The paper presents a two-layer,disturbance-resistant,and fault-tolerant affine formation maneuver control scheme that accomplishes the surrounding of a dynamic target with multiple underactuated Quadrotor Unmanned Aer...The paper presents a two-layer,disturbance-resistant,and fault-tolerant affine formation maneuver control scheme that accomplishes the surrounding of a dynamic target with multiple underactuated Quadrotor Unmanned Aerial Vehicles(QUAVs).This scheme mainly consists of predefinedtime estimators and fixed-time tracking controllers,with a hybrid Laplacian matrix describing the communication among these QUAVs.At the first layer,we devise predefined time estimators for leading and following QUAVs,enabling accurate estimation of desired information.In the second layer,we initially devise a fixed-time hybrid observer to estimate unknown disturbances and actuator faults.Fixedtime translational tracking controllers are then proposed,and the intermediary control input from these controllers is used to extract the desired attitude and angular velocities for the fixed-time rotational tracking controllers.We employ an exact tracking differentiator to handle variables that are challenging to differentiate directly.The paper includes a demonstration of the control system stability through mathematical proof,as well as the presentation of simulation results and comparative simulations.展开更多
Dear Editor,This letter addresses the robust predefined-time control challenge for leaderless optimal formation in networked mobile vehicle(NMV)systems.The aim is to minimize a composite global cost function derived f...Dear Editor,This letter addresses the robust predefined-time control challenge for leaderless optimal formation in networked mobile vehicle(NMV)systems.The aim is to minimize a composite global cost function derived from individual strongly convex functions of each agent,considering both input disturbances and network communication constraints.A novel predefined-time optimal formation control(PTOFC)algorithm is presented,ensuring agent state convergence to optimal formation positions within an adjustable settling time.Through the integration of an integral sliding mode technique,disturbances are effectively countered.A representative numerical example highlights the effectiveness and robustness of the developed approach.展开更多
Based on the data of drilling,logging,experiment and gas testing in the Nanchuan area,southeastern Sichuan Basin,the hydrocarbon generation potential,gas genesis,occurrence state,migration,preservation conditions,pore...Based on the data of drilling,logging,experiment and gas testing in the Nanchuan area,southeastern Sichuan Basin,the hydrocarbon generation potential,gas genesis,occurrence state,migration,preservation conditions,pore and fracture features and accumulation evolution of the first member of Permian Maokou Formation(Mao 1 Member)are systematically studied,and the main controlling factors of unconventional gas enrichment and high production in marlstone assemblage of Mao 1 Member are discussed.(1)The enrichment and high yield of unconventional natural gas in the Mao 1 Member are controlled by three factors:carbon-rich fabric controlling hydrocarbon generation potential,good preservation controlling enrichment,and natural fracture controlling production.(2)The carbonate rocks of Mao 1 Member with carbon rich fabric have significant gas potential,exhibiting characteristics of self-generation and self-storage,which lays the material foundation for natural gas accumulation.(3)The occurrence state of natural gas is mainly free gas,which is prone to lateral migration,and good storage conditions are the key to natural gas enrichment.Positive structure is more conducive to natural gas accumulation,and a good compartment is created jointly by the self-sealing property of the Mao 1 Member and its top and bottom sealing property in monoclinal area,which is favorable for gas accumulation by retention.(4)Natural fractures are the main reservoir space and flow channel,and the more developed natural fractures are,the more conducive to the formation of high-quality porous-fractured reservoirs and the accumulation of natural gas,which is the core of controlling production.(5)The accumulation model of unconventional natural gas is proposed as“self-generation and self-storage,preservation controlling richness,and fractures controlling production”.(6)Identifying fracture development areas with good preservation conditions is the key to successful exploration,and implementing horizontal well staged acidizing and fracturing is an important means to increase production and efficiency.The study results are of referential significance for further understanding the natural gas enrichment in the Mao 1 Member and guiding the efficient exploration and development of new types of unconventional natural gas.展开更多
Formation control in multi-agent systems has become a critical area of interest due to its wide-ranging applications in robotics,autonomous transportation,and surveillance.While various studies have explored distribut...Formation control in multi-agent systems has become a critical area of interest due to its wide-ranging applications in robotics,autonomous transportation,and surveillance.While various studies have explored distributed cooperative control,this review focuses on the theoretical foundations and recent developments in formation control strategies.The paper categorizes and analyzes key formation types,including formation maintenance,group or cluster formation,bipartite formations,event-triggered formations,finite-time convergence,and constrained formations.A significant portion of the review addresses formation control under constrained dynamics,presenting both modelbased and model-free approaches that consider practical limitations such as actuator bounds,communication delays,and nonholonomic constraints.Additionally,the paper discusses emerging trends,including the integration of eventdriven mechanisms and AI-enhanced coordination strategies.Comparative evaluations highlight the trade-offs among various methodologies regarding scalability,robustness,and real-world feasibility.Practical implementations are reviewed across diverse platforms,and the review identifies the current achievements and unresolved challenges in the field.The paper concludes by outlining promising research directions,such as adaptive control for dynamic environments,energy-efficient coordination,and using learning-based control under uncertainty.This review synthesizes the current state of the art and provides a road map for future investigation,making it a valuable reference for researchers and practitioners aiming to advance formation control in multi-agent systems.展开更多
Dear Editor,This letter considers the problem of achieving optimal formation control in multiple vertical take-off and landing(VTOL)unmanned aerial vehicles(UAVs).Specifically,the objective is to derive the vehicles t...Dear Editor,This letter considers the problem of achieving optimal formation control in multiple vertical take-off and landing(VTOL)unmanned aerial vehicles(UAVs).Specifically,the objective is to derive the vehicles to the desired formation shape while minimizing the total cost function.Leveraging the backstepping design,a distributed control strategy is proposed that incorporates a dynamic system for generating a reference trajectory and a trajectory tracking controller for each vehicle.展开更多
