Photovoltaic (PV) modules, as essential components of solar power generation systems, significantly influence unitpower generation costs.The service life of these modules directly affects these costs. Over time, the p...Photovoltaic (PV) modules, as essential components of solar power generation systems, significantly influence unitpower generation costs.The service life of these modules directly affects these costs. Over time, the performanceof PV modules gradually declines due to internal degradation and external environmental factors.This cumulativedegradation impacts the overall reliability of photovoltaic power generation. This study addresses the complexdegradation process of PV modules by developing a two-stage Wiener process model. This approach accountsfor the distinct phases of degradation resulting from module aging and environmental influences. A powerdegradation model based on the two-stage Wiener process is constructed to describe individual differences inmodule degradation processes. To estimate the model parameters, a combination of the Expectation-Maximization(EM) algorithm and the Bayesian method is employed. Furthermore, the Schwarz Information Criterion (SIC) isutilized to identify critical change points in PV module degradation trajectories. To validate the universality andeffectiveness of the proposed method, a comparative analysis is conducted against other established life predictiontechniques for PV modules.展开更多
Accurate prediction of coal and gas outburst(CGO)hazards is paramount in gas disaster prevention and control.This paper endeavors to overcome the constraints posed by traditional prediction indexes when dealing with C...Accurate prediction of coal and gas outburst(CGO)hazards is paramount in gas disaster prevention and control.This paper endeavors to overcome the constraints posed by traditional prediction indexes when dealing with CGO incidents under low gas pressure conditions.In pursuit of this objective,we have studied and established a mechanical model of the working face under abnormal stress and the excitation energy conditions of CGO,and proposed a method for predicting the risk of CGO under abnormal stress.On site application verification shows that when a strong outburst hazard level prediction is issued,there is a high possibility of outburst disasters occurring.In one of the three locations where we predicted strong outburst hazards,a small outburst occurred,and the accuracy of the prediction was higher than the traditional drilling cuttings index S and drilling cuttings gas desorption index q.Finally,we discuss the mechanism of CGO under the action of stress anomalies.Based on the analysis of stress distribution changes and energy accumulation characteristics of coal under abnormal stress,this article believes that the increase in outburst risk caused by high stress abnormal gradient is mainly due to two reasons:(1)The high stress abnormal gradient leads to an increase in the plastic zone of the coal seam.After the working face advances,it indirectly leads to an increase in the gas expansion energy that can be released from the coal seam before reaching a new stress equilibrium.(2)Abnormal stress leads to increased peak stress of coal body in front of working face.When coal body in elastic area transforms to plastic area,its failure speed is accelerated,which induces accelerated gas desorption and aggravates the risk of outburst.展开更多
The mathematical method of ZTD(zenith tropospheric delay)spatial prediction is important for precise ZTD derivation and real-time precise point positioning(PPP)augmentation.This paper analyses the performance of the p...The mathematical method of ZTD(zenith tropospheric delay)spatial prediction is important for precise ZTD derivation and real-time precise point positioning(PPP)augmentation.This paper analyses the performance of the popular optimal function coefficient(OFC),sphere cap harmonic analysis(SCHA),kriging and inverse distance weighting(IDW)interpolation in ZTD spatial prediction and Beidou satellite navigation system(BDS)-PPP augmentation over China.For ZTD spatial prediction,the average time consumption of the OFC,kriging,and IDW methods is less than 0.1 s,which is significantly better than that of the SCHA method(63.157 s).The overall ZTD precision of the OFC is 3.44 cm,which outperforms those of the SCHA(9.65 cm),Kriging(10.6 cm),and IDW(11.8 cm)methods.We confirmed that the low performance of kriging and IDW is caused by their weakness in modelling ZTD variation in the vertical direction.To mitigate such deficiencies,an elevation normalization factor(ENF)is introduced into the kriging and IDW models(kriging-ENF and IDW-ENF).The overall ZTD spatial prediction accuracies of IDW-ENF and kriging-ENF are 2.80 cm and 2.01 cm,respectively,which are both superior to those of the OFC and the widely used empirical model GPT3(4.92 cm).For BDS-PPP enhancement,the ZTD provided by the kriging-ENF,IDW-ENF and OFC as prior constraints can effectively reduce the convergence time.Compared with unconstrained BDS-PPP,our proposed kriging-ENF outperforms IDW-ENF and OFC by reducing the horizontal and vertical convergence times by approximately 13.2%and 5.8%in Ningxia and 30.4%and 7.84%in Guangdong,respectively.These results indicate that kriging-ENF is a promising method for ZTD spatial prediction and BDS-PPP enhancement over China.展开更多
Wellbore instability is one of the significant challenges in the drilling engineering and during the development of carbonate reservoirs,especially with open-hole completion.The problems of wellbore instability such a...Wellbore instability is one of the significant challenges in the drilling engineering and during the development of carbonate reservoirs,especially with open-hole completion.The problems of wellbore instability such as downhole collapse and silt deposit in the fractured carbonate reservoir of Tarim Basin(Ordovician)are severe.Solid destabilization and production(SDP)was proposed to describe this engineering problem of carbonate reservoirs.To clarify the mechanism and mitigate potential borehole instability problems,we conducted particle size distribution(PSD)analysis,X-ray diffraction(XRD)analysis,triaxial compression tests,and micro-scale sand production tests based on data analysis.We found that the rock fragments and silt in the wellbore came from two sources:one from the wellbore collapse in the upper unplugged layers and the other from the production of sand particles carried by the fluid in the productive layers.Based on the experimental study,a novel method combining a geomechanical model and microscopic sand production model was proposed to predict wellbore instability and analyze its influencing factors.The critical condition and failure zone predicted by the prediction model fit well with the field observations.According to the prediction results,the management and prevention measures of wellbore instability in carbonate reservoirs were proposed.It is suggested to optimize the well track in new drilling wells while upgrading the production system in old wells.This study is of great guiding significance for the optimization of carbonate solid control and it improves the understanding of the sand production problems in carbonate reservoirs.展开更多
Stock price prediction is a typical complex time series prediction problem characterized by dynamics,nonlinearity,and complexity.This paper introduces a generative adversarial network model that incorporates an attent...Stock price prediction is a typical complex time series prediction problem characterized by dynamics,nonlinearity,and complexity.This paper introduces a generative adversarial network model that incorporates an attention mechanism(GAN-LSTM-Attention)to improve the accuracy of stock price prediction.Firstly,the generator of this model combines the Long and Short-Term Memory Network(LSTM),the Attention Mechanism and,the Fully-Connected Layer,focusing on generating the predicted stock price.The discriminator combines the Convolutional Neural Network(CNN)and the Fully-Connected Layer to discriminate between real stock prices and generated stock prices.Secondly,to evaluate the practical application ability and generalization ability of the GAN-LSTM-Attention model,four representative stocks in the United States of America(USA)stock market,namely,Standard&Poor’s 500 Index stock,Apple Incorporatedstock,AdvancedMicroDevices Incorporatedstock,and Google Incorporated stock were selected for prediction experiments,and the prediction performance was comprehensively evaluated by using the three evaluation metrics,namely,mean absolute error(MAE),root mean square error(RMSE),and coefficient of determination(R2).Finally,the specific effects of the attention mechanism,convolutional layer,and fully-connected layer on the prediction performance of the model are systematically analyzed through ablation study.The results of experiment show that the GAN-LSTM-Attention model exhibits excellent performance and robustness in stock price prediction.展开更多
