To overcome external environmental disturbances,inertial parameter uncertainties and vibration of flexible modes in the process of attitude tracking,a comprehensively effective predefined-time guaranteed performance c...To overcome external environmental disturbances,inertial parameter uncertainties and vibration of flexible modes in the process of attitude tracking,a comprehensively effective predefined-time guaranteed performance controller based on multi⁃observers for flexible spacecraft is proposed.First,to prevent unwinding phenomenon in attitude description,the rotation matrix is used to represent the spacecraft’s attitude.Second,the flexible modes observer which can guarantee predefined⁃time convergence is designed,for the case where flexible vibrations are unmeasurable in practice.What’s more,the disturbance observer is applied to estimate and compensate the lumped disturbances to improve the robustness of attitude control.A predefined-time controller is proposed to satisfy the prescribed performance and stabilize the attitude tracking system via barrier Lyapunov function.Finally,through comparative numerical simulations,the proposed controller can achieve high-precision convergence compared with the existing finite-time attitude tracking controller.This paper provides certain references for the high-precision predefined-time prescribed performance attitude tracking of flexible spacecraft with multi-disturbance.展开更多
Dear Editor,This letter addresses distributed optimization for resource allocation problems with time-varying objective functions and time-varying constraints.Inspired by the distributed average tracking(DAT)approach,...Dear Editor,This letter addresses distributed optimization for resource allocation problems with time-varying objective functions and time-varying constraints.Inspired by the distributed average tracking(DAT)approach,a distributed control protocol is proposed for optimal resource allocation.The convergence to a time-varying optimal solution within a predefined time is proved.Two numerical examples are given to illustrate the effectiveness of the proposed approach.展开更多
Dear Editor,This letter investigates predefined-time optimization problems(OPs) of multi-agent systems(MASs), where the agent of MASs is subject to inequality constraints, and the team objective function accounts for ...Dear Editor,This letter investigates predefined-time optimization problems(OPs) of multi-agent systems(MASs), where the agent of MASs is subject to inequality constraints, and the team objective function accounts for impulse effects. Firstly, to address the inequality constraints,the penalty method is introduced. Then, a novel optimization strategy is developed, which only requires that the team objective function be strongly convex.展开更多
Dear Editor,This letter addresses the robust predefined-time control challenge for leaderless optimal formation in networked mobile vehicle(NMV)systems.The aim is to minimize a composite global cost function derived f...Dear Editor,This letter addresses the robust predefined-time control challenge for leaderless optimal formation in networked mobile vehicle(NMV)systems.The aim is to minimize a composite global cost function derived from individual strongly convex functions of each agent,considering both input disturbances and network communication constraints.A novel predefined-time optimal formation control(PTOFC)algorithm is presented,ensuring agent state convergence to optimal formation positions within an adjustable settling time.Through the integration of an integral sliding mode technique,disturbances are effectively countered.A representative numerical example highlights the effectiveness and robustness of the developed approach.展开更多
Covert timing channels(CTC)exploit network resources to establish hidden communication pathways,posing signi cant risks to data security and policy compliance.erefore,detecting such hidden and dangerous threats remain...Covert timing channels(CTC)exploit network resources to establish hidden communication pathways,posing signi cant risks to data security and policy compliance.erefore,detecting such hidden and dangerous threats remains one of the security challenges. is paper proposes LinguTimeX,a new framework that combines natural language processing with arti cial intelligence,along with explainable Arti cial Intelligence(AI)not only to detect CTC but also to provide insights into the decision process.LinguTimeX performs multidimensional feature extraction by fusing linguistic attributes with temporal network patterns to identify covert channels precisely.LinguTimeX demonstrates strong e ectiveness in detecting CTC across multiple languages;namely English,Arabic,and Chinese.Speci cally,the LSTM and RNN models achieved F1 scores of 90%on the English dataset,89%on the Arabic dataset,and 88%on the Chinese dataset,showcasing their superior performance and ability to generalize across multiple languages. is highlights their robustness in detecting CTCs within security systems,regardless of the language or cultural context of the data.In contrast,the DeepForest model produced F1-scores ranging from 86%to 87%across the same datasets,further con rming its e ectiveness in CTC detection.Although other algorithms also showed reasonable accuracy,the LSTM and RNN models consistently outperformed them in multilingual settings,suggesting that deep learning models might be better suited for this particular problem.展开更多
There are always large-scale items in the maintenances schedule of aircraft system, many of which have been fixed to be done in predefined sequences, which leads the workflow to be sys-tematically complex and makes th...There are always large-scale items in the maintenances schedule of aircraft system, many of which have been fixed to be done in predefined sequences, which leads the workflow to be sys-tematically complex and makes this kind of problem quite different from all sorts of existing job-selection modes. On the other hand, the human resources are always limited and men have different working capabilities on different items, which make the allocation operation of human resources be much roomy. However, the final total time span of maintenance is often required to be as short as possible in many practices, in order to suffer only the lowest cost of loss while the system is stopping. A new model for op-timizing the allocation if aircraft maintenance human resources with the constraint of predefined sequence is presented. The ge-netic algorithm is employed to find the optimal solution that holds the shortest total time span of maintenance. To generate the ul-timate maintenance work items and the human resource array, the sequences among all maintenance work items are considered firstly, the work item array is then generated through traversal with the constraint of maintenance sequence matrix, and the human resources are finally allocated according to the work item array with the constraint of the maintenance capability. An example is demonstrated to show that the model and algorithm behave a satisfying performance on finding the optimal solution as expected.展开更多
