Seafloor polymetallic sulfide resources exhibit significant development potential. In 2011, China received the exploration rights for 10,000 km2 of a polymetallic sulfides area in the Southwest Indian Ocean; China wil...Seafloor polymetallic sulfide resources exhibit significant development potential. In 2011, China received the exploration rights for 10,000 km2 of a polymetallic sulfides area in the Southwest Indian Ocean; China will be permitted to retain only 25% of the area in 2021. However, an exploration of seafioor hydrothermal sulfide deposits in China remains in the initial stage. According to the quantitative prediction theory and the exploration status of seafloor sulfides, this paper systematically proposes a quantitative prediction evaluation process of oceanic polymetallic sulfide resources and divides it into three stages: prediction in a large area, prediction in the prospecting region, and the verification and evaluation of targets. The first two stages of the prediction process have been employed in seafloor sulfides prospecting of the Chinese contract area. The results of stage one suggest that the Chinese contract area is located in the high posterior probability area, which indicates good prospecting potential area in the Indian Ocean. In stage two, the Chinese contract area of 48^-52~E has the highest posterior probability value, which can be selected as the reserved region for additional exploration. In stage three, the method of numerical simulation is employed to reproduce the ore-forming process of sulfides to verify the accuracy of the reserved targets obtained from the three-stage prediction. By narrowing the exploration area and gradually improving the exploration accuracy, the prediction will provide a basis for the exploration and exploitation of seafloor polymetallic sulfide resources.展开更多
In this paper,a progressive approach to predict the multiple shot peening process parameters for complex integral panel is proposed.Firstly,the invariable parameters in the forming process including shot size,mass flo...In this paper,a progressive approach to predict the multiple shot peening process parameters for complex integral panel is proposed.Firstly,the invariable parameters in the forming process including shot size,mass flow,peening distance and peening angle are determined according to the empirical and machine type.Then,the optimal value of air pressure for the whole shot peening is selected by the experimental data.Finally,the feeding speed for every shot peening path is predicted by regression equation.The integral panel part with thickness from 2 mm to 5 mm and curvature radius from 3200 mm to 16000 mm is taken as a research object,and four experiments are conducted.In order to design specimens for acquiring the forming data,one experiment is conducted to compare the curvature radius of the plate and stringer-structural specimens,which were peened along the middle of the two stringers.The most striking finding of this experiment is that the outer shape error range is below 3.9%,so the plate specimens can be used in predicting feeding speed of the integral panel.The second experiment is performed and results show that when the coverage reaches the limit of 80%,the minimum feeding speed is 50 mm/s.By this feeding speed,the forming curvature radius of the specimens with different thickness from the third experiment is measured and compared with the research object,and the optimal air pressure is 0.15 MPa.Then,the plate specimens with thickness from 2 mm to 5 mm are peened in the fourth experiment,and the measured curvature radius data are used to calculate the feeding speed of different shot peening path by regressive analysis method.The algorithm is validated by forming a test part and the average deviation is 0.496 mm.It is shown that the approach can realize the forming of the integral panel precisely.展开更多
In the real world, the inputs of many complicated systems are time-varying functions or processes. In order to predict the outputs of these systems with high speed and accuracy, this paper proposes a time series predi...In the real world, the inputs of many complicated systems are time-varying functions or processes. In order to predict the outputs of these systems with high speed and accuracy, this paper proposes a time series prediction model based on the wavelet process neural network, and develops the corresponding learning algorithm based on the expansion of the orthogonal basis functions. The effectiveness of the proposed time series prediction model and its learning algorithm is proved by the Macke-Glass time series prediction, and the comparative prediction results indicate that the proposed time series prediction model based on the wavelet process neural network seems to perform well and appears suitable for using as a good tool to predict the highly complex nonlinear time series.展开更多
The prediction of the alkalinity is difficult during the sintering process. Whether or not the level of the alkalinity of sintering process is successful is directly related to the quality of sinter. There is no very ...The prediction of the alkalinity is difficult during the sintering process. Whether or not the level of the alkalinity of sintering process is successful is directly related to the quality of sinter. There is no very good method for predicting the alkalinity by now owing to the high complexity, high nonlinearity, strong coupling, high time delay, and etc. Therefore, a new technique, the grey squares support machine, was introduced. The grey support vector machine model of the alkalinity enabled the development of new equation and algorithm to predict the alkalinity. During modelling, the fluctuation of data sequence was weakened by the grey theory and the support vector machine was capable of processing nonlinear adaptable information, and the grey support vector machine has a combination of those advantages. The results revealed that the alkalinity of sinter could be accurately predicted using this model by reference to small sample and information. The experimental results showed that the grey support vector machine model was effective and practical owing to the advantages of high precision, less samples required, and simple calculation.展开更多