This paper investigates the modeling and the practical predefined-time(PdT)tracking control problems for a fully actuated disk-shaped autonomous underwater vehicle(AUV)with six degrees of freedom.To overcome the gimba...This paper investigates the modeling and the practical predefined-time(PdT)tracking control problems for a fully actuated disk-shaped autonomous underwater vehicle(AUV)with six degrees of freedom.To overcome the gimbal lock problem inherent in Euler angle representation,unit quaternions are adopted to model the AUV,accounting for internal uncertainties and external disturbances.Then,an improved time-varying function is introduced,which serves as the basis for designing a nonsingular sliding surface and sliding mode controller with PdT stability.This approach ensures that the tracking errors converge within a predefined time,independent of initial conditions and design parameters.Compared with traditional PdT controllers,the proposed method eliminates singularities,enhances the precision of convergence time estimation,and typically yields smaller,smoother initial control inputs,thus improving its potential for engineering applications.Numerical simulations validate the effectiveness and performance of the proposed controller.展开更多
Formation control remains a critical challenge in cooperative multi-agent systems,particularly for Unmanned Underwater Vehicles(UUVs).Conventional approaches often suffer from several limitations,including reliance on...Formation control remains a critical challenge in cooperative multi-agent systems,particularly for Unmanned Underwater Vehicles(UUVs).Conventional approaches often suffer from several limitations,including reliance on global information,limited adaptability,high computational complexity,and poor scalability.To address these issues,we propose a novel bio-inspired formation control method for UUV swarms,drawing inspiration from the self-organizing behavior of fish schools.Our method integrates three key components:(1)a coordinated motion strategy without predefined targets that enables individual UUVs to align their movements via simple left or right rotations based solely on local neighbor interactions;(2)a target-directed movement strategy that guides UUVs toward specified regions;and(3)a dispersion control strategy that prevents overcrowding by regulating local spatial distributions.Simulation results confirm that the method achieves robust formation control and efficient area coverage using only local perception.Validation in a 9-UUV simulation environment demonstrates the approach’s flexibility,decentralization,and computational efficiency,making it particularly suitable for large-scale swarms with limited sensing and processing capabilities.展开更多
Dear Editor,This letter addresses the formation control problem for constrained underactuated autonomous underwater vehicles (AUVs). The feasibility condition of the virtual control law is eliminated by introducing a ...Dear Editor,This letter addresses the formation control problem for constrained underactuated autonomous underwater vehicles (AUVs). The feasibility condition of the virtual control law is eliminated by introducing a nonlinear state dependence function (NSDF) that transforms the state of each AUV in the formation.展开更多
In response to the need for a supportive on-orbit platform for future Mars exploration missions,this paper proposes the design and implementation of an autonomous spacecraft formation flying system near the Martian sy...In response to the need for a supportive on-orbit platform for future Mars exploration missions,this paper proposes the design and implementation of an autonomous spacecraft formation flying system near the Martian synchronous orbit using fuzzy learning-based intelligent control.A detailed analysis of spacecraft relative motion in the Mars environment is conducted,deducing the necessary conditions to reach the Martian synchronous orbit constraints.The modified Clohessy-Wiltshire(C-W)equation with Martian J_(2)(Oblateness index)perturbation is used as a reference to design a fuzzy learning-based intelligent and robust nonlinear control approach,which helps to autonomously track the desired formation configuration and stabilizes it.An introduction to spacecraft propulsion mechanisms is provided to analyze the feasibility of using electrical thrusters for spacecraft formation configuration tracking and stabilization in Martian synchronous orbits.The simulations show the effectiveness of the proposed control system for long-term on-orbit operations and reveal its reliability for designing intelligent deep-space formation flying configurations,such as an autonomous Mars observatory,a Martian telescope,or an interferometer.展开更多
Dear Editor,This letter considers the formation control of multiple mobile robot systems(MMRS)that only relies on the local observation information.A new distributed finite-time observer is proposed for MMRS under dir...Dear Editor,This letter considers the formation control of multiple mobile robot systems(MMRS)that only relies on the local observation information.A new distributed finite-time observer is proposed for MMRS under directed graph to estimate the relative information between each follower robot and the leader robot.Then the formation control problem is transformed into the tracking problem and a finite-time tracking controller is proposed based on the robot model feature.展开更多
This paper presents a predefined-time controller for Multiple Space transportation Robots System (MSRS), which can be applied in on-orbit assembly tasks to transport modules to pre-assembly configuration quickly. Firs...This paper presents a predefined-time controller for Multiple Space transportation Robots System (MSRS), which can be applied in on-orbit assembly tasks to transport modules to pre-assembly configuration quickly. Firstly, to simplify the analysis and design of predefined-time controller, a Predefined-time Stability Criterion is proposed in the form of Composite Lyapunov Function (CLF-PSC). Besides simplicity, the CLF-PSC also has the advantage of less conservativeness due to utilization of initial state information. Secondly, a concept of Lp-Norm-Normalized Sign Function (LPNNSF) is proposed based on the CLF-PSC. Different from traditional norm-normalized sign function, the Lp-norm of LPNNSF can be selected arbitrarily according to practical control task requirements, which means that the proposed LPNNSF is more generalized and more convenient for calculation. Thirdly, a predefined-time disturbance observer and predefined-time controller are designed based on the LPNNSF. The observer has the property of predefined-time convergence to achieve quicker and more accurate estimation of the lumped disturbance. The controller has less control input and chattering phenomenon than traditional predefined-time controller. In addition, by introducing the observer into the controller, the closed-loop system enjoys high precision and strong robustness. Finally, the effectiveness of the proposed controller is verified by numerical simulations. By employing the controller, the MSRS can carry assembly modules to the desired pre-assembly configuration accurately within predefined time.展开更多