A non-orthogonal predefined exponential basis set is used to handle half-bounded domains in multi domain spectral method (MDSM). This approach works extremely well for real-valued semi-infinite differential problems. ...A non-orthogonal predefined exponential basis set is used to handle half-bounded domains in multi domain spectral method (MDSM). This approach works extremely well for real-valued semi-infinite differential problems. It spans simultaneously wide range of exponential decay rates with multi scaling and does not suffer from zero crossing. These two conditions are necessary for many physical problems. For comparison, the method is used to solve different problems and compared with analytical and published results. The comparison exhibits the strengths and accuracy of the presented basis set.展开更多
This paper addresses the design of an exponential function-based learning law for artificial neural networks(ANNs)with continuous dynamics.The ANN structure is used to obtain a non-parametric model of systems with unc...This paper addresses the design of an exponential function-based learning law for artificial neural networks(ANNs)with continuous dynamics.The ANN structure is used to obtain a non-parametric model of systems with uncertainties,which are described by a set of nonlinear ordinary differential equations.Two novel adaptive algorithms with predefined exponential convergence rate adjust the weights of the ANN.The first algorithm includes an adaptive gain depending on the identification error which accelerated the convergence of the weights and promotes a faster convergence between the states of the uncertain system and the trajectories of the neural identifier.The second approach uses a time-dependent sigmoidal gain that forces the convergence of the identification error to an invariant set characterized by an ellipsoid.The generalized volume of this ellipsoid depends on the upper bounds of uncertainties,perturbations and modeling errors.The application of the invariant ellipsoid method yields to obtain an algorithm to reduce the volume of the convergence region for the identification error.Both adaptive algorithms are derived from the application of a non-standard exponential dependent function and an associated controlled Lyapunov function.Numerical examples demonstrate the improvements enforced by the algorithms introduced in this study by comparing the convergence settings concerning classical schemes with non-exponential continuous learning methods.The proposed identifiers overcome the results of the classical identifier achieving a faster convergence to an invariant set of smaller dimensions.展开更多
Iced transmission line galloping poses a significant threat to the safety and reliability of power systems,leading directly to line tripping,disconnections,and power outages.Existing early warning methods of iced tran...Iced transmission line galloping poses a significant threat to the safety and reliability of power systems,leading directly to line tripping,disconnections,and power outages.Existing early warning methods of iced transmission line galloping suffer from issues such as reliance on a single data source,neglect of irregular time series,and lack of attention-based closed-loop feedback,resulting in high rates of missed and false alarms.To address these challenges,we propose an Internet of Things(IoT)empowered early warning method of transmission line galloping that integrates time series data from optical fiber sensing and weather forecast.Initially,the method applies a primary adaptive weighted fusion to the IoT empowered optical fiber real-time sensing data and weather forecast data,followed by a secondary fusion based on a Back Propagation(BP)neural network,and uses the K-medoids algorithm for clustering the fused data.Furthermore,an adaptive irregular time series perception adjustment module is introduced into the traditional Gated Recurrent Unit(GRU)network,and closed-loop feedback based on attentionmechanism is employed to update network parameters through gradient feedback of the loss function,enabling closed-loop training and time series data prediction of the GRU network model.Subsequently,considering various types of prediction data and the duration of icing,an iced transmission line galloping risk coefficient is established,and warnings are categorized based on this coefficient.Finally,using an IoT-driven realistic dataset of iced transmission line galloping,the effectiveness of the proposed method is validated through multi-dimensional simulation scenarios.展开更多
The aim of this research was to investigate the impacts of changing environmental factors on pilots by implementing the effective flight procedure that we found from the previous research. During the experiments, camc...The aim of this research was to investigate the impacts of changing environmental factors on pilots by implementing the effective flight procedure that we found from the previous research. During the experiments, camcorders were used to monitor and analyze the tasks and physical exhaustion of the pilot. NASA-TLX was also used to collect the data of the workload. Through this experiment, we were able to approach the experiment from a different angle regarding the optimal assigned work of the pilot, unlike the previous studies. Also, we were able to find out the impacts of environmental factors on the pilot’s workload.展开更多
基金supported by the National Natural Science Foundation of China(No.12472045)the Shanghai Aerospace Science and Technology Innovation Fund(No.SAST2022-036)。
文摘To overcome external environmental disturbances,inertial parameter uncertainties and vibration of flexible modes in the process of attitude tracking,a comprehensively effective predefined-time guaranteed performance controller based on multi⁃observers for flexible spacecraft is proposed.First,to prevent unwinding phenomenon in attitude description,the rotation matrix is used to represent the spacecraft’s attitude.Second,the flexible modes observer which can guarantee predefined⁃time convergence is designed,for the case where flexible vibrations are unmeasurable in practice.What’s more,the disturbance observer is applied to estimate and compensate the lumped disturbances to improve the robustness of attitude control.A predefined-time controller is proposed to satisfy the prescribed performance and stabilize the attitude tracking system via barrier Lyapunov function.Finally,through comparative numerical simulations,the proposed controller can achieve high-precision convergence compared with the existing finite-time attitude tracking controller.This paper provides certain references for the high-precision predefined-time prescribed performance attitude tracking of flexible spacecraft with multi-disturbance.