Product variation reduction is critical to improve process efficiency and product quality, especially for multistage machining process(MMP). However, due to the variation accumulation and propagation, it becomes qui...Product variation reduction is critical to improve process efficiency and product quality, especially for multistage machining process(MMP). However, due to the variation accumulation and propagation, it becomes quite difficult to predict and reduce product variation for MMP. While the method of statistical process control can be used to control product quality, it is used mainly to monitor the process change rather than to analyze the cause of product variation. In this paper, based on a differential description of the contact kinematics of locators and part surfaces, and the geometric constraints equation defined by the locating scheme, an improved analytical variation propagation model for MMP is presented. In which the influence of both locator position and machining error on part quality is considered while, in traditional model, it usually focuses on datum error and fixture error. Coordinate transformation theory is used to reflect the generation and transmission laws of error in the establishment of the model. The concept of deviation matrix is heavily applied to establish an explicit mapping between the geometric deviation of part and the process error sources. In each machining stage, the part deviation is formulized as three separated components corresponding to three different kinds of error sources, which can be further applied to fault identification and design optimization for complicated machining process. An example part for MMP is given out to validate the effectiveness of the methodology. The experiment results show that the model prediction and the actual measurement match well. This paper provides a method to predict part deviation under the influence of fixture error, datum error and machining error, and it enriches the way of quality prediction for MMP.展开更多
Model Predictive Control (MPC) has recently found wide acceptance in the process industry, but existing design and implementation methods are restricted to linear process models. A chemical process, however, involves ...Model Predictive Control (MPC) has recently found wide acceptance in the process industry, but existing design and implementation methods are restricted to linear process models. A chemical process, however, involves severe nonlinearity which cannot be ignored in practice. This paper aims to solve this nonlinear control problem by extending MPC to accommodate nonlinear models. It develops an analytical framework for nonlinear model predictive control (NMPC). It also offers a third-order Volterra series based nonparametric nonlinear modelling technique for NMPC design, which relieves practising engineers from the need for deriving a physical-principles based model first. An on-line realisation technique for implementing NMPC is then developed and applied to a Mitsubishi Chemicals polymerisation reaction process. Results show that this nonlinear MPC technique is feasible and very effective. It considerably outperforms linear and low-order Volterra model based methods. The advantages of the developed approach lie not only in control performance superior to existing NMPC methods, but also in eliminating the need for converting an analytical model and then convert it to a Volterra model obtainable only up to the second order. Keywords Model predictive control - Volterra series - process control - nonlinear control Yun Li is a senior lecturer at University of Glasgow, UK, where has taught and researched in evolutionary computation and control engineering since 1991. He worked in the UK National Engineering Laboratory and Industrial Systems and Control Ltd, Glasgow in 1989 and 1990. In 1998, he established the IEEE CACSD Evolutionary Computation Working Group and the European Network of Excellence in Evolutionary Computing (EvoNet) Workgroup on Systems, Control, and Drives. In summer 2002, he served as a visiting professor to Kumamoto University, Japan. He is also a visiting professor at University of Electronic Science and Technology of China. His research interests are in parallel processing, design automation and discovery of engineering systems using evolutionary learning and intelligent search techniques. Applications include control, system modelling and prediction, circuit design, microwave engineering, and operations management. He has advised 12 Ph.D.s in evolutionary computation and has 140 publications.Hiroshi Kashiwagi received B.E, M.E. and Ph.D. degrees in measurement and control engineering from the University of Tokyo, Japan, in 1962, 1964 and 1967 respectively. In 1967 he became an Associate Professor and in 1976 a Professor at Kumamoto University. From 1973 to 1974, he served as a visiting Associate Professor at Purdue University, Indiana, USA. From 1990 to 1994, he was the Director at Computer Center of Kumamoto University. He has also served as a member of Board of Trustees of Society of Instrument and Control Engineers (SICE), Japan, Chairman of Kyushu Branch of SICE and General Chair of many international conferences held in Japan, Korea, Chin and India. In 1994, he was awarded SICE Fellow for his contributions to the field of measurement and control engineering through his various academic activities. He also received the Gold Medal Prize at ICAUTO’95 held in India. In 1997, he received the “Best Book Award” from SICE for his new book entitled “M-sequence and its application” written in Japanese and published in 1996 by Shoukoudou Publishing Co. in Japan. In 1999, he received the “Best Paper Award” from SICE for his paper “M-transform and its application to system identification”. His research interests include signal processing and applications, especially pseudorandom sequence and its applications to measurement and control engineering.展开更多
The prediction problem of the actual value of the dynamic parameters in the simulation model in semiconductor manufacturing was discussed. Considering the fact that the default value of processing time of one certain ...The prediction problem of the actual value of the dynamic parameters in the simulation model in semiconductor manufacturing was discussed. Considering the fact that the default value of processing time of one certain equipment in the simulation model was not the same as its actual value,a general data driven prediction model of the processing time was built based on support vector regression( SVR),with the utilization of manufacturing information in manufacturing execution system( MES). The processing time of one certain equipment was highly related to the status of the equipment itself and the wafers being processed. To uncover the relationship of the processing time with the information of historical products,process flow,technical standard of silicon wafers and manual intervention,data were extracted from MES and used to build a prediction model. This model was employed on an ion implantation equipment as a case, and the effectiveness of the proposed method was shown by comparing with other approaches.展开更多