Landslide susceptibility prediction(LSP)is significantly affected by the uncertainty issue of landslide related conditioning factor selection.However,most of literature only performs comparative studies on a certain c...Landslide susceptibility prediction(LSP)is significantly affected by the uncertainty issue of landslide related conditioning factor selection.However,most of literature only performs comparative studies on a certain conditioning factor selection method rather than systematically study this uncertainty issue.Targeted,this study aims to systematically explore the influence rules of various commonly used conditioning factor selection methods on LSP,and on this basis to innovatively propose a principle with universal application for optimal selection of conditioning factors.An'yuan County in southern China is taken as example considering 431 landslides and 29 types of conditioning factors.Five commonly used factor selection methods,namely,the correlation analysis(CA),linear regression(LR),principal component analysis(PCA),rough set(RS)and artificial neural network(ANN),are applied to select the optimal factor combinations from the original 29 conditioning factors.The factor selection results are then used as inputs of four types of common machine learning models to construct 20 types of combined models,such as CA-multilayer perceptron,CA-random forest.Additionally,multifactor-based multilayer perceptron random forest models that selecting conditioning factors based on the proposed principle of“accurate data,rich types,clear significance,feasible operation and avoiding duplication”are constructed for comparisons.Finally,the LSP uncertainties are evaluated by the accuracy,susceptibility index distribution,etc.Results show that:(1)multifactor-based models have generally higher LSP performance and lower uncertainties than those of factors selection-based models;(2)Influence degree of different machine learning on LSP accuracy is greater than that of different factor selection methods.Conclusively,the above commonly used conditioning factor selection methods are not ideal for improving LSP performance and may complicate the LSP processes.In contrast,a satisfied combination of conditioning factors can be constructed according to the proposed principle.展开更多
Negative logarithm of the acid dissociation constant(pK_(a))significantly influences the absorption,dis-tribution,metabolism,excretion,and toxicity(ADMET)properties of molecules and is a crucial indicator in drug rese...Negative logarithm of the acid dissociation constant(pK_(a))significantly influences the absorption,dis-tribution,metabolism,excretion,and toxicity(ADMET)properties of molecules and is a crucial indicator in drug research.Given the rapid and accurate characteristics of computational methods,their role in predicting drug properties is increasingly important.Although many pK_(a) prediction models currently exist,they often focus on enhancing model precision while neglecting interpretability.In this study,we present GraFpKa,a pK_(a) prediction model using graph neural networks(GNNs)and molecular finger-prints.The results show that our acidic and basic models achieved mean absolute errors(MAEs)of 0.621 and 0.402,respectively,on the test set,demonstrating good predictive performance.Notably,to improve interpretability,GraFpKa also incorporates Integrated Gradients(IGs),providing a clearer visual description of the atoms significantly affecting the pK_(a) values.The high reliability and interpretability of GraFpKa ensure accurate pKa predictions while also facilitating a deeper understanding of the relation-ship between molecular structure and pK_(a) values,making it a valuable tool in the field of pK_(a) prediction.展开更多
RNAs have important biological functions and the functions of RNAs are generally coupled to their structures, especiallytheir secondary structures. In this work, we have made a comprehensive evaluation of the performa...RNAs have important biological functions and the functions of RNAs are generally coupled to their structures, especiallytheir secondary structures. In this work, we have made a comprehensive evaluation of the performances of existingtop RNA secondary structure prediction methods, including five deep-learning (DL) based methods and five minimum freeenergy (MFE) based methods. First, we made a brief overview of these RNA secondary structure prediction methods.Afterwards, we built two rigorous test datasets consisting of RNAs with non-redundant sequences and comprehensivelyexamined the performances of the RNA secondary structure prediction methods through classifying the RNAs into differentlength ranges and different types. Our examination shows that the DL-based methods generally perform better thanthe MFE-based methods for RNAs with long lengths and complex structures, while the MFE-based methods can achievegood performance for small RNAs and some specialized MFE-based methods can achieve good prediction accuracy forpseudoknots. Finally, we provided some insights and perspectives in modeling RNA secondary structures.展开更多
To tackle the difficulties of the point prediction in quantifying the reliability of landslide displacement prediction,a data-driven combination-interval prediction method(CIPM)based on copula and variational-mode-dec...To tackle the difficulties of the point prediction in quantifying the reliability of landslide displacement prediction,a data-driven combination-interval prediction method(CIPM)based on copula and variational-mode-decomposition associated with kernel-based-extreme-learningmachine optimized by the whale optimization algorithm(VMD-WOA-KELM)is proposed in this paper.Firstly,the displacement is decomposed by VMD to three IMF components and a residual component of different fluctuation characteristics.The key impact factors of each IMF component are selected according to Copula model,and the corresponding WOA-KELM is established to conduct point prediction.Subsequently,the parametric method(PM)and non-parametric method(NPM)are used to estimate the prediction error probability density distribution(PDF)of each component,whose prediction interval(PI)under the 95%confidence level is also obtained.By means of the differential evolution algorithm(DE),a weighted combination model based on the PIs is built to construct the combination-interval(CI).Finally,the CIs of each component are added to generate the total PI.A comparative case study shows that the CIPM performs better in constructing landslide displacement PI with high performance.展开更多
The Stackelberg prediction game(SPG)is a bilevel optimization frame-work for modeling strategic interactions between a learner and a follower.Existing meth-ods for solving this problem with general loss functions are ...The Stackelberg prediction game(SPG)is a bilevel optimization frame-work for modeling strategic interactions between a learner and a follower.Existing meth-ods for solving this problem with general loss functions are computationally expensive and scarce.We propose a novel hyper-gradient type method with a warm-start strategy to address this challenge.Particularly,we first use a Taylor expansion-based approach to obtain a good initial point.Then we apply a hyper-gradient descent method with an ex-plicit approximate hyper-gradient.We establish the convergence results of our algorithm theoretically.Furthermore,when the follower employs the least squares loss function,our method is shown to reach an e-stationary point by solving quadratic subproblems.Numerical experiments show our algorithms are empirically orders of magnitude faster than the state-of-the-art.展开更多