基金supported by National Key Research and Development Program of China(2024YFE0214000)National Natural Science Foundation of China(62173308)+3 种基金Natural Science Foundation of Zhejiang Province of China(LRG25F030002)Zhejiang Province Leading Geese Plan(2025C01056)Jinhua Science and Technology Project(2022-1-042)Natural Science Foundation of Jiangsu Province(BK20240009).
文摘Dear Editor,This letter addresses distributed optimization for resource allocation problems with time-varying objective functions and time-varying constraints.Inspired by the distributed average tracking(DAT)approach,a distributed control protocol is proposed for optimal resource allocation.The convergence to a time-varying optimal solution within a predefined time is proved.Two numerical examples are given to illustrate the effectiveness of the proposed approach.
基金supported in part by the National Natural Science Foundation of China(62276119)the Natural Science Foundation of Jiangsu Province(BK20241764)the Postgraduate Research & Practice Innovation Program of Jiangsu Province(KYCX22_2860)
文摘Dear Editor,This letter investigates predefined-time optimization problems(OPs) of multi-agent systems(MASs), where the agent of MASs is subject to inequality constraints, and the team objective function accounts for impulse effects. Firstly, to address the inequality constraints,the penalty method is introduced. Then, a novel optimization strategy is developed, which only requires that the team objective function be strongly convex.
基金supported by the National Natural Science Foundation of China(62373162,U24A20268,624B2055)the Shenzhen Science and Technology Program(JCYJ 20240813114007010)the Knowledge Innovation Program of Wuhan-Basic Research(2023010201010100).
文摘Dear Editor,This letter addresses the robust predefined-time control challenge for leaderless optimal formation in networked mobile vehicle(NMV)systems.The aim is to minimize a composite global cost function derived from individual strongly convex functions of each agent,considering both input disturbances and network communication constraints.A novel predefined-time optimal formation control(PTOFC)algorithm is presented,ensuring agent state convergence to optimal formation positions within an adjustable settling time.Through the integration of an integral sliding mode technique,disturbances are effectively countered.A representative numerical example highlights the effectiveness and robustness of the developed approach.
基金This study is financed by the European Union-NextGenerationEU,through the National Recovery and Resilience Plan of the Republic of Bulgaria,Project No.BG-RRP-2.013-0001.
文摘Covert timing channels(CTC)exploit network resources to establish hidden communication pathways,posing signi cant risks to data security and policy compliance.erefore,detecting such hidden and dangerous threats remains one of the security challenges. is paper proposes LinguTimeX,a new framework that combines natural language processing with arti cial intelligence,along with explainable Arti cial Intelligence(AI)not only to detect CTC but also to provide insights into the decision process.LinguTimeX performs multidimensional feature extraction by fusing linguistic attributes with temporal network patterns to identify covert channels precisely.LinguTimeX demonstrates strong e ectiveness in detecting CTC across multiple languages;namely English,Arabic,and Chinese.Speci cally,the LSTM and RNN models achieved F1 scores of 90%on the English dataset,89%on the Arabic dataset,and 88%on the Chinese dataset,showcasing their superior performance and ability to generalize across multiple languages. is highlights their robustness in detecting CTCs within security systems,regardless of the language or cultural context of the data.In contrast,the DeepForest model produced F1-scores ranging from 86%to 87%across the same datasets,further con rming its e ectiveness in CTC detection.Although other algorithms also showed reasonable accuracy,the LSTM and RNN models consistently outperformed them in multilingual settings,suggesting that deep learning models might be better suited for this particular problem.