Predictive Business Process Monitoring(PBPM)is a significant research area in Business Process Management(BPM)aimed at accurately forecasting future behavioral events.At present,deep learning methods are widely cited ...Predictive Business Process Monitoring(PBPM)is a significant research area in Business Process Management(BPM)aimed at accurately forecasting future behavioral events.At present,deep learning methods are widely cited in PBPM research,but no method has been effective in fusing data information into the control flow for multi-perspective process prediction.Therefore,this paper proposes a process prediction method based on the hierarchical BERT and multi-perspective data fusion.Firstly,the first layer BERT network learns the correlations between different category attribute data.Then,the attribute data is integrated into a weighted event-level feature vector and input into the second layer BERT network to learn the impact and priority relationship of each event on future predicted events.Next,the multi-head attention mechanism within the framework is visualized for analysis,helping to understand the decision-making logic of the framework and providing visual predictions.Finally,experimental results show that the predictive accuracy of the framework surpasses the current state-of-the-art research methods and significantly enhances the predictive performance of BPM.展开更多
As the main tool for students and professors to come and go to different districts in-campus, the school bus is of great importance. In order to improve its efficiency and convenient students and professors, a rationa...As the main tool for students and professors to come and go to different districts in-campus, the school bus is of great importance. In order to improve its efficiency and convenient students and professors, a rational schedule of departure is badly needed. A model is established to predict the peak time of people taking school bus based on martingale process, and it is solved according to stopping time of martingale. Then it is applied to Wuhan University of Technology. A large amount of data is collected and the peak time for each day is predicted combined with the actual situation of the college. In doing so, suggestions are given for those who are in charge of the school buses.展开更多
The predictive model is built according to the characteristics of the impulse response of integrating process. In order to eliminate the permanent offset between the setpoint and the process output in the presence of ...The predictive model is built according to the characteristics of the impulse response of integrating process. In order to eliminate the permanent offset between the setpoint and the process output in the presence of the load disturbance, a novel error compensation method is proposed. Then predictive functional control of integrating process is designed. The method given generates a simple control structure, which can significandy reduce online computation. Furthermore, the tuning of the controller is fairly straightforward. Simulation results indicate that the designed control system is relatively robust to the parameters variation of the process.展开更多
In this paper,the optional and predictable projections of set-valued measurable processes are studied.The existence and uniqueness of optional and predictable projections of set-valued measurable processes are proved ...In this paper,the optional and predictable projections of set-valued measurable processes are studied.The existence and uniqueness of optional and predictable projections of set-valued measurable processes are proved under proper circumstances.展开更多
A theory on information prediction process proposed by Weng Wenpo(1991)is applied to the earthquake prediction decision process.Four cycles represent the theory(conception),earthquake prediction decision result,anomal...A theory on information prediction process proposed by Weng Wenpo(1991)is applied to the earthquake prediction decision process.Four cycles represent the theory(conception),earthquake prediction decision result,anomalies,and earthquake assemblage,respectively.The interception and overlapping of the four cycles indicate different combinations,resulting in formation of 13 regions.In the case of decision conclusion on earthquake to occur,seven decision results of different characters are distinguished.The six other results were obtained in the case of absence of decision.Results of four characters show correct decision on earthquake to occur and those of three characters show the erroneous decision on earthquake to occur.Until now,theories of earthquake prediction have been incomplete,and the coincidence ratio of decision on earthquake to occur is also considerably low.Systematic analysis of the decision process is beneficial to understanding the causes for missing,virtual,pseudo,false,and correct展开更多
In this paper, CiteSpace, a bibliometrics software, was adopted to collect research papers published on the Web of Science, which are relevant to biological model and effluent quality prediction in activated sludge pr...In this paper, CiteSpace, a bibliometrics software, was adopted to collect research papers published on the Web of Science, which are relevant to biological model and effluent quality prediction in activated sludge process in the wastewater treatment. By the way of trend map, keyword knowledge map, and co-cited knowledge map, specific visualization analysis and identification of the authors, institutions and regions were concluded. Furthermore, the topics and hotspots of water quality prediction in activated sludge process through the literature-co-citation-based cluster analysis and literature citation burst analysis were also determined, which not only reflected the historical evolution progress to a certain extent, but also provided the direction and insight of the knowledge structure of water quality prediction and activated sludge process for future research.展开更多