Rail corrugation, as a prevalent type of rail damage in heavy railways, induces diseases in the track structure. In order to ensure the safe operation of trains, an improved whale optimization algorithm is proposed to...Rail corrugation, as a prevalent type of rail damage in heavy railways, induces diseases in the track structure. In order to ensure the safe operation of trains, an improved whale optimization algorithm is proposed to optimize the rail corrugation evolution trend prediction model of the least squares support vector machine (IPCA-ELWOA-LSSVM). The elite reverse learning combined with the Lévy flight strategy is introduced to improve the whale optimization algorithm. The improved WOA (ELWOA) algorithm is used to continuously optimize the kernel parameter σ and the normalization parameter γ in the LSSVM model. Finally, the improved prediction model is validated using data from a domestic heavy-duty railway experimental line database and compared with the prediction model before optimization and the other commonly used models. The experimental results show that the ELWOA-LSSVM prediction model has the highest accuracy, which proves that the proposed method has high accuracy in predicting the rail corrugation evolution trend.展开更多
The Canglangpu Formation in the JT1 well area of the Sichuan Basin exhibits strong lateral heterogeneity and complex overpressure mechanisms, leading to ambiguous pore pressure distribution characteristics. Convention...The Canglangpu Formation in the JT1 well area of the Sichuan Basin exhibits strong lateral heterogeneity and complex overpressure mechanisms, leading to ambiguous pore pressure distribution characteristics. Conventional prediction methods, such as the Equivalent Depth Method, are either inapplicable or yield unsatisfactory results (e.g., Fillippone’s method), contributing to frequent drilling incidents like gas kick, overfl ow, and lost circulation, which hinder the safe and effi cient exploration of natural gas. To address these challenges, this paper integrates lithology, physical properties, and overpressure mechanisms of the Canglangpu Formation. From a petrophysical perspective, a pore pressure prediction model independent of lithology and overpressure mechanisms was developed by combining the poroelasticity theory, linear elastic Hooke’s Law, and Biot’s eff ective stress theory, with an analysis of the relationship between carbonate rock strain, external stress, and internal pore pressure. Unlike conventional methods, the model does not rely on the establishment of a normal compaction trend line. Pre-stack seismic inversion was applied to achieve 3D pore pressure prediction for the formation. Results indicate high accuracy, with a relative error of less than 5% compared to measured data, and strong consistency with actual drilling events. The proposed method provides robust technical support for pore pressure prediction in carbonate formations and drilling geological design.展开更多
Accurate and efficient prediction of the distribution of surface loads on buildings subjected to explosive effects is crucial for rapidly calculating structural dynamic responses,establishing effective protective meas...Accurate and efficient prediction of the distribution of surface loads on buildings subjected to explosive effects is crucial for rapidly calculating structural dynamic responses,establishing effective protective measures,and designing civil defense engineering solutions.Current state-of-the-art methods face several issues:Experimental research is difficult and costly to implement,theoretical research is limited to simple geometries and lacks precision,and direct simulations require substantial computational resources.To address these challenges,this paper presents a data-driven method for predicting blast loads on building surfaces.This approach increases both the accuracy and computational efficiency of load predictions when the geometry of the building changes while the explosive yield remains constant,significantly improving its applicability in complex scenarios.This study introduces an innovative encoder-decoder graph neural network model named BlastGraphNet,which uses a message-passing mechanism to predict the overpressure and impulse load distributions on buildings with conventional and complex geometries during explosive events.The model also facilitates related downstream applications,such as damage mode identification and rapid assessment of virtual city explosions.The calculation results indicate that the prediction error of the model for conventional building tests is less than 2%,and its inference speed is 3-4 orders of magnitude faster than that of state-of-the-art numerical methods.In extreme test cases involving buildings with complex geometries and building clusters,the method achieved high accuracy and excellent generalizability.The strong adaptability and generalizability of BlastGraphNet confirm that this novel method enables precise real-time prediction of blast loads and provides a new paradigm for damage assessment in protective engineering.展开更多
Understanding the wind power potential of a site is essential for designing an optimal wind power conditioning system. The Weibull distribution and wind speed extrapolation methods are powerful mathematical tools for ...Understanding the wind power potential of a site is essential for designing an optimal wind power conditioning system. The Weibull distribution and wind speed extrapolation methods are powerful mathematical tools for efficiently predicting the frequency distribution of wind speeds at a site. Hourly wind speed and direction data were collected from the National Aeronautics and Space Administration (NASA) website for the period 2013 to 2023. MATLAB software was used to calculate the distribution parameters using the graphical method and to plot the corresponding curves, while WRPLOTView software was used to construct the wind rose. The average wind speed obtained is 3.33 m/s and can reach up to 5.71 m/s at a height of 100 meters. The wind energy is estimated to be 1315.30 kWh/m2 at a height of 100 meters. The wind rose indicates the prevailing winds (ranging from 3.60 m/s to 5.70 m/s) in the northeast-east direction.展开更多
The acquisition,analysis,and prediction of the radar cross section(RCS)of a target have extremely important strategic significance in the military.However,the RCS values at all azimuths are hardly accessible for non-c...The acquisition,analysis,and prediction of the radar cross section(RCS)of a target have extremely important strategic significance in the military.However,the RCS values at all azimuths are hardly accessible for non-cooperative targets,due to the limitations of radar observation azimuth and detection resources.Despite their efforts to predict the azimuth-dimensional RCS value,traditional methods based on statistical theory fails to achieve the desired results because of the azimuth sensitivity of the target RCS.To address this problem,an improved neural basis expansion analysis for interpretable time series forecasting(N-BEATS)network considering the physical model prior is proposed to predict the azimuth-dimensional RCS value accurately.Concretely,physical model-based constraints are imposed on the network by constructing a scattering-center module based on the target scattering-center model.Besides,a superimposed seasonality module is involved to better capture high-frequency information,and augmenting the training set provides complementary information for learning predictions.Extensive simulations and experimental results are provided to validate the effectiveness of the proposed method.展开更多
Permeability is affected by complex factors such as the subsurface geological structure and porosity-permeability correlation.For highly heterogeneous reservoirs with complex pore structures,it is extremely challengin...Permeability is affected by complex factors such as the subsurface geological structure and porosity-permeability correlation.For highly heterogeneous reservoirs with complex pore structures,it is extremely challenging to spatially characterize(predict)permeability using seismic data.The conventional way of permeability prediction intends to convert underground refl ection data into the elastic parameters sensitive to underground fluids,build a universal low-dimensional template via petrophysical modeling and ultimately deliver spatial prediction of permeability.However,this method is restrained by the actual subsurface condition,selected well-logging sensitive parameters and the accuracy of the computed elastic parameters and fails to simulate the petrophysical mechanisms of complex reservoir permeability,which reduces the permeability prediction accuracy.The method proposed in this paper combines petrophysics and artificial intelligence and integrates multiple types of information to build the high-dimensional petrophysical template for permeability,in an attempt to improve the spatial characterization and prediction accuracy of permeability.The field testing demonstrates the high application performance and effective improvement in prediction accuracy and fluvial channel characterization.展开更多