In this paper,the distributed optimal formation control problem of heterogeneous Euler–Lagrange multi-agent systems with generic formation constraints and inequality constraints is investigated.Based on the primal–d...In this paper,the distributed optimal formation control problem of heterogeneous Euler–Lagrange multi-agent systems with generic formation constraints and inequality constraints is investigated.Based on the primal–dual dynamics and the adaptive control technique,a distributed optimal formation controller consists of a velocity reference signal generator and a velocity tracking controller is proposed.By using the optimality condition,the relationship between the equilibrium point of the closed-loop system and the optimal solution of the optimization problem is established.Then,by utilizing Lyapunov stability analysis,it is rigorously proved that the optimal formation is reached with the proposed controller.Lastly,simulation examples are provided to substantiate the theoretical results.展开更多
This paper concerns the exponential attitude-orbit coordinated control problems for gravitational-wave detection formation spacecraft systems.Notably,the large-scale communication delays resulting from oversized inter...This paper concerns the exponential attitude-orbit coordinated control problems for gravitational-wave detection formation spacecraft systems.Notably,the large-scale communication delays resulting from oversized inter-satellite distance of space-based laser interferometers are first modeled.Subject to the delayed communication behaviors,a new delay-dependent attitude-orbit coordinated controller is designed.Moreover,by reconstructing the less conservative Lyapunov-Krasovskii functional and free-weight matrices,sufficient criteria are derived to ensure the exponential stability of the closed-loop relative translation and attitude error system.Finally,a simulation example is employed to illustrate the numerical validity of the proposed controller for in-orbit detection missions.展开更多
An Interval Type-2(IT-2)fuzzy controller design approach is proposed in this research to simultaneously achievemultiple control objectives inNonlinearMulti-Agent Systems(NMASs),including formation,containment,and coll...An Interval Type-2(IT-2)fuzzy controller design approach is proposed in this research to simultaneously achievemultiple control objectives inNonlinearMulti-Agent Systems(NMASs),including formation,containment,and collision avoidance.However,inherent nonlinearities and uncertainties present in practical control systems contribute to the challenge of achieving precise control performance.Based on the IT-2 Takagi-Sugeno Fuzzy Model(T-SFM),the fuzzy control approach can offer a more effective solution for NMASs facing uncertainties.Unlike existing control methods for NMASs,the Formation and Containment(F-and-C)control problem with collision avoidance capability under uncertainties based on the IT-2 T-SFM is discussed for the first time.Moreover,an IT-2 fuzzy tracking control approach is proposed to solve the formation task for leaders in NMASs without requiring communication.This control scheme makes the design process of the IT-2 fuzzy Formation Controller(FC)more straightforward and effective.According to the communication interaction protocol,the IT-2 Containment Controller(CC)design approach is proposed for followers to ensure convergence into the region defined by the leaders.Leveraging the IT-2 T-SFM representation,the analysis methods developed for linear Multi-Agent Systems(MASs)are successfully extended to perform containment analysis without requiring the additional assumptions imposed in existing research.Notably,the IT-2 fuzzy tracking controller can also be applied in collision avoidance situations to track the desired trajectories calculated by the avoidance algorithm under the Artificial Potential Field(APF).Benefiting from the combination of vortex and source APFs,the leaders can properly adjust the system dynamics to prevent potential collision risk.Integrating the fuzzy theory and APFs avoidance algorithm,an IT-2 fuzzy controller design approach is proposed to achieve the F-and-C purposewhile ensuring collision avoidance capability.Finally,amulti-ship simulation is conducted to validate the feasibility and effectiveness of the designed IT-2 fuzzy controller.展开更多
The initial copper with large grain sizes of 60-100 μm was processed by six passes asymmetrical accumulative rolling-bond (AARB) and annealing, the ultra-fine-grained (UFG) copper with grain size of 200 nm was ob...The initial copper with large grain sizes of 60-100 μm was processed by six passes asymmetrical accumulative rolling-bond (AARB) and annealing, the ultra-fine-grained (UFG) copper with grain size of 200 nm was obtained, and the microstructures and properties were studied. The results show that there are large sub-structures and also texture component C for the UFG copper obtained by six passes AARB, possessing high strength and microhardness in company with poor elongation and conductivity. Thereafter, the UFG copper was annealed at 220 °C for 35 min, in which the sub-structures disappear, the grain boundaries are composed of big angle grain boundaries, and the textures are composed of a variety of texture components and parts of twins. Compared with the UFG copper obtained by six passes AARB, the tensile strength and yield strength for the UFG copper obtained by six passes AARB and annealing at 220 °C for 35 min are decreased slightly, the elongation and conductivity are improved obviously.展开更多
Formation control is a cooperative control concept in which multiple autonomous underwater mobile robots are deployed for a group motion and/or control mission. This paper presents a brief review on various cooperativ...Formation control is a cooperative control concept in which multiple autonomous underwater mobile robots are deployed for a group motion and/or control mission. This paper presents a brief review on various cooperative search and formation control strategies for multiple autonomous underwater vehicles (AUV) based on literature reported till date. Various cooperative and formation control schemes for collecting huge amount of data based on formation regulation control and formation tracking control are discussed. To address the challenge of detecting AUV failure in the fleet, communication issues, collision and obstacle avoidance are also taken into attention. Stability analysis of the feasible formation is also presented. This paper may be intended to serve as a convenient reference for the further research on formation control of multiple underwater mobile robots.展开更多