Laser welding is one of high efficiency, high energy density welding methods. Quality control should be applied to ensure good welding quality. Weld pool and keyhole contains abundant information of welding quality. G...Laser welding is one of high efficiency, high energy density welding methods. Quality control should be applied to ensure good welding quality. Weld pool and keyhole contains abundant information of welding quality. Good image processing algorithm is necessary in quality control system based on visual sensing. Aiming at the image captured by a coaxial visual sensing system for laser welding, an image processing algorithm is designed. An edge predicting method is proposed in image processing algorithm which is based on the fact that the local shape of weld pool can be fitted to a circle. The results show that the algorithm works well. It lays solid foundation for further quality control in laser welding.展开更多
A mathematical formulation is applied to represent the phenomena in theincremental melting and solidification process (IMSP), and the temperature and electromagneticfields and the depth of steel liquid phase are calcu...A mathematical formulation is applied to represent the phenomena in theincremental melting and solidification process (IMSP), and the temperature and electromagneticfields and the depth of steel liquid phase are calculated by a finite difference technique using thecontrol volume method. The result shows that the predicted values are in good agreement with theobservations. In accordance with the calculated values for different kinds of materials anddifferent size of molds, the technological parameter of the IMS process such as the power supply andthe descending speed rate can be determined.展开更多
Image processing technique was employed to analyze pitting corrosion morphologies of 304 stainless steel exposed to FeCl3 environments. BP neural network models were developed for the prediction of pitting corrosion m...Image processing technique was employed to analyze pitting corrosion morphologies of 304 stainless steel exposed to FeCl3 environments. BP neural network models were developed for the prediction of pitting corrosion mass loss using the obtained data of the total and the average pit areas which were extracted from pitting binary image. The results showed that the predicted results obtained by the 2-5-1 type BP neural network model are in good agreement with the experimental data of pitting corrosion mass loss. The maximum relative error of prediction is 6.78%.展开更多
This paper investigates State Space Model Predictive Control (SSMPC) of an aerothermic process. It is a pilot scale heating and ventilation system equipped with a heater grid and a centrifugal blower, fully connected ...This paper investigates State Space Model Predictive Control (SSMPC) of an aerothermic process. It is a pilot scale heating and ventilation system equipped with a heater grid and a centrifugal blower, fully connected through a data acquisition system for real time control. The interaction between the process variables is shown to be challenging for single variable controllers, therefore multi-variable control is worth considering. A multi-variable state space model is obtained from on-line experimental data. The controller design is translated into a Quadratic Programming (QP) problem, in which a cost function subject to actuators linear inequality constraints is minimized. The outcome of the experimental results is that the main control objectives, such as set-point tracking and perturbations rejection under actuators constraints, are well achieved for both controlled variables simultaneously.展开更多
We present (on the 13<sup>th</sup> International Conference on Geology and Geophysics) the convincing evidence that the strongest earthquakes (according to the U.S. Geological Survey) of the Earth (during ...We present (on the 13<sup>th</sup> International Conference on Geology and Geophysics) the convincing evidence that the strongest earthquakes (according to the U.S. Geological Survey) of the Earth (during the range 2020 - 2023 AD) occurred near the predicted (calculated in advance based on the global prediction thermohydrogravidynamic principles determining the maximal temporal intensifications of the global seismotectonic, volcanic, climatic and magnetic processes of the Earth) dates 2020.016666667 AD (Simonenko, 2020), 2021.1 AD (Simonenko, 2019, 2020), 2022.18333333 AD (Simonenko, 2021), 2023.26666666 AD (Simonenko, 2022) and 2020.55 AD, 2021.65 AD (Simonenko, 2019, 2021), 2022.716666666 AD (Simonenko, 2022), respectively, corresponding to the local maximal and to the local minimal, respectively, combined planetary and solar integral energy gravitational influences on the internal rigid core of the Earth. We present the short-term thermohydrogravidynamic technology (based on the generalized differential formulation of the first law of thermodynamics and the first global prediction thermohydrogravidynamic principle) for evaluation of the maximal magnitude of the strongest (during the March, 2023 AD) earthquake of the Earth occurred on March 16, 2023 AD (according to the U.S. Geological Survey). .展开更多
Actual software development processes define the different steps developers have to perform during a development project. Usually these development steps are not described independently from each other—a more or less...Actual software development processes define the different steps developers have to perform during a development project. Usually these development steps are not described independently from each other—a more or less formal flow of development step is an essential part of the development process definition. In practice, we observe that often the process definitions are hardly used and very seldom “lived”. One reason is that the predefined general process flow does not reflect the specific constraints of the individual project. For that reasons we claim to get rid of the process flow definition as part of the development process. Instead we describe in this paper an approach to smartly assist developers in software process execution. The approach observes the developer’s actions and predicts his next development step based on the project process history. Therefore we apply machine learning resp. sequence learning approaches based on a general rule based process model and its semantics. Finally we show two evaluations of the presented approach: The data of the first is derived from a synthetic scenario. The second evaluation is based on real project data of an industrial enterprise.展开更多