Seasonal prediction of summer rainfall in China plays a crucial role in decision-making,environmental protection,and socio-economic development,while it currently has a low prediction skill.We developed a deep learnin...Seasonal prediction of summer rainfall in China plays a crucial role in decision-making,environmental protection,and socio-economic development,while it currently has a low prediction skill.We developed a deep learning-based seasonal prediction bias correction method for summer rainfall in China.Based on prediction fields from the flexible Global Ocean-Atmosphere-Land System Model finite volume version 2(FGOALS-f2),we optimized the loss function of U-Net,trained with different hyperparameters,and selected the optimum model.U-Net model can extract multi-scale feature information and preserve spatial information,making it suitable for processing meteorological data.With this endto-end model,the precipitation distribution can be obtained directly without using the traditional method of data dimensionality reduction(e.g.,Empirical Orthogonal Function),which could maximize the retention of spatio-temporal information of the input data.Optimization of the loss function enhances the prediction results and mitigates model overfitting.The independent prediction shows a significant skill improvement measured by the anomalous correlation coefficient score.The skill has an average value of 0.679 in China(0°–63°N,73°–133°E)and 0.691 in the region of the Chinese mainland,which significantly improves the dynamical prediction skill by 1357%and 4836%.This study suggests that the deep learning(U-Net)-based seasonal prediction bias correction method is a promising approach for improving rainfall prediction of the dynamical model.展开更多
The Tarim Basin has revealed numerous tight sandstone oil and gas reservoirs.The tidal fl at zone in the Shunbei area is currently in the detailed exploration stage,requiring a comprehensive description of the sand bo...The Tarim Basin has revealed numerous tight sandstone oil and gas reservoirs.The tidal fl at zone in the Shunbei area is currently in the detailed exploration stage,requiring a comprehensive description of the sand body distribution characteristics for rational exploration well deployment.However,using a single method for sand body prediction has yielded poor results.Seismic facies analysis can eff ectively predict the macro-development characteristics of sedimentary sand bodies but lacks the resolution to capture fine details.In contrast,single-well sedimentary facies analysis can describe detailed sand body development but struggles to reveal broader trends.Therefore,this study proposes a method that combines seismic facies analysis with single-well sedimentary microfacies analysis,using the lower section of the Kepingtage Formation in the Shunbei area as a case study.First,seismic facies were obtained through unsupervised vector quantization to control the macro-distribution characteristics of sand bodies,while principal component analysis(PCA)was applied to improve the depiction of fine sand body details from seismic attributes.Based on 3D seismic data,well-logging data,and geological interpretation results,a detailed structural interpretation was performed to establish a high-precision stratigraphic framework,thereby enhancing the accuracy of sand body prediction.Seismic facies analysis was then conducted to obtain the macro-distribution characteristics of the sand bodies.Subsequently,core data and logging curves from individual wells were used to clarify the vertical development characteristics of tidal channels and sandbars.Next,PCA was employed to select the seismic attributes most sensitive to sand bodies in diff erent sedimentary facies.Results indicate that RMS amplitude in the subtidal zone and instantaneous phase in the intertidal zone are the most sensitive to sand bodies.A comparative analysis of individual seismic attributes for sand body characterization revealed that facies-based delineation improved the accuracy of sand body identification,eff ectively capturing their contours and shapes.This method,which integrates seismic facies,single-well sedimentary microfacies,and machine learning techniques,enhances the precision of sand body characterization and off ers a novel approach to sand body prediction.展开更多
Seasonal precipitation has always been a key focus of climate prediction.As a dynamic-statistical combined method,the existing observational constraint correction establishes a regression relationship between the nume...Seasonal precipitation has always been a key focus of climate prediction.As a dynamic-statistical combined method,the existing observational constraint correction establishes a regression relationship between the numerical model outputs and historical observations,which can partly predict seasonal precipitation.However,solving a nonlinear problem through linear regression is significantly biased.This study implements a nonlinear optimization of an existing observational constrained correction model using a Light Gradient Boosting Machine(LightGBM)machine learning algorithm based on output from the Beijing National Climate Center Climate System Model(BCC-CSM)and station observations to improve the prediction of summer precipitation in China.The model was trained using a rolling approach,and LightGBM outperformed Linear Regression(LR),Extreme Gradient Boosting(XGBoost),and Categorical Boosting(CatBoost).Using parameter tuning to optimize the machine learning model and predict future summer precipitation using eight different predictors in BCC-CSM,the mean Anomaly Correlation Coefficient(ACC)score in the 2019–22 summer precipitation predictions was 0.17,and the mean Prediction Score(PS)reached 74.The PS score was improved by 7.87%and 6.63%compared with the BCC-CSM and the linear observational constraint approach,respectively.The observational constraint correction prediction strategy with LightGBM significantly and stably improved the prediction of summer precipitation in China compared to the previous linear observational constraint solution,providing a reference for flood control and drought relief during the flood season(summer)in China.展开更多
Accurate prediction of cloud resource utilization is critical.It helps improve service quality while avoiding resource waste and shortages.However,the time series of resource usage in cloud computing systems often exh...Accurate prediction of cloud resource utilization is critical.It helps improve service quality while avoiding resource waste and shortages.However,the time series of resource usage in cloud computing systems often exhibit multidimensionality,nonlinearity,and high volatility,making the high-precision prediction of resource utilization a complex and challenging task.At present,cloud computing resource prediction methods include traditional statistical models,hybrid approaches combining machine learning and classical models,and deep learning techniques.Traditional statistical methods struggle with nonlinear predictions,hybrid methods face challenges in feature extraction and long-term dependencies,and deep learning methods incur high computational costs.The above methods are insufficient to achieve high-precision resource prediction in cloud computing systems.Therefore,we propose a new time series prediction model,called SDVformer,which is based on the Informer model by integrating the Savitzky-Golay(SG)filters,a novel Discrete-Variation Self-Attention(DVSA)mechanism,and a type-aware mixture of experts(T-MOE)framework.The SG filter is designed to reduce noise and enhance the feature representation of input data.The DVSA mechanism is proposed to optimize the selection of critical features to reduce computational complexity.The T-MOE framework is designed to adjust the model structure based on different resource characteristics,thereby improving prediction accuracy and adaptability.Experimental results show that our proposed SDVformer significantly outperforms baseline models,including Recurrent Neural Network(RNN),Long Short-Term Memory(LSTM),and Informer in terms of prediction precision,on both the Alibaba public dataset and the dataset collected by Beijing Jiaotong University(BJTU).Particularly compared with the Informer model,the average Mean Squared Error(MSE)of SDVformer decreases by about 80%,fully demonstrating its advantages in complex time series prediction tasks in cloud computing systems.展开更多
基金supported by the National Natural Science Foundation of China(51767017)the Basic Research Innovation Group Project of Gansu Province(18JR3RA133)the Industrial Support and Guidance Project of Universities in Gansu Province(2022CYZC-22).