In recent years,formation control of multi-agent has been a significant research subject in the field of cooperative control.However,previous works have mainly concentrated on formation control for simple point-mass m...In recent years,formation control of multi-agent has been a significant research subject in the field of cooperative control.However,previous works have mainly concentrated on formation control for simple point-mass model and linear model.In contrast,this paper presents a novel cooperative algorithm for multiple air vehicles formation control,which aims to devise a control strategy based on guidance route to achieve precisely coordinated formation control for a group of fixed-wing aircraft in a complex task environment.The proposed method introduces the leader-follower structure for effective organization of the multi-agent coordination.Moreover,the Partial Integrated Formation and Control(PIFC)is adopted to design the control law for Guidance-Route based Formation Control(GRFC).Additionally,the proposed approach designs two guidance-route generation strategies for two special situations to demonstrate the effectiveness of GRFC in complex task environments.Theoretical analysis reveals that the proposed control protocol for guidance command can ensure the overall stability and tracking accuracy of the system.Numerical simulations are performed to illustrate the theoretical results,and verify that the proposed approach can achieve coordinated formation control precisely in a complex task environment.展开更多
In this paper,the flight formation control problem of a group of quadrotor unmanned aerial vehicles(UAVs) with parametric uncertainties and external disturbances is studied.Unitquaternions are used to represent the ...In this paper,the flight formation control problem of a group of quadrotor unmanned aerial vehicles(UAVs) with parametric uncertainties and external disturbances is studied.Unitquaternions are used to represent the attitudes of the quadrotor UAVs.Separating the model into a translational subsystem and a rotational subsystem,an intermediary control input is introduced to track a desired velocity and extract desired orientations.Then considering the internal parametric uncertainties and external disturbances of the quadrotor UAVs,the priori-bounded intermediary adaptive control input is designed for velocity tracking and formation keeping,by which the bounded control thrust and the desired orientation can be extracted.Thereafter,an adaptive control torque input is designed for the rotational subsystem to track the desired orientation.With the proposed control scheme,the desired velocity is tracked and a desired formation shape is built up.Global stability of the closed-loop system is proven via Lyapunov-based stability analysis.Numerical simulation results are presented to illustrate the effectiveness of the proposed control scheme.展开更多
This paper investigates the problem of Spacecraft Formation-Containment Flying Control(SFCFC)when the desired translational velocity is time-varying.In SFCFC problem,there are multiple leader spacecraft and multiple f...This paper investigates the problem of Spacecraft Formation-Containment Flying Control(SFCFC)when the desired translational velocity is time-varying.In SFCFC problem,there are multiple leader spacecraft and multiple follower spacecraft and SFCFC can be divided into leader spacecraft’s formation control and follower spacecraft’s containment control.First,under the condition that only a part of leader spacecraft can have access to the desired time-varying translational velocity,a velocity estimator is designed for each leader spacecraft.Secondly,based on the estimated translational velocity,a distributed formation control algorithm is designed for leader spacecraft to achieve the desired formation and move with the desired translational velocity simultaneously.Then,to ensure all follower spacecraft converge to the convex hull formed by the leader spacecraft,a distributed containment control algorithm is designed for follower spacecraft.Moreover,to reduce the dependence of the designed control algorithms on the graph information and increase system robustness,the control gains are changing adaptively and the parametric uncertainties are handled,respectively.Finally,simulation results are provided to illustrate the effectiveness of the theoretical results.展开更多
This paper addresses a target-enclosing problem for multiple spacecraft systems by proposing a two-layer affine formation control strategy. Compared with the existing methods,the adopted two-layer network structure in...This paper addresses a target-enclosing problem for multiple spacecraft systems by proposing a two-layer affine formation control strategy. Compared with the existing methods,the adopted two-layer network structure in this paper is generally directed, which is suitable for practical space missions. Firstly, distributed finite-time sliding-mode estimators and formation controllers in both layers are designed separately to improve the flexibility of the formation control system. By introducing the properties of affine transformation into formation control protocol design,the controllers can be used to track different time-varying target formation patterns. Besides, multilayer time-varying encirclements can be achieved with particular shapes to surround the moving target. In the sequel, by integrating adaptive neural networks and specialized artificial potential functions into backstepping controllers, the problems of uncertain Euler-Lagrange models, collision avoidance as well as formation reconfiguration are solved simultaneously. The stability of the proposed controllers is verified by the Lyapunov direct method. Finally, two simulation examples of triangle formation and more complex hexagon formation are presented to illustrate the feasibility of the theoretical results.展开更多
基金supported by Natural Science Basic Research Plan in Shaanxi Province of China(No.2023-JC-QN-0733)Guangdong Basic and Applied Basic Research Foundation,China(No.2022A1515110753)+2 种基金China Postdoctoral Science Foundation(No.2022M722583)China Industry-UniversityResearch Innovation Foundation(No.2022IT188)National Key Laboratory of Air-based Information Perception and Fusion and the Aeronautic Science Foundation of China(No.20220001068001)。
文摘The paper presents a two-layer,disturbance-resistant,and fault-tolerant affine formation maneuver control scheme that accomplishes the surrounding of a dynamic target with multiple underactuated Quadrotor Unmanned Aerial Vehicles(QUAVs).This scheme mainly consists of predefinedtime estimators and fixed-time tracking controllers,with a hybrid Laplacian matrix describing the communication among these QUAVs.At the first layer,we devise predefined time estimators for leading and following QUAVs,enabling accurate estimation of desired information.In the second layer,we initially devise a fixed-time hybrid observer to estimate unknown disturbances and actuator faults.Fixedtime translational tracking controllers are then proposed,and the intermediary control input from these controllers is used to extract the desired attitude and angular velocities for the fixed-time rotational tracking controllers.We employ an exact tracking differentiator to handle variables that are challenging to differentiate directly.The paper includes a demonstration of the control system stability through mathematical proof,as well as the presentation of simulation results and comparative simulations.