The batch dyeing process is a typical nonlinear process with time-delay,where precise controlling of temperature plays a vital role on the dyeing quality.Because the accuracy and robustness of the commonly used propor...The batch dyeing process is a typical nonlinear process with time-delay,where precise controlling of temperature plays a vital role on the dyeing quality.Because the accuracy and robustness of the commonly used proportion integration differentiation(PID) algorithm had been limited,a novel method was developed to precisely control the heating and cooling stages for batch dyeing process based on predictive sliding mode control(SMC) algorithm.Firstly,a special predictive sliding mode model was constructed according to the principle of generalized predictive control(GPC);secondly,an appropriate reference trajectory for SMC was designed based on the improved approaching law;finally,the predictive sliding mode model and the Diophantine equation were used to predict the output and then the optimized control law was derived using the generalized predictive law.This method combined GPC and the SMC with their respective advantages,so it could be applied to time-delay process,making the control system more robust.Simulation experiments show that this algorithm can well track the temperature variation for the batch dyeing process.展开更多
基金supported by the China Ocean Mineral Resources R & D Association "Twelfth Five-Year" Major Program under contract No.DY125-11-R-02
文摘Seafloor polymetallic sulfide resources exhibit significant development potential. In 2011, China received the exploration rights for 10,000 km2 of a polymetallic sulfides area in the Southwest Indian Ocean; China will be permitted to retain only 25% of the area in 2021. However, an exploration of seafioor hydrothermal sulfide deposits in China remains in the initial stage. According to the quantitative prediction theory and the exploration status of seafloor sulfides, this paper systematically proposes a quantitative prediction evaluation process of oceanic polymetallic sulfide resources and divides it into three stages: prediction in a large area, prediction in the prospecting region, and the verification and evaluation of targets. The first two stages of the prediction process have been employed in seafloor sulfides prospecting of the Chinese contract area. The results of stage one suggest that the Chinese contract area is located in the high posterior probability area, which indicates good prospecting potential area in the Indian Ocean. In stage two, the Chinese contract area of 48^-52~E has the highest posterior probability value, which can be selected as the reserved region for additional exploration. In stage three, the method of numerical simulation is employed to reproduce the ore-forming process of sulfides to verify the accuracy of the reserved targets obtained from the three-stage prediction. By narrowing the exploration area and gradually improving the exploration accuracy, the prediction will provide a basis for the exploration and exploitation of seafloor polymetallic sulfide resources.
基金supported by the National Level Project of China。
文摘In this paper,a progressive approach to predict the multiple shot peening process parameters for complex integral panel is proposed.Firstly,the invariable parameters in the forming process including shot size,mass flow,peening distance and peening angle are determined according to the empirical and machine type.Then,the optimal value of air pressure for the whole shot peening is selected by the experimental data.Finally,the feeding speed for every shot peening path is predicted by regression equation.The integral panel part with thickness from 2 mm to 5 mm and curvature radius from 3200 mm to 16000 mm is taken as a research object,and four experiments are conducted.In order to design specimens for acquiring the forming data,one experiment is conducted to compare the curvature radius of the plate and stringer-structural specimens,which were peened along the middle of the two stringers.The most striking finding of this experiment is that the outer shape error range is below 3.9%,so the plate specimens can be used in predicting feeding speed of the integral panel.The second experiment is performed and results show that when the coverage reaches the limit of 80%,the minimum feeding speed is 50 mm/s.By this feeding speed,the forming curvature radius of the specimens with different thickness from the third experiment is measured and compared with the research object,and the optimal air pressure is 0.15 MPa.Then,the plate specimens with thickness from 2 mm to 5 mm are peened in the fourth experiment,and the measured curvature radius data are used to calculate the feeding speed of different shot peening path by regressive analysis method.The algorithm is validated by forming a test part and the average deviation is 0.496 mm.It is shown that the approach can realize the forming of the integral panel precisely.
基金Project supported by the National Natural Science Foundation of China (Grant No 60572174)the Doctoral Fund of Ministry of Education of China (Grant No 20070213072)+2 种基金the 111 Project (Grant No B07018)the China Postdoctoral Science Foundation (Grant No 20070410264)the Development Program for Outstanding Young Teachers in Harbin Institute of Technology (Grant No HITQNJS.2007.010)
文摘In the real world, the inputs of many complicated systems are time-varying functions or processes. In order to predict the outputs of these systems with high speed and accuracy, this paper proposes a time series prediction model based on the wavelet process neural network, and develops the corresponding learning algorithm based on the expansion of the orthogonal basis functions. The effectiveness of the proposed time series prediction model and its learning algorithm is proved by the Macke-Glass time series prediction, and the comparative prediction results indicate that the proposed time series prediction model based on the wavelet process neural network seems to perform well and appears suitable for using as a good tool to predict the highly complex nonlinear time series.