文摘Photovoltaic (PV) modules, as essential components of solar power generation systems, significantly influence unitpower generation costs.The service life of these modules directly affects these costs. Over time, the performanceof PV modules gradually declines due to internal degradation and external environmental factors.This cumulativedegradation impacts the overall reliability of photovoltaic power generation. This study addresses the complexdegradation process of PV modules by developing a two-stage Wiener process model. This approach accountsfor the distinct phases of degradation resulting from module aging and environmental influences. A powerdegradation model based on the two-stage Wiener process is constructed to describe individual differences inmodule degradation processes. To estimate the model parameters, a combination of the Expectation-Maximization(EM) algorithm and the Bayesian method is employed. Furthermore, the Schwarz Information Criterion (SIC) isutilized to identify critical change points in PV module degradation trajectories. To validate the universality andeffectiveness of the proposed method, a comparative analysis is conducted against other established life predictiontechniques for PV modules.
基金supported by the National Natural Science Foundation of China(52174162)the Fundamental Research Funds for the Central Universities(FRF-TP-20-002A3).
文摘Accurate prediction of coal and gas outburst(CGO)hazards is paramount in gas disaster prevention and control.This paper endeavors to overcome the constraints posed by traditional prediction indexes when dealing with CGO incidents under low gas pressure conditions.In pursuit of this objective,we have studied and established a mechanical model of the working face under abnormal stress and the excitation energy conditions of CGO,and proposed a method for predicting the risk of CGO under abnormal stress.On site application verification shows that when a strong outburst hazard level prediction is issued,there is a high possibility of outburst disasters occurring.In one of the three locations where we predicted strong outburst hazards,a small outburst occurred,and the accuracy of the prediction was higher than the traditional drilling cuttings index S and drilling cuttings gas desorption index q.Finally,we discuss the mechanism of CGO under the action of stress anomalies.Based on the analysis of stress distribution changes and energy accumulation characteristics of coal under abnormal stress,this article believes that the increase in outburst risk caused by high stress abnormal gradient is mainly due to two reasons:(1)The high stress abnormal gradient leads to an increase in the plastic zone of the coal seam.After the working face advances,it indirectly leads to an increase in the gas expansion energy that can be released from the coal seam before reaching a new stress equilibrium.(2)Abnormal stress leads to increased peak stress of coal body in front of working face.When coal body in elastic area transforms to plastic area,its failure speed is accelerated,which induces accelerated gas desorption and aggravates the risk of outburst.
基金co-supported by the National Nature Science Foundation of China(No.12303071)the Shanghai Science and Technology Plan Project,China(No.23YF1455500)+1 种基金the China Postdoctoral Science Foundation(No.2023M743653)Ministry of Industry and Information Technology of China through the High Precision Timing Service Project(No.TC220A04A-80)。
文摘The mathematical method of ZTD(zenith tropospheric delay)spatial prediction is important for precise ZTD derivation and real-time precise point positioning(PPP)augmentation.This paper analyses the performance of the popular optimal function coefficient(OFC),sphere cap harmonic analysis(SCHA),kriging and inverse distance weighting(IDW)interpolation in ZTD spatial prediction and Beidou satellite navigation system(BDS)-PPP augmentation over China.For ZTD spatial prediction,the average time consumption of the OFC,kriging,and IDW methods is less than 0.1 s,which is significantly better than that of the SCHA method(63.157 s).The overall ZTD precision of the OFC is 3.44 cm,which outperforms those of the SCHA(9.65 cm),Kriging(10.6 cm),and IDW(11.8 cm)methods.We confirmed that the low performance of kriging and IDW is caused by their weakness in modelling ZTD variation in the vertical direction.To mitigate such deficiencies,an elevation normalization factor(ENF)is introduced into the kriging and IDW models(kriging-ENF and IDW-ENF).The overall ZTD spatial prediction accuracies of IDW-ENF and kriging-ENF are 2.80 cm and 2.01 cm,respectively,which are both superior to those of the OFC and the widely used empirical model GPT3(4.92 cm).For BDS-PPP enhancement,the ZTD provided by the kriging-ENF,IDW-ENF and OFC as prior constraints can effectively reduce the convergence time.Compared with unconstrained BDS-PPP,our proposed kriging-ENF outperforms IDW-ENF and OFC by reducing the horizontal and vertical convergence times by approximately 13.2%and 5.8%in Ningxia and 30.4%and 7.84%in Guangdong,respectively.These results indicate that kriging-ENF is a promising method for ZTD spatial prediction and BDS-PPP enhancement over China.
基金financially supported by the National Natural Science Foundation of China(Grant No.52074331).
文摘Wellbore instability is one of the significant challenges in the drilling engineering and during the development of carbonate reservoirs,especially with open-hole completion.The problems of wellbore instability such as downhole collapse and silt deposit in the fractured carbonate reservoir of Tarim Basin(Ordovician)are severe.Solid destabilization and production(SDP)was proposed to describe this engineering problem of carbonate reservoirs.To clarify the mechanism and mitigate potential borehole instability problems,we conducted particle size distribution(PSD)analysis,X-ray diffraction(XRD)analysis,triaxial compression tests,and micro-scale sand production tests based on data analysis.We found that the rock fragments and silt in the wellbore came from two sources:one from the wellbore collapse in the upper unplugged layers and the other from the production of sand particles carried by the fluid in the productive layers.Based on the experimental study,a novel method combining a geomechanical model and microscopic sand production model was proposed to predict wellbore instability and analyze its influencing factors.The critical condition and failure zone predicted by the prediction model fit well with the field observations.According to the prediction results,the management and prevention measures of wellbore instability in carbonate reservoirs were proposed.It is suggested to optimize the well track in new drilling wells while upgrading the production system in old wells.This study is of great guiding significance for the optimization of carbonate solid control and it improves the understanding of the sand production problems in carbonate reservoirs.
基金funded by the project supported by the Natural Science Foundation of Heilongjiang Provincial(Grant Number LH2023F033)the Science and Technology Innovation Talent Project of Harbin(Grant Number 2022CXRCCG006).
