落结构差异明显.(2)变形菌门是3组地下水的优势菌门,相对丰度分别为67.61%(LF组)、52.02%(MF组)、41.34%(HF组);嘉利翁氏菌属、氢噬胞菌属、硝化螺旋菌属、Ferritrophicum等在LF组或MF组的相对丰度远高于HF组;鞘脂菌属是HF组的优势菌属,在LF组和MF组中相对丰度很低.(3)F^(-)、HCO_(3)^(-)、Ca^(2+)、NO_(3)^(-)和Cl~-为影响含氟地下水细菌群落结构的关键化学指标.(4)根据PICRUSt2功能预测,3组地下水中主要功能基因均为新陈代谢功能,与LF组相比,HF组的细菌在参与辅因子丰度和维生素代谢的途径中活性显著降低.(5)HF组相对丰度较高的嘉利翁氏菌属、氢噬胞菌属、硝化螺旋菌属等化能自养型固碳微生物均与F^(-)和HCO_(3)^(-)含量呈显著负相关性,与Ca^(2+)含量呈显著正相关(P<0.01).绿洲区地下水中微生物群落结构、功能差异及其与环境因子的相关性,体现了干旱区含氟地下水中化能自养型固碳微生物对F^(-)的迁移与转化过程有显著影响,其相对丰度同时也受到F^(-)含量的影响. 展开更多
关键词 含氟地下水 群落结构 功能预测 化能自养型固碳微生物
在线阅读 下载PDF
常见肠道菌群预测脓毒症患儿临床预后的价值
19
作者 翟冰 杨静 陈一蕊 《河南医学研究》 2026年第1期114-118,共5页
目的分析常见肠道菌群预测脓毒症患儿临床预后的价值。方法选取2019年1月至2023年7月南阳市中心医院收治的475例脓毒症患儿,于入院24 h内检测其常见肠道菌群(双歧杆菌、类杆菌、肠球菌及葡萄球菌)含量;所有患儿均接受规范化治疗,并根据... 目的分析常见肠道菌群预测脓毒症患儿临床预后的价值。方法选取2019年1月至2023年7月南阳市中心医院收治的475例脓毒症患儿,于入院24 h内检测其常见肠道菌群(双歧杆菌、类杆菌、肠球菌及葡萄球菌)含量;所有患儿均接受规范化治疗,并根据其28 d内存活情况作为其临床预后的评价标准,分为存活组与病死组;统计并比较两组一般资料、入院时实验室指标及常见肠道菌群含量,以Cox回归分析常见肠道菌群对脓毒症患儿临床预后的影响,以受试者工作特征(ROC)曲线评价常见肠道菌群预测脓毒症患儿临床预后的价值。结果475例患儿28 d内91例病死,占19.16%;与存活组相比,病死组血浆C反应蛋白、血乳酸水平较高,粪便中双歧杆菌、类杆菌含量较少,肠球菌、葡萄球菌含量较多,差异有统计学意义(P<0.05);Cox回归分析显示,C反应蛋白、血乳酸水平高及肠球菌、葡萄球菌含量多是脓毒症患儿病死的危险因素(HR>1,P<0.05),双歧杆菌、类杆菌含量多是脓毒症患儿病死的保护因素(HR<1,P<0.05);双歧杆菌、葡萄球菌含量单独检测及其与类杆菌、肠球菌联合检测对脓毒症患儿临床预后均有一定预测价值,且联合预测价值更高。结论常见肠道菌群与脓毒症患儿临床预后具有密切关系,其含量有助于辅助临床早期预测患儿临床预后情况。 展开更多
关键词 脓毒症 肠道菌群 预后 预测
暂未订购
不同身体测量指标与脑卒中发病风险的巢式病例对照研究
20
作者 王小楠 阮晓楠 +7 位作者 刘杨 吴抗 邱桦 刘庆平 宋家慧 高娇娇 周弋 刘晓琳 《中国全科医学》 北大核心 2026年第8期1020-1028,共9页
背景随着我国经济社会发展,超重/肥胖患病率显著上升,成为重大公共卫生问题。目前,常用的肥胖判断指标BMI和腰围(WC)无法区分皮下脂肪和内脏脂肪,而内脏脂肪与慢性病密切相关。因此,研究新型身体测量指标与脑卒中发病风险的相关性具有... 背景随着我国经济社会发展,超重/肥胖患病率显著上升,成为重大公共卫生问题。目前,常用的肥胖判断指标BMI和腰围(WC)无法区分皮下脂肪和内脏脂肪,而内脏脂肪与慢性病密切相关。因此,研究新型身体测量指标与脑卒中发病风险的相关性具有重要意义。目的探索不同身体测量指标与脑卒中发生的相关性及发生风险预测能力,旨在为社区开展慢性病健康管理及心脑血管疾病监测提供依据。方法基于浦东新区慢性病及其危险因素监测队列研究项目,采用巢式病例对照研究设计,选取参加2016年和2019年现场调查的研究对象,观察随访至2023-12-31,以发生脑卒中研究对象作为病例组,未发生者作为对照组。采用统一设计的流行病学调查表收集一般人口学资料、既往疾病史及家族史、相关疾病主要危险因素。收集体格检查和实验室检查指标。采用Logistic回归模型和限制性立方样条(RCS)回归模型分析不同身体测量指标与脑卒中之间的关联,并利用受试者工作特征(ROC)曲线评价不同身体测量指标对脑卒中的预测能力,采用DeLong检验进行两两比较。结果纳入分析的15440名研究对象中,共有930名发生脑卒中。BMI、WC、身体圆度指数(BRI)和中国人内脏脂肪指数(CVAI)每升高1个单位,脑卒中发生风险分别增加3.8%(OR=1.038,95%CI=1.017~1.058)、1.2%(OR=1.012,95%CI=1.004~1.020)、10.6%(OR=1.106,95%CI=1.042~1.174)、0.5%(OR=1.005,95%CI=1.003~1.007)(P<0.05)。RCS回归模型分析发现,BMI、WC和BRI与脑卒中发生风险之间存在线性剂量-反应关系(P_(总)<0.05,P_(非线性)>0.05),CVAI与脑卒中发生风险之间存在非线性剂量-反应关系(P_(总)<0.001,P_(非线性)=0.009)。ROC曲线结果显示,CVAI预测脑卒中发生风险的能力(AUC=0.66)优于BMI(Z=-12.713,P<0.001)、WC(Z=-13.512,P<0.001)和BRI(Z=-8.696,P<0.001)。结论BMI、WC、BRI和CVAI与脑卒中发病风险存在相关性。CVAI预测脑卒中发生风险优于BMI、WC和BRI,因此可作为预测脑卒中发生风险的适用指标。同时提示基层慢性病健康管理要进行综合管理,并做好体重管理,重点关注内脏肥胖的影响。 展开更多
关键词 脑卒中 内脏脂肪 巢式病例对照 LOGISTIC回归模型 风险预测
暂未订购
上一页 1 2 250 下一页 到第
使用帮助 返回顶部