基金Sponsored by Provincial Natural Science Foundation of Henan of China(200612001)
文摘The prediction of the alkalinity is difficult during the sintering process. Whether or not the level of the alkalinity of sintering process is successful is directly related to the quality of sinter. There is no very good method for predicting the alkalinity by now owing to the high complexity, high nonlinearity, strong coupling, high time delay, and etc. Therefore, a new technique, the grey squares support machine, was introduced. The grey support vector machine model of the alkalinity enabled the development of new equation and algorithm to predict the alkalinity. During modelling, the fluctuation of data sequence was weakened by the grey theory and the support vector machine was capable of processing nonlinear adaptable information, and the grey support vector machine has a combination of those advantages. The results revealed that the alkalinity of sinter could be accurately predicted using this model by reference to small sample and information. The experimental results showed that the grey support vector machine model was effective and practical owing to the advantages of high precision, less samples required, and simple calculation.
基金Supported by National Natural Science Foundation of China(Grant Nos.51205286,51275348)
文摘Product variation reduction is critical to improve process efficiency and product quality, especially for multistage machining process(MMP). However, due to the variation accumulation and propagation, it becomes quite difficult to predict and reduce product variation for MMP. While the method of statistical process control can be used to control product quality, it is used mainly to monitor the process change rather than to analyze the cause of product variation. In this paper, based on a differential description of the contact kinematics of locators and part surfaces, and the geometric constraints equation defined by the locating scheme, an improved analytical variation propagation model for MMP is presented. In which the influence of both locator position and machining error on part quality is considered while, in traditional model, it usually focuses on datum error and fixture error. Coordinate transformation theory is used to reflect the generation and transmission laws of error in the establishment of the model. The concept of deviation matrix is heavily applied to establish an explicit mapping between the geometric deviation of part and the process error sources. In each machining stage, the part deviation is formulized as three separated components corresponding to three different kinds of error sources, which can be further applied to fault identification and design optimization for complicated machining process. An example part for MMP is given out to validate the effectiveness of the methodology. The experiment results show that the model prediction and the actual measurement match well. This paper provides a method to predict part deviation under the influence of fixture error, datum error and machining error, and it enriches the way of quality prediction for MMP.
文摘Model Predictive Control (MPC) has recently found wide acceptance in the process industry, but existing design and implementation methods are restricted to linear process models. A chemical process, however, involves severe nonlinearity which cannot be ignored in practice. This paper aims to solve this nonlinear control problem by extending MPC to accommodate nonlinear models. It develops an analytical framework for nonlinear model predictive control (NMPC). It also offers a third-order Volterra series based nonparametric nonlinear modelling technique for NMPC design, which relieves practising engineers from the need for deriving a physical-principles based model first. An on-line realisation technique for implementing NMPC is then developed and applied to a Mitsubishi Chemicals polymerisation reaction process. Results show that this nonlinear MPC technique is feasible and very effective. It considerably outperforms linear and low-order Volterra model based methods. The advantages of the developed approach lie not only in control performance superior to existing NMPC methods, but also in eliminating the need for converting an analytical model and then convert it to a Volterra model obtainable only up to the second order. Keywords Model predictive control - Volterra series - process control - nonlinear control Yun Li is a senior lecturer at University of Glasgow, UK, where has taught and researched in evolutionary computation and control engineering since 1991. He worked in the UK National Engineering Laboratory and Industrial Systems and Control Ltd, Glasgow in 1989 and 1990. In 1998, he established the IEEE CACSD Evolutionary Computation Working Group and the European Network of Excellence in Evolutionary Computing (EvoNet) Workgroup on Systems, Control, and Drives. In summer 2002, he served as a visiting professor to Kumamoto University, Japan. He is also a visiting professor at University of Electronic Science and Technology of China. His research interests are in parallel processing, design automation and discovery of engineering systems using evolutionary learning and intelligent search techniques. Applications include control, system modelling and prediction, circuit design, microwave engineering, and operations management. He has advised 12 Ph.D.s in evolutionary computation and has 140 publications.Hiroshi Kashiwagi received B.E, M.E. and Ph.D. degrees in measurement and control engineering from the University of Tokyo, Japan, in 1962, 1964 and 1967 respectively. In 1967 he became an Associate Professor and in 1976 a Professor at Kumamoto University. From 1973 to 1974, he served as a visiting Associate Professor at Purdue University, Indiana, USA. From 1990 to 1994, he was the Director at Computer Center of Kumamoto University. He has also served as a member of Board of Trustees of Society of Instrument and Control Engineers (SICE), Japan, Chairman of Kyushu Branch of SICE and General Chair of many international conferences held in Japan, Korea, Chin and India. In 1994, he was awarded SICE Fellow for his contributions to the field of measurement and control engineering through his various academic activities. He also received the Gold Medal Prize at ICAUTO’95 held in India. In 1997, he received the “Best Book Award” from SICE for his new book entitled “M-sequence and its application” written in Japanese and published in 1996 by Shoukoudou Publishing Co. in Japan. In 1999, he received the “Best Paper Award” from SICE for his paper “M-transform and its application to system identification”. His research interests include signal processing and applications, especially pseudorandom sequence and its applications to measurement and control engineering.