文摘Stock price prediction is a typical complex time series prediction problem characterized by dynamics,nonlinearity,and complexity.This paper introduces a generative adversarial network model that incorporates an attention mechanism(GAN-LSTM-Attention)to improve the accuracy of stock price prediction.Firstly,the generator of this model combines the Long and Short-Term Memory Network(LSTM),the Attention Mechanism and,the Fully-Connected Layer,focusing on generating the predicted stock price.The discriminator combines the Convolutional Neural Network(CNN)and the Fully-Connected Layer to discriminate between real stock prices and generated stock prices.Secondly,to evaluate the practical application ability and generalization ability of the GAN-LSTM-Attention model,four representative stocks in the United States of America(USA)stock market,namely,Standard&Poor’s 500 Index stock,Apple Incorporatedstock,AdvancedMicroDevices Incorporatedstock,and Google Incorporated stock were selected for prediction experiments,and the prediction performance was comprehensively evaluated by using the three evaluation metrics,namely,mean absolute error(MAE),root mean square error(RMSE),and coefficient of determination(R2).Finally,the specific effects of the attention mechanism,convolutional layer,and fully-connected layer on the prediction performance of the model are systematically analyzed through ablation study.The results of experiment show that the GAN-LSTM-Attention model exhibits excellent performance and robustness in stock price prediction.
基金funded by the Natural Science Foundation of China(Grant Nos.42377164 and 41972280)the Badong National Observation and Research Station of Geohazards(Grant No.BNORSG-202305).
文摘Landslide susceptibility prediction(LSP)is significantly affected by the uncertainty issue of landslide related conditioning factor selection.However,most of literature only performs comparative studies on a certain conditioning factor selection method rather than systematically study this uncertainty issue.Targeted,this study aims to systematically explore the influence rules of various commonly used conditioning factor selection methods on LSP,and on this basis to innovatively propose a principle with universal application for optimal selection of conditioning factors.An'yuan County in southern China is taken as example considering 431 landslides and 29 types of conditioning factors.Five commonly used factor selection methods,namely,the correlation analysis(CA),linear regression(LR),principal component analysis(PCA),rough set(RS)and artificial neural network(ANN),are applied to select the optimal factor combinations from the original 29 conditioning factors.The factor selection results are then used as inputs of four types of common machine learning models to construct 20 types of combined models,such as CA-multilayer perceptron,CA-random forest.Additionally,multifactor-based multilayer perceptron random forest models that selecting conditioning factors based on the proposed principle of“accurate data,rich types,clear significance,feasible operation and avoiding duplication”are constructed for comparisons.Finally,the LSP uncertainties are evaluated by the accuracy,susceptibility index distribution,etc.Results show that:(1)multifactor-based models have generally higher LSP performance and lower uncertainties than those of factors selection-based models;(2)Influence degree of different machine learning on LSP accuracy is greater than that of different factor selection methods.Conclusively,the above commonly used conditioning factor selection methods are not ideal for improving LSP performance and may complicate the LSP processes.In contrast,a satisfied combination of conditioning factors can be constructed according to the proposed principle.
基金upported by the National Key Research and Development Program of China(Grant No.:2023YFF1204904)the National Natural Science Foundation of China(Grant Nos.:U23A20530 and 82173746)Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism(Shanghai Municipal Education Commission,China).
文摘Negative logarithm of the acid dissociation constant(pK_(a))significantly influences the absorption,dis-tribution,metabolism,excretion,and toxicity(ADMET)properties of molecules and is a crucial indicator in drug research.Given the rapid and accurate characteristics of computational methods,their role in predicting drug properties is increasingly important.Although many pK_(a) prediction models currently exist,they often focus on enhancing model precision while neglecting interpretability.In this study,we present GraFpKa,a pK_(a) prediction model using graph neural networks(GNNs)and molecular finger-prints.The results show that our acidic and basic models achieved mean absolute errors(MAEs)of 0.621 and 0.402,respectively,on the test set,demonstrating good predictive performance.Notably,to improve interpretability,GraFpKa also incorporates Integrated Gradients(IGs),providing a clearer visual description of the atoms significantly affecting the pK_(a) values.The high reliability and interpretability of GraFpKa ensure accurate pKa predictions while also facilitating a deeper understanding of the relation-ship between molecular structure and pK_(a) values,making it a valuable tool in the field of pK_(a) prediction.
基金supported by grants from the National Science Foundation of China(Grant Nos.12375038 and 12075171 to ZJT,and 12205223 to YLT).
文摘RNAs have important biological functions and the functions of RNAs are generally coupled to their structures, especiallytheir secondary structures. In this work, we have made a comprehensive evaluation of the performances of existingtop RNA secondary structure prediction methods, including five deep-learning (DL) based methods and five minimum freeenergy (MFE) based methods. First, we made a brief overview of these RNA secondary structure prediction methods.Afterwards, we built two rigorous test datasets consisting of RNAs with non-redundant sequences and comprehensivelyexamined the performances of the RNA secondary structure prediction methods through classifying the RNAs into differentlength ranges and different types. Our examination shows that the DL-based methods generally perform better thanthe MFE-based methods for RNAs with long lengths and complex structures, while the MFE-based methods can achievegood performance for small RNAs and some specialized MFE-based methods can achieve good prediction accuracy forpseudoknots. Finally, we provided some insights and perspectives in modeling RNA secondary structures.
基金financially supported by the National Natural Science Foundation of China(Nos.42277149,41502299,41372306)the Research Planning of Sichuan Education Department,China(No.16ZB0105)+3 种基金the State Key Laboratory of Geohazard Prevention and Geoenvironment Protection Independent Research Project(Nos.SKLGP2016Z007,SKLGP2018Z017,SKLGP2020Z009)Chengdu University of Technology Young and Middle Aged Backbone Program(No.KYGG201720)Sichuan Provincial Science and Technology Department Program(No.19YYJC2087)China Scholarship Council。
文摘To tackle the difficulties of the point prediction in quantifying the reliability of landslide displacement prediction,a data-driven combination-interval prediction method(CIPM)based on copula and variational-mode-decomposition associated with kernel-based-extreme-learningmachine optimized by the whale optimization algorithm(VMD-WOA-KELM)is proposed in this paper.Firstly,the displacement is decomposed by VMD to three IMF components and a residual component of different fluctuation characteristics.The key impact factors of each IMF component are selected according to Copula model,and the corresponding WOA-KELM is established to conduct point prediction.Subsequently,the parametric method(PM)and non-parametric method(NPM)are used to estimate the prediction error probability density distribution(PDF)of each component,whose prediction interval(PI)under the 95%confidence level is also obtained.By means of the differential evolution algorithm(DE),a weighted combination model based on the PIs is built to construct the combination-interval(CI).Finally,the CIs of each component are added to generate the total PI.A comparative case study shows that the CIPM performs better in constructing landslide displacement PI with high performance.
文摘The Stackelberg prediction game(SPG)is a bilevel optimization frame-work for modeling strategic interactions between a learner and a follower.Existing meth-ods for solving this problem with general loss functions are computationally expensive and scarce.We propose a novel hyper-gradient type method with a warm-start strategy to address this challenge.Particularly,we first use a Taylor expansion-based approach to obtain a good initial point.Then we apply a hyper-gradient descent method with an ex-plicit approximate hyper-gradient.We establish the convergence results of our algorithm theoretically.Furthermore,when the follower employs the least squares loss function,our method is shown to reach an e-stationary point by solving quadratic subproblems.Numerical experiments show our algorithms are empirically orders of magnitude faster than the state-of-the-art.