基金supported by the National Natural Science Foundation of China(62373162,U24A20268,624B2055)the Shenzhen Science and Technology Program(JCYJ 20240813114007010)the Knowledge Innovation Program of Wuhan-Basic Research(2023010201010100).
文摘Dear Editor,This letter addresses the robust predefined-time control challenge for leaderless optimal formation in networked mobile vehicle(NMV)systems.The aim is to minimize a composite global cost function derived from individual strongly convex functions of each agent,considering both input disturbances and network communication constraints.A novel predefined-time optimal formation control(PTOFC)algorithm is presented,ensuring agent state convergence to optimal formation positions within an adjustable settling time.Through the integration of an integral sliding mode technique,disturbances are effectively countered.A representative numerical example highlights the effectiveness and robustness of the developed approach.
基金Supported by the National Science and Technology Major Project of China(2016ZX05061)Sinopec Science and Technology Department Project(P21042-4,P25030)。
文摘Based on the data of drilling,logging,experiment and gas testing in the Nanchuan area,southeastern Sichuan Basin,the hydrocarbon generation potential,gas genesis,occurrence state,migration,preservation conditions,pore and fracture features and accumulation evolution of the first member of Permian Maokou Formation(Mao 1 Member)are systematically studied,and the main controlling factors of unconventional gas enrichment and high production in marlstone assemblage of Mao 1 Member are discussed.(1)The enrichment and high yield of unconventional natural gas in the Mao 1 Member are controlled by three factors:carbon-rich fabric controlling hydrocarbon generation potential,good preservation controlling enrichment,and natural fracture controlling production.(2)The carbonate rocks of Mao 1 Member with carbon rich fabric have significant gas potential,exhibiting characteristics of self-generation and self-storage,which lays the material foundation for natural gas accumulation.(3)The occurrence state of natural gas is mainly free gas,which is prone to lateral migration,and good storage conditions are the key to natural gas enrichment.Positive structure is more conducive to natural gas accumulation,and a good compartment is created jointly by the self-sealing property of the Mao 1 Member and its top and bottom sealing property in monoclinal area,which is favorable for gas accumulation by retention.(4)Natural fractures are the main reservoir space and flow channel,and the more developed natural fractures are,the more conducive to the formation of high-quality porous-fractured reservoirs and the accumulation of natural gas,which is the core of controlling production.(5)The accumulation model of unconventional natural gas is proposed as“self-generation and self-storage,preservation controlling richness,and fractures controlling production”.(6)Identifying fracture development areas with good preservation conditions is the key to successful exploration,and implementing horizontal well staged acidizing and fracturing is an important means to increase production and efficiency.The study results are of referential significance for further understanding the natural gas enrichment in the Mao 1 Member and guiding the efficient exploration and development of new types of unconventional natural gas.
基金supported in part by the National Natural Science Foundation of China under Grant 6237319in part by the Postgraduate Research and Practice Innovation Program of Jiangsu Province under Grant KYCX230479.
文摘Formation control in multi-agent systems has become a critical area of interest due to its wide-ranging applications in robotics,autonomous transportation,and surveillance.While various studies have explored distributed cooperative control,this review focuses on the theoretical foundations and recent developments in formation control strategies.The paper categorizes and analyzes key formation types,including formation maintenance,group or cluster formation,bipartite formations,event-triggered formations,finite-time convergence,and constrained formations.A significant portion of the review addresses formation control under constrained dynamics,presenting both modelbased and model-free approaches that consider practical limitations such as actuator bounds,communication delays,and nonholonomic constraints.Additionally,the paper discusses emerging trends,including the integration of eventdriven mechanisms and AI-enhanced coordination strategies.Comparative evaluations highlight the trade-offs among various methodologies regarding scalability,robustness,and real-world feasibility.Practical implementations are reviewed across diverse platforms,and the review identifies the current achievements and unresolved challenges in the field.The paper concludes by outlining promising research directions,such as adaptive control for dynamic environments,energy-efficient coordination,and using learning-based control under uncertainty.This review synthesizes the current state of the art and provides a road map for future investigation,making it a valuable reference for researchers and practitioners aiming to advance formation control in multi-agent systems.
基金supported by the National Natural Science Foundation of China(62003214)Guangdong Basic and Applied Basic Research Foundation(2024A1515012681)+1 种基金the Natural Science Foundation of Shanghai(22ZR1443600)Shanghai Pujiang Programme(23PJD064).