基金National Natural Science Foundation of China(No.61034004)
文摘The prediction problem of the actual value of the dynamic parameters in the simulation model in semiconductor manufacturing was discussed. Considering the fact that the default value of processing time of one certain equipment in the simulation model was not the same as its actual value,a general data driven prediction model of the processing time was built based on support vector regression( SVR),with the utilization of manufacturing information in manufacturing execution system( MES). The processing time of one certain equipment was highly related to the status of the equipment itself and the wafers being processed. To uncover the relationship of the processing time with the information of historical products,process flow,technical standard of silicon wafers and manual intervention,data were extracted from MES and used to build a prediction model. This model was employed on an ion implantation equipment as a case, and the effectiveness of the proposed method was shown by comparing with other approaches.
基金Supported by the National Natural Science Foundation,China(No.61402011)the Open Project Program of the Key Laboratory of Embedded System and Service Computing of Ministry of Education(No.ESSCKF2021-05).
文摘Predictive Business Process Monitoring(PBPM)is a significant research area in Business Process Management(BPM)aimed at accurately forecasting future behavioral events.At present,deep learning methods are widely cited in PBPM research,but no method has been effective in fusing data information into the control flow for multi-perspective process prediction.Therefore,this paper proposes a process prediction method based on the hierarchical BERT and multi-perspective data fusion.Firstly,the first layer BERT network learns the correlations between different category attribute data.Then,the attribute data is integrated into a weighted event-level feature vector and input into the second layer BERT network to learn the impact and priority relationship of each event on future predicted events.Next,the multi-head attention mechanism within the framework is visualized for analysis,helping to understand the decision-making logic of the framework and providing visual predictions.Finally,experimental results show that the predictive accuracy of the framework surpasses the current state-of-the-art research methods and significantly enhances the predictive performance of BPM.
文摘As the main tool for students and professors to come and go to different districts in-campus, the school bus is of great importance. In order to improve its efficiency and convenient students and professors, a rational schedule of departure is badly needed. A model is established to predict the peak time of people taking school bus based on martingale process, and it is solved according to stopping time of martingale. Then it is applied to Wuhan University of Technology. A large amount of data is collected and the peak time for each day is predicted combined with the actual situation of the college. In doing so, suggestions are given for those who are in charge of the school buses.
基金This work was supported by National Science Fundation of China (No.60274032)Specialized Research Fund for the Doctoral Program of Higher Education (SRFDP) (No.20030248040)and Alexander von Humboldt Research Fellowship
文摘The predictive model is built according to the characteristics of the impulse response of integrating process. In order to eliminate the permanent offset between the setpoint and the process output in the presence of the load disturbance, a novel error compensation method is proposed. Then predictive functional control of integrating process is designed. The method given generates a simple control structure, which can significandy reduce online computation. Furthermore, the tuning of the controller is fairly straightforward. Simulation results indicate that the designed control system is relatively robust to the parameters variation of the process.
基金National Natural Science Foundation of China(1 9971 0 72 )
文摘In this paper,the optional and predictable projections of set-valued measurable processes are studied.The existence and uniqueness of optional and predictable projections of set-valued measurable processes are proved under proper circumstances.
文摘A theory on information prediction process proposed by Weng Wenpo(1991)is applied to the earthquake prediction decision process.Four cycles represent the theory(conception),earthquake prediction decision result,anomalies,and earthquake assemblage,respectively.The interception and overlapping of the four cycles indicate different combinations,resulting in formation of 13 regions.In the case of decision conclusion on earthquake to occur,seven decision results of different characters are distinguished.The six other results were obtained in the case of absence of decision.Results of four characters show correct decision on earthquake to occur and those of three characters show the erroneous decision on earthquake to occur.Until now,theories of earthquake prediction have been incomplete,and the coincidence ratio of decision on earthquake to occur is also considerably low.Systematic analysis of the decision process is beneficial to understanding the causes for missing,virtual,pseudo,false,and correct
文摘In this paper, CiteSpace, a bibliometrics software, was adopted to collect research papers published on the Web of Science, which are relevant to biological model and effluent quality prediction in activated sludge process in the wastewater treatment. By the way of trend map, keyword knowledge map, and co-cited knowledge map, specific visualization analysis and identification of the authors, institutions and regions were concluded. Furthermore, the topics and hotspots of water quality prediction in activated sludge process through the literature-co-citation-based cluster analysis and literature citation burst analysis were also determined, which not only reflected the historical evolution progress to a certain extent, but also provided the direction and insight of the knowledge structure of water quality prediction and activated sludge process for future research.