文摘Rail corrugation, as a prevalent type of rail damage in heavy railways, induces diseases in the track structure. In order to ensure the safe operation of trains, an improved whale optimization algorithm is proposed to optimize the rail corrugation evolution trend prediction model of the least squares support vector machine (IPCA-ELWOA-LSSVM). The elite reverse learning combined with the Lévy flight strategy is introduced to improve the whale optimization algorithm. The improved WOA (ELWOA) algorithm is used to continuously optimize the kernel parameter σ and the normalization parameter γ in the LSSVM model. Finally, the improved prediction model is validated using data from a domestic heavy-duty railway experimental line database and compared with the prediction model before optimization and the other commonly used models. The experimental results show that the ELWOA-LSSVM prediction model has the highest accuracy, which proves that the proposed method has high accuracy in predicting the rail corrugation evolution trend.
基金supported by innovation consortium project of China Petroleum and Southwest Petroleum University (No.2020CX010201)Sichuan Science and Technology Program (No. 2024NSFSC0081)。
文摘The Canglangpu Formation in the JT1 well area of the Sichuan Basin exhibits strong lateral heterogeneity and complex overpressure mechanisms, leading to ambiguous pore pressure distribution characteristics. Conventional prediction methods, such as the Equivalent Depth Method, are either inapplicable or yield unsatisfactory results (e.g., Fillippone’s method), contributing to frequent drilling incidents like gas kick, overfl ow, and lost circulation, which hinder the safe and effi cient exploration of natural gas. To address these challenges, this paper integrates lithology, physical properties, and overpressure mechanisms of the Canglangpu Formation. From a petrophysical perspective, a pore pressure prediction model independent of lithology and overpressure mechanisms was developed by combining the poroelasticity theory, linear elastic Hooke’s Law, and Biot’s eff ective stress theory, with an analysis of the relationship between carbonate rock strain, external stress, and internal pore pressure. Unlike conventional methods, the model does not rely on the establishment of a normal compaction trend line. Pre-stack seismic inversion was applied to achieve 3D pore pressure prediction for the formation. Results indicate high accuracy, with a relative error of less than 5% compared to measured data, and strong consistency with actual drilling events. The proposed method provides robust technical support for pore pressure prediction in carbonate formations and drilling geological design.
基金supported by the National Natural Science Founion of China(U2241285).
文摘Accurate and efficient prediction of the distribution of surface loads on buildings subjected to explosive effects is crucial for rapidly calculating structural dynamic responses,establishing effective protective measures,and designing civil defense engineering solutions.Current state-of-the-art methods face several issues:Experimental research is difficult and costly to implement,theoretical research is limited to simple geometries and lacks precision,and direct simulations require substantial computational resources.To address these challenges,this paper presents a data-driven method for predicting blast loads on building surfaces.This approach increases both the accuracy and computational efficiency of load predictions when the geometry of the building changes while the explosive yield remains constant,significantly improving its applicability in complex scenarios.This study introduces an innovative encoder-decoder graph neural network model named BlastGraphNet,which uses a message-passing mechanism to predict the overpressure and impulse load distributions on buildings with conventional and complex geometries during explosive events.The model also facilitates related downstream applications,such as damage mode identification and rapid assessment of virtual city explosions.The calculation results indicate that the prediction error of the model for conventional building tests is less than 2%,and its inference speed is 3-4 orders of magnitude faster than that of state-of-the-art numerical methods.In extreme test cases involving buildings with complex geometries and building clusters,the method achieved high accuracy and excellent generalizability.The strong adaptability and generalizability of BlastGraphNet confirm that this novel method enables precise real-time prediction of blast loads and provides a new paradigm for damage assessment in protective engineering.
文摘Understanding the wind power potential of a site is essential for designing an optimal wind power conditioning system. The Weibull distribution and wind speed extrapolation methods are powerful mathematical tools for efficiently predicting the frequency distribution of wind speeds at a site. Hourly wind speed and direction data were collected from the National Aeronautics and Space Administration (NASA) website for the period 2013 to 2023. MATLAB software was used to calculate the distribution parameters using the graphical method and to plot the corresponding curves, while WRPLOTView software was used to construct the wind rose. The average wind speed obtained is 3.33 m/s and can reach up to 5.71 m/s at a height of 100 meters. The wind energy is estimated to be 1315.30 kWh/m2 at a height of 100 meters. The wind rose indicates the prevailing winds (ranging from 3.60 m/s to 5.70 m/s) in the northeast-east direction.
基金National Natural Science Foundation of China(61921001,62201588,62022091)。
文摘The acquisition,analysis,and prediction of the radar cross section(RCS)of a target have extremely important strategic significance in the military.However,the RCS values at all azimuths are hardly accessible for non-cooperative targets,due to the limitations of radar observation azimuth and detection resources.Despite their efforts to predict the azimuth-dimensional RCS value,traditional methods based on statistical theory fails to achieve the desired results because of the azimuth sensitivity of the target RCS.To address this problem,an improved neural basis expansion analysis for interpretable time series forecasting(N-BEATS)network considering the physical model prior is proposed to predict the azimuth-dimensional RCS value accurately.Concretely,physical model-based constraints are imposed on the network by constructing a scattering-center module based on the target scattering-center model.Besides,a superimposed seasonality module is involved to better capture high-frequency information,and augmenting the training set provides complementary information for learning predictions.Extensive simulations and experimental results are provided to validate the effectiveness of the proposed method.
文摘Permeability is affected by complex factors such as the subsurface geological structure and porosity-permeability correlation.For highly heterogeneous reservoirs with complex pore structures,it is extremely challenging to spatially characterize(predict)permeability using seismic data.The conventional way of permeability prediction intends to convert underground refl ection data into the elastic parameters sensitive to underground fluids,build a universal low-dimensional template via petrophysical modeling and ultimately deliver spatial prediction of permeability.However,this method is restrained by the actual subsurface condition,selected well-logging sensitive parameters and the accuracy of the computed elastic parameters and fails to simulate the petrophysical mechanisms of complex reservoir permeability,which reduces the permeability prediction accuracy.The method proposed in this paper combines petrophysics and artificial intelligence and integrates multiple types of information to build the high-dimensional petrophysical template for permeability,in an attempt to improve the spatial characterization and prediction accuracy of permeability.The field testing demonstrates the high application performance and effective improvement in prediction accuracy and fluvial channel characterization.