文摘There are always large-scale items in the maintenances schedule of aircraft system, many of which have been fixed to be done in predefined sequences, which leads the workflow to be sys-tematically complex and makes this kind of problem quite different from all sorts of existing job-selection modes. On the other hand, the human resources are always limited and men have different working capabilities on different items, which make the allocation operation of human resources be much roomy. However, the final total time span of maintenance is often required to be as short as possible in many practices, in order to suffer only the lowest cost of loss while the system is stopping. A new model for op-timizing the allocation if aircraft maintenance human resources with the constraint of predefined sequence is presented. The ge-netic algorithm is employed to find the optimal solution that holds the shortest total time span of maintenance. To generate the ul-timate maintenance work items and the human resource array, the sequences among all maintenance work items are considered firstly, the work item array is then generated through traversal with the constraint of maintenance sequence matrix, and the human resources are finally allocated according to the work item array with the constraint of the maintenance capability. An example is demonstrated to show that the model and algorithm behave a satisfying performance on finding the optimal solution as expected.
基金Supported by National Natural Science Foundation of P.R.China(50405046,60605028)Shanghai Project of International Cooperation(045107031)the Program for Excellent Young Teachers of Shanghai(04YOHB094)
文摘A non-orthogonal predefined exponential basis set is used to handle half-bounded domains in multi domain spectral method (MDSM). This approach works extremely well for real-valued semi-infinite differential problems. It spans simultaneously wide range of exponential decay rates with multi scaling and does not suffer from zero crossing. These two conditions are necessary for many physical problems. For comparison, the method is used to solve different problems and compared with analytical and published results. The comparison exhibits the strengths and accuracy of the presented basis set.
基金supported by the National Polytechnic Institute(SIP-20221151,SIP-20220916)。
文摘This paper addresses the design of an exponential function-based learning law for artificial neural networks(ANNs)with continuous dynamics.The ANN structure is used to obtain a non-parametric model of systems with uncertainties,which are described by a set of nonlinear ordinary differential equations.Two novel adaptive algorithms with predefined exponential convergence rate adjust the weights of the ANN.The first algorithm includes an adaptive gain depending on the identification error which accelerated the convergence of the weights and promotes a faster convergence between the states of the uncertain system and the trajectories of the neural identifier.The second approach uses a time-dependent sigmoidal gain that forces the convergence of the identification error to an invariant set characterized by an ellipsoid.The generalized volume of this ellipsoid depends on the upper bounds of uncertainties,perturbations and modeling errors.The application of the invariant ellipsoid method yields to obtain an algorithm to reduce the volume of the convergence region for the identification error.Both adaptive algorithms are derived from the application of a non-standard exponential dependent function and an associated controlled Lyapunov function.Numerical examples demonstrate the improvements enforced by the algorithms introduced in this study by comparing the convergence settings concerning classical schemes with non-exponential continuous learning methods.The proposed identifiers overcome the results of the classical identifier achieving a faster convergence to an invariant set of smaller dimensions.
基金research was funded by Science and Technology Project of State Grid Corporation of China under grant number 5200-202319382A-2-3-XG.
文摘Iced transmission line galloping poses a significant threat to the safety and reliability of power systems,leading directly to line tripping,disconnections,and power outages.Existing early warning methods of iced transmission line galloping suffer from issues such as reliance on a single data source,neglect of irregular time series,and lack of attention-based closed-loop feedback,resulting in high rates of missed and false alarms.To address these challenges,we propose an Internet of Things(IoT)empowered early warning method of transmission line galloping that integrates time series data from optical fiber sensing and weather forecast.Initially,the method applies a primary adaptive weighted fusion to the IoT empowered optical fiber real-time sensing data and weather forecast data,followed by a secondary fusion based on a Back Propagation(BP)neural network,and uses the K-medoids algorithm for clustering the fused data.Furthermore,an adaptive irregular time series perception adjustment module is introduced into the traditional Gated Recurrent Unit(GRU)network,and closed-loop feedback based on attentionmechanism is employed to update network parameters through gradient feedback of the loss function,enabling closed-loop training and time series data prediction of the GRU network model.Subsequently,considering various types of prediction data and the duration of icing,an iced transmission line galloping risk coefficient is established,and warnings are categorized based on this coefficient.Finally,using an IoT-driven realistic dataset of iced transmission line galloping,the effectiveness of the proposed method is validated through multi-dimensional simulation scenarios.
文摘The aim of this research was to investigate the impacts of changing environmental factors on pilots by implementing the effective flight procedure that we found from the previous research. During the experiments, camcorders were used to monitor and analyze the tasks and physical exhaustion of the pilot. NASA-TLX was also used to collect the data of the workload. Through this experiment, we were able to approach the experiment from a different angle regarding the optimal assigned work of the pilot, unlike the previous studies. Also, we were able to find out the impacts of environmental factors on the pilot’s workload.