文摘Laser welding is one of high efficiency, high energy density welding methods. Quality control should be applied to ensure good welding quality. Weld pool and keyhole contains abundant information of welding quality. Good image processing algorithm is necessary in quality control system based on visual sensing. Aiming at the image captured by a coaxial visual sensing system for laser welding, an image processing algorithm is designed. An edge predicting method is proposed in image processing algorithm which is based on the fact that the local shape of weld pool can be fitted to a circle. The results show that the algorithm works well. It lays solid foundation for further quality control in laser welding.
文摘A mathematical formulation is applied to represent the phenomena in theincremental melting and solidification process (IMSP), and the temperature and electromagneticfields and the depth of steel liquid phase are calculated by a finite difference technique using thecontrol volume method. The result shows that the predicted values are in good agreement with theobservations. In accordance with the calculated values for different kinds of materials anddifferent size of molds, the technological parameter of the IMS process such as the power supply andthe descending speed rate can be determined.
文摘Image processing technique was employed to analyze pitting corrosion morphologies of 304 stainless steel exposed to FeCl3 environments. BP neural network models were developed for the prediction of pitting corrosion mass loss using the obtained data of the total and the average pit areas which were extracted from pitting binary image. The results showed that the predicted results obtained by the 2-5-1 type BP neural network model are in good agreement with the experimental data of pitting corrosion mass loss. The maximum relative error of prediction is 6.78%.
文摘This paper investigates State Space Model Predictive Control (SSMPC) of an aerothermic process. It is a pilot scale heating and ventilation system equipped with a heater grid and a centrifugal blower, fully connected through a data acquisition system for real time control. The interaction between the process variables is shown to be challenging for single variable controllers, therefore multi-variable control is worth considering. A multi-variable state space model is obtained from on-line experimental data. The controller design is translated into a Quadratic Programming (QP) problem, in which a cost function subject to actuators linear inequality constraints is minimized. The outcome of the experimental results is that the main control objectives, such as set-point tracking and perturbations rejection under actuators constraints, are well achieved for both controlled variables simultaneously.
文摘We present (on the 13<sup>th</sup> International Conference on Geology and Geophysics) the convincing evidence that the strongest earthquakes (according to the U.S. Geological Survey) of the Earth (during the range 2020 - 2023 AD) occurred near the predicted (calculated in advance based on the global prediction thermohydrogravidynamic principles determining the maximal temporal intensifications of the global seismotectonic, volcanic, climatic and magnetic processes of the Earth) dates 2020.016666667 AD (Simonenko, 2020), 2021.1 AD (Simonenko, 2019, 2020), 2022.18333333 AD (Simonenko, 2021), 2023.26666666 AD (Simonenko, 2022) and 2020.55 AD, 2021.65 AD (Simonenko, 2019, 2021), 2022.716666666 AD (Simonenko, 2022), respectively, corresponding to the local maximal and to the local minimal, respectively, combined planetary and solar integral energy gravitational influences on the internal rigid core of the Earth. We present the short-term thermohydrogravidynamic technology (based on the generalized differential formulation of the first law of thermodynamics and the first global prediction thermohydrogravidynamic principle) for evaluation of the maximal magnitude of the strongest (during the March, 2023 AD) earthquake of the Earth occurred on March 16, 2023 AD (according to the U.S. Geological Survey). .
文摘Actual software development processes define the different steps developers have to perform during a development project. Usually these development steps are not described independently from each other—a more or less formal flow of development step is an essential part of the development process definition. In practice, we observe that often the process definitions are hardly used and very seldom “lived”. One reason is that the predefined general process flow does not reflect the specific constraints of the individual project. For that reasons we claim to get rid of the process flow definition as part of the development process. Instead we describe in this paper an approach to smartly assist developers in software process execution. The approach observes the developer’s actions and predicts his next development step based on the project process history. Therefore we apply machine learning resp. sequence learning approaches based on a general rule based process model and its semantics. Finally we show two evaluations of the presented approach: The data of the first is derived from a synthetic scenario. The second evaluation is based on real project data of an industrial enterprise.
基金National Natural Science Foundation of China(No.61074154)
文摘The batch dyeing process is a typical nonlinear process with time-delay,where precise controlling of temperature plays a vital role on the dyeing quality.Because the accuracy and robustness of the commonly used proportion integration differentiation(PID) algorithm had been limited,a novel method was developed to precisely control the heating and cooling stages for batch dyeing process based on predictive sliding mode control(SMC) algorithm.Firstly,a special predictive sliding mode model was constructed according to the principle of generalized predictive control(GPC);secondly,an appropriate reference trajectory for SMC was designed based on the improved approaching law;finally,the predictive sliding mode model and the Diophantine equation were used to predict the output and then the optimized control law was derived using the generalized predictive law.This method combined GPC and the SMC with their respective advantages,so it could be applied to time-delay process,making the control system more robust.Simulation experiments show that this algorithm can well track the temperature variation for the batch dyeing process.