基金Guangdong Major Project of Basic and Applied Basic Research(2020B0301030004)Postdoctoral Fellowship Program of CPSF(GZC20232598)+1 种基金China Postdoctoral Science Foundation(2024M753168)National Key Scientific and Technological Infrastructure Project“Earth System Numerical Simulation Facility”(EarthLab)。
文摘Seasonal prediction of summer rainfall in China plays a crucial role in decision-making,environmental protection,and socio-economic development,while it currently has a low prediction skill.We developed a deep learning-based seasonal prediction bias correction method for summer rainfall in China.Based on prediction fields from the flexible Global Ocean-Atmosphere-Land System Model finite volume version 2(FGOALS-f2),we optimized the loss function of U-Net,trained with different hyperparameters,and selected the optimum model.U-Net model can extract multi-scale feature information and preserve spatial information,making it suitable for processing meteorological data.With this endto-end model,the precipitation distribution can be obtained directly without using the traditional method of data dimensionality reduction(e.g.,Empirical Orthogonal Function),which could maximize the retention of spatio-temporal information of the input data.Optimization of the loss function enhances the prediction results and mitigates model overfitting.The independent prediction shows a significant skill improvement measured by the anomalous correlation coefficient score.The skill has an average value of 0.679 in China(0°–63°N,73°–133°E)and 0.691 in the region of the Chinese mainland,which significantly improves the dynamical prediction skill by 1357%and 4836%.This study suggests that the deep learning(U-Net)-based seasonal prediction bias correction method is a promising approach for improving rainfall prediction of the dynamical model.
基金Collaborative Project Grant from the Exploration and Development Research Institute of SINOPEC Northwest Oilfi eld Company(Grant No.KY2021-S-104).
文摘The Tarim Basin has revealed numerous tight sandstone oil and gas reservoirs.The tidal fl at zone in the Shunbei area is currently in the detailed exploration stage,requiring a comprehensive description of the sand body distribution characteristics for rational exploration well deployment.However,using a single method for sand body prediction has yielded poor results.Seismic facies analysis can eff ectively predict the macro-development characteristics of sedimentary sand bodies but lacks the resolution to capture fine details.In contrast,single-well sedimentary facies analysis can describe detailed sand body development but struggles to reveal broader trends.Therefore,this study proposes a method that combines seismic facies analysis with single-well sedimentary microfacies analysis,using the lower section of the Kepingtage Formation in the Shunbei area as a case study.First,seismic facies were obtained through unsupervised vector quantization to control the macro-distribution characteristics of sand bodies,while principal component analysis(PCA)was applied to improve the depiction of fine sand body details from seismic attributes.Based on 3D seismic data,well-logging data,and geological interpretation results,a detailed structural interpretation was performed to establish a high-precision stratigraphic framework,thereby enhancing the accuracy of sand body prediction.Seismic facies analysis was then conducted to obtain the macro-distribution characteristics of the sand bodies.Subsequently,core data and logging curves from individual wells were used to clarify the vertical development characteristics of tidal channels and sandbars.Next,PCA was employed to select the seismic attributes most sensitive to sand bodies in diff erent sedimentary facies.Results indicate that RMS amplitude in the subtidal zone and instantaneous phase in the intertidal zone are the most sensitive to sand bodies.A comparative analysis of individual seismic attributes for sand body characterization revealed that facies-based delineation improved the accuracy of sand body identification,eff ectively capturing their contours and shapes.This method,which integrates seismic facies,single-well sedimentary microfacies,and machine learning techniques,enhances the precision of sand body characterization and off ers a novel approach to sand body prediction.
基金jointly supported by the National Natural Science Foundation of China(Grant Nos.42122034,42075043,42330609)the Second Tibetan Plateau Scientific Expedition and Research program(2019QZKK0103)+2 种基金Key Talent Project in Gansu and Central Guidance Fund for Local Science and Technology Development Projects in Gansu(No.24ZYQA031)the Youth Innovation Promotion Association of Chinese Academy of Sciences(2021427)West Light Foundation of the Chinese Academy of Sciences(xbzg-zdsys-202215)。
文摘Seasonal precipitation has always been a key focus of climate prediction.As a dynamic-statistical combined method,the existing observational constraint correction establishes a regression relationship between the numerical model outputs and historical observations,which can partly predict seasonal precipitation.However,solving a nonlinear problem through linear regression is significantly biased.This study implements a nonlinear optimization of an existing observational constrained correction model using a Light Gradient Boosting Machine(LightGBM)machine learning algorithm based on output from the Beijing National Climate Center Climate System Model(BCC-CSM)and station observations to improve the prediction of summer precipitation in China.The model was trained using a rolling approach,and LightGBM outperformed Linear Regression(LR),Extreme Gradient Boosting(XGBoost),and Categorical Boosting(CatBoost).Using parameter tuning to optimize the machine learning model and predict future summer precipitation using eight different predictors in BCC-CSM,the mean Anomaly Correlation Coefficient(ACC)score in the 2019–22 summer precipitation predictions was 0.17,and the mean Prediction Score(PS)reached 74.The PS score was improved by 7.87%and 6.63%compared with the BCC-CSM and the linear observational constraint approach,respectively.The observational constraint correction prediction strategy with LightGBM significantly and stably improved the prediction of summer precipitation in China compared to the previous linear observational constraint solution,providing a reference for flood control and drought relief during the flood season(summer)in China.
文摘Accurate prediction of cloud resource utilization is critical.It helps improve service quality while avoiding resource waste and shortages.However,the time series of resource usage in cloud computing systems often exhibit multidimensionality,nonlinearity,and high volatility,making the high-precision prediction of resource utilization a complex and challenging task.At present,cloud computing resource prediction methods include traditional statistical models,hybrid approaches combining machine learning and classical models,and deep learning techniques.Traditional statistical methods struggle with nonlinear predictions,hybrid methods face challenges in feature extraction and long-term dependencies,and deep learning methods incur high computational costs.The above methods are insufficient to achieve high-precision resource prediction in cloud computing systems.Therefore,we propose a new time series prediction model,called SDVformer,which is based on the Informer model by integrating the Savitzky-Golay(SG)filters,a novel Discrete-Variation Self-Attention(DVSA)mechanism,and a type-aware mixture of experts(T-MOE)framework.The SG filter is designed to reduce noise and enhance the feature representation of input data.The DVSA mechanism is proposed to optimize the selection of critical features to reduce computational complexity.The T-MOE framework is designed to adjust the model structure based on different resource characteristics,thereby improving prediction accuracy and adaptability.Experimental results show that our proposed SDVformer significantly outperforms baseline models,including Recurrent Neural Network(RNN),Long Short-Term Memory(LSTM),and Informer in terms of prediction precision,on both the Alibaba public dataset and the dataset collected by Beijing Jiaotong University(BJTU).Particularly compared with the Informer model,the average Mean Squared Error(MSE)of SDVformer decreases by about 80%,fully demonstrating its advantages in complex time series prediction tasks in cloud computing systems.