文摘Dear Editor,This letter considers the problem of achieving optimal formation control in multiple vertical take-off and landing(VTOL)unmanned aerial vehicles(UAVs).Specifically,the objective is to derive the vehicles to the desired formation shape while minimizing the total cost function.Leveraging the backstepping design,a distributed control strategy is proposed that incorporates a dynamic system for generating a reference trajectory and a trajectory tracking controller for each vehicle.
基金supported in part by the National Natural Science Foundation of China(62373107)the“Zhishan”Scholars Programs of Southeast University(2242023R40011).
文摘This paper investigates the modeling and the practical predefined-time(PdT)tracking control problems for a fully actuated disk-shaped autonomous underwater vehicle(AUV)with six degrees of freedom.To overcome the gimbal lock problem inherent in Euler angle representation,unit quaternions are adopted to model the AUV,accounting for internal uncertainties and external disturbances.Then,an improved time-varying function is introduced,which serves as the basis for designing a nonsingular sliding surface and sliding mode controller with PdT stability.This approach ensures that the tracking errors converge within a predefined time,independent of initial conditions and design parameters.Compared with traditional PdT controllers,the proposed method eliminates singularities,enhances the precision of convergence time estimation,and typically yields smaller,smoother initial control inputs,thus improving its potential for engineering applications.Numerical simulations validate the effectiveness and performance of the proposed controller.
基金supported by The Special Fund for Basic Scientific Research for Liaoning Provincial Governed Universities(2024JBZDZ004)Fishery Central Financial Support Project of Liaoning Province(2023)+5 种基金Liaoning Province Key Research and Development Plan(2023JH26/10200015)Natural Science Foundation of Liaoning Province(2020-KF-12-09)The Liaoning Provincial Education Commission Fund(LJKZ0730,QL202016)Applied Basic Research Project of Science and Technology Commission of Liaoning Province(2022JH2/101300187)Open Fund of Key Laboratory of Environmental Control Aquaculture of Ministry of Education(Dalian Ocean University)(202219)Liaoning Province Science and Technology Plan Joint Program(2024JH2/102600083).
文摘Formation control remains a critical challenge in cooperative multi-agent systems,particularly for Unmanned Underwater Vehicles(UUVs).Conventional approaches often suffer from several limitations,including reliance on global information,limited adaptability,high computational complexity,and poor scalability.To address these issues,we propose a novel bio-inspired formation control method for UUV swarms,drawing inspiration from the self-organizing behavior of fish schools.Our method integrates three key components:(1)a coordinated motion strategy without predefined targets that enables individual UUVs to align their movements via simple left or right rotations based solely on local neighbor interactions;(2)a target-directed movement strategy that guides UUVs toward specified regions;and(3)a dispersion control strategy that prevents overcrowding by regulating local spatial distributions.Simulation results confirm that the method achieves robust formation control and efficient area coverage using only local perception.Validation in a 9-UUV simulation environment demonstrates the approach’s flexibility,decentralization,and computational efficiency,making it particularly suitable for large-scale swarms with limited sensing and processing capabilities.
基金supported by the National Natural Science Foundation of China(62073094)the Fundamental Research Funds for the Central Universities(3072024GH0404)
文摘Dear Editor,This letter addresses the formation control problem for constrained underactuated autonomous underwater vehicles (AUVs). The feasibility condition of the virtual control law is eliminated by introducing a nonlinear state dependence function (NSDF) that transforms the state of each AUV in the formation.
基金supported by the National Laboratory of Space Intelligent Control(No.HTKJ2023KL502007)the Chinese Government Scholarship(CSC)。
文摘In response to the need for a supportive on-orbit platform for future Mars exploration missions,this paper proposes the design and implementation of an autonomous spacecraft formation flying system near the Martian synchronous orbit using fuzzy learning-based intelligent control.A detailed analysis of spacecraft relative motion in the Mars environment is conducted,deducing the necessary conditions to reach the Martian synchronous orbit constraints.The modified Clohessy-Wiltshire(C-W)equation with Martian J_(2)(Oblateness index)perturbation is used as a reference to design a fuzzy learning-based intelligent and robust nonlinear control approach,which helps to autonomously track the desired formation configuration and stabilizes it.An introduction to spacecraft propulsion mechanisms is provided to analyze the feasibility of using electrical thrusters for spacecraft formation configuration tracking and stabilization in Martian synchronous orbits.The simulations show the effectiveness of the proposed control system for long-term on-orbit operations and reveal its reliability for designing intelligent deep-space formation flying configurations,such as an autonomous Mars observatory,a Martian telescope,or an interferometer.
基金supported by the National Natural Science Foundation of China(62073113,62003122,62303148)the Fundamental Research Funds for the Central Universities(MCCSE2023A01,JZ2023HGTA0201,JZ2023HGQA0109)the Anhui Provincial Natural Science Foundation(2308085QF204)
文摘Dear Editor,This letter considers the formation control of multiple mobile robot systems(MMRS)that only relies on the local observation information.A new distributed finite-time observer is proposed for MMRS under directed graph to estimate the relative information between each follower robot and the leader robot.Then the formation control problem is transformed into the tracking problem and a finite-time tracking controller is proposed based on the robot model feature.
基金co-supported by the National Natural Science Foundation of China(Nos.12372048,12102343)the Key Program of the National Natural Science Foundation of China(No.U2013206)+1 种基金the China Postdoctoral Science Foundation(No.2023M742835)the Guangdong Basic and Applied Basic Research Foundation,China(No.2023A1515011421).
文摘This paper presents a predefined-time controller for Multiple Space transportation Robots System (MSRS), which can be applied in on-orbit assembly tasks to transport modules to pre-assembly configuration quickly. Firstly, to simplify the analysis and design of predefined-time controller, a Predefined-time Stability Criterion is proposed in the form of Composite Lyapunov Function (CLF-PSC). Besides simplicity, the CLF-PSC also has the advantage of less conservativeness due to utilization of initial state information. Secondly, a concept of Lp-Norm-Normalized Sign Function (LPNNSF) is proposed based on the CLF-PSC. Different from traditional norm-normalized sign function, the Lp-norm of LPNNSF can be selected arbitrarily according to practical control task requirements, which means that the proposed LPNNSF is more generalized and more convenient for calculation. Thirdly, a predefined-time disturbance observer and predefined-time controller are designed based on the LPNNSF. The observer has the property of predefined-time convergence to achieve quicker and more accurate estimation of the lumped disturbance. The controller has less control input and chattering phenomenon than traditional predefined-time controller. In addition, by introducing the observer into the controller, the closed-loop system enjoys high precision and strong robustness. Finally, the effectiveness of the proposed controller is verified by numerical simulations. By employing the controller, the MSRS can carry assembly modules to the desired pre-assembly configuration accurately within predefined time.
基金supported in part by the National Key Research and Development Program of China under Grant 2022YFB3303900in part by the National Natural Science Foundation of China under Grants 62103277 and 62025305。
文摘In this paper,the distributed optimal formation control problem of heterogeneous Euler–Lagrange multi-agent systems with generic formation constraints and inequality constraints is investigated.Based on the primal–dual dynamics and the adaptive control technique,a distributed optimal formation controller consists of a velocity reference signal generator and a velocity tracking controller is proposed.By using the optimality condition,the relationship between the equilibrium point of the closed-loop system and the optimal solution of the optimization problem is established.Then,by utilizing Lyapunov stability analysis,it is rigorously proved that the optimal formation is reached with the proposed controller.Lastly,simulation examples are provided to substantiate the theoretical results.
基金supported by the Na⁃tional Key R&D Program of China(No.2022YFC2204800)the Graduate Student Independent Exploration and Innovation Program of Central South University(No.2024ZZTS 0767).
文摘This paper concerns the exponential attitude-orbit coordinated control problems for gravitational-wave detection formation spacecraft systems.Notably,the large-scale communication delays resulting from oversized inter-satellite distance of space-based laser interferometers are first modeled.Subject to the delayed communication behaviors,a new delay-dependent attitude-orbit coordinated controller is designed.Moreover,by reconstructing the less conservative Lyapunov-Krasovskii functional and free-weight matrices,sufficient criteria are derived to ensure the exponential stability of the closed-loop relative translation and attitude error system.Finally,a simulation example is employed to illustrate the numerical validity of the proposed controller for in-orbit detection missions.
基金founded by the National Science and Technology Council of the Republic of China under contract NSTC113-2221-E-019-032.
文摘An Interval Type-2(IT-2)fuzzy controller design approach is proposed in this research to simultaneously achievemultiple control objectives inNonlinearMulti-Agent Systems(NMASs),including formation,containment,and collision avoidance.However,inherent nonlinearities and uncertainties present in practical control systems contribute to the challenge of achieving precise control performance.Based on the IT-2 Takagi-Sugeno Fuzzy Model(T-SFM),the fuzzy control approach can offer a more effective solution for NMASs facing uncertainties.Unlike existing control methods for NMASs,the Formation and Containment(F-and-C)control problem with collision avoidance capability under uncertainties based on the IT-2 T-SFM is discussed for the first time.Moreover,an IT-2 fuzzy tracking control approach is proposed to solve the formation task for leaders in NMASs without requiring communication.This control scheme makes the design process of the IT-2 fuzzy Formation Controller(FC)more straightforward and effective.According to the communication interaction protocol,the IT-2 Containment Controller(CC)design approach is proposed for followers to ensure convergence into the region defined by the leaders.Leveraging the IT-2 T-SFM representation,the analysis methods developed for linear Multi-Agent Systems(MASs)are successfully extended to perform containment analysis without requiring the additional assumptions imposed in existing research.Notably,the IT-2 fuzzy tracking controller can also be applied in collision avoidance situations to track the desired trajectories calculated by the avoidance algorithm under the Artificial Potential Field(APF).Benefiting from the combination of vortex and source APFs,the leaders can properly adjust the system dynamics to prevent potential collision risk.Integrating the fuzzy theory and APFs avoidance algorithm,an IT-2 fuzzy controller design approach is proposed to achieve the F-and-C purposewhile ensuring collision avoidance capability.Finally,amulti-ship simulation is conducted to validate the feasibility and effectiveness of the designed IT-2 fuzzy controller.
基金Project (50804018) supported by the National Natural Science Foundation of ChinaProject (ZDS2010015C) supported by Key Lab of Advanced Materials in Rare and Precious and Non-ferrous Metals, Ministry of Education, KMUST, ChinaProject (2010DH025) supported by Yunnan Province Construction Plans of Scientific and Technological Conditions, China
文摘The initial copper with large grain sizes of 60-100 μm was processed by six passes asymmetrical accumulative rolling-bond (AARB) and annealing, the ultra-fine-grained (UFG) copper with grain size of 200 nm was obtained, and the microstructures and properties were studied. The results show that there are large sub-structures and also texture component C for the UFG copper obtained by six passes AARB, possessing high strength and microhardness in company with poor elongation and conductivity. Thereafter, the UFG copper was annealed at 220 °C for 35 min, in which the sub-structures disappear, the grain boundaries are composed of big angle grain boundaries, and the textures are composed of a variety of texture components and parts of twins. Compared with the UFG copper obtained by six passes AARB, the tensile strength and yield strength for the UFG copper obtained by six passes AARB and annealing at 220 °C for 35 min are decreased slightly, the elongation and conductivity are improved obviously.
文摘Formation control is a cooperative control concept in which multiple autonomous underwater mobile robots are deployed for a group motion and/or control mission. This paper presents a brief review on various cooperative search and formation control strategies for multiple autonomous underwater vehicles (AUV) based on literature reported till date. Various cooperative and formation control schemes for collecting huge amount of data based on formation regulation control and formation tracking control are discussed. To address the challenge of detecting AUV failure in the fleet, communication issues, collision and obstacle avoidance are also taken into attention. Stability analysis of the feasible formation is also presented. This paper may be intended to serve as a convenient reference for the further research on formation control of multiple underwater mobile robots.
基金co-supported by the National Natural Science Foundation of China(Nos.61773031 and 61573042)Graduate Innovation Practice Fund of Beihang University,China(No.YCSJ-01-201915)funded by the State Key Laboratory of Software Development Environment,China.
文摘In recent years,formation control of multi-agent has been a significant research subject in the field of cooperative control.However,previous works have mainly concentrated on formation control for simple point-mass model and linear model.In contrast,this paper presents a novel cooperative algorithm for multiple air vehicles formation control,which aims to devise a control strategy based on guidance route to achieve precisely coordinated formation control for a group of fixed-wing aircraft in a complex task environment.The proposed method introduces the leader-follower structure for effective organization of the multi-agent coordination.Moreover,the Partial Integrated Formation and Control(PIFC)is adopted to design the control law for Guidance-Route based Formation Control(GRFC).Additionally,the proposed approach designs two guidance-route generation strategies for two special situations to demonstrate the effectiveness of GRFC in complex task environments.Theoretical analysis reveals that the proposed control protocol for guidance command can ensure the overall stability and tracking accuracy of the system.Numerical simulations are performed to illustrate the theoretical results,and verify that the proposed approach can achieve coordinated formation control precisely in a complex task environment.
基金supported by the National Natural Science Foundation of China(No.61374048)
文摘In this paper,the flight formation control problem of a group of quadrotor unmanned aerial vehicles(UAVs) with parametric uncertainties and external disturbances is studied.Unitquaternions are used to represent the attitudes of the quadrotor UAVs.Separating the model into a translational subsystem and a rotational subsystem,an intermediary control input is introduced to track a desired velocity and extract desired orientations.Then considering the internal parametric uncertainties and external disturbances of the quadrotor UAVs,the priori-bounded intermediary adaptive control input is designed for velocity tracking and formation keeping,by which the bounded control thrust and the desired orientation can be extracted.Thereafter,an adaptive control torque input is designed for the rotational subsystem to track the desired orientation.With the proposed control scheme,the desired velocity is tracked and a desired formation shape is built up.Global stability of the closed-loop system is proven via Lyapunov-based stability analysis.Numerical simulation results are presented to illustrate the effectiveness of the proposed control scheme.
基金supported by the National Natural Science Foundation of China(Nos.61876050,61673135,61603114).
文摘This paper investigates the problem of Spacecraft Formation-Containment Flying Control(SFCFC)when the desired translational velocity is time-varying.In SFCFC problem,there are multiple leader spacecraft and multiple follower spacecraft and SFCFC can be divided into leader spacecraft’s formation control and follower spacecraft’s containment control.First,under the condition that only a part of leader spacecraft can have access to the desired time-varying translational velocity,a velocity estimator is designed for each leader spacecraft.Secondly,based on the estimated translational velocity,a distributed formation control algorithm is designed for leader spacecraft to achieve the desired formation and move with the desired translational velocity simultaneously.Then,to ensure all follower spacecraft converge to the convex hull formed by the leader spacecraft,a distributed containment control algorithm is designed for follower spacecraft.Moreover,to reduce the dependence of the designed control algorithms on the graph information and increase system robustness,the control gains are changing adaptively and the parametric uncertainties are handled,respectively.Finally,simulation results are provided to illustrate the effectiveness of the theoretical results.
基金sponsored by National Natural Science Foundation of China (Nos. 61673327, 51606161, 11602209, 91441128)Natural Science Foundation of Fujian Province of China (No. 2016J06011)China Scholarship Council (No. 201606310153)
文摘This paper addresses a target-enclosing problem for multiple spacecraft systems by proposing a two-layer affine formation control strategy. Compared with the existing methods,the adopted two-layer network structure in this paper is generally directed, which is suitable for practical space missions. Firstly, distributed finite-time sliding-mode estimators and formation controllers in both layers are designed separately to improve the flexibility of the formation control system. By introducing the properties of affine transformation into formation control protocol design,the controllers can be used to track different time-varying target formation patterns. Besides, multilayer time-varying encirclements can be achieved with particular shapes to surround the moving target. In the sequel, by integrating adaptive neural networks and specialized artificial potential functions into backstepping controllers, the problems of uncertain Euler-Lagrange models, collision avoidance as well as formation reconfiguration are solved simultaneously. The stability of the proposed controllers is verified by the Lyapunov direct method. Finally, two simulation examples of triangle formation and more complex hexagon formation are presented to illustrate the feasibility of the theoretical results.