Metal-organic frameworks possessing relatively large pores,high surface areas,and unsaturated metal sites are attractive materials for use as electrocatalysts in the reduction of N_(2)to NH_(3).In this work,a MIL-101(...Metal-organic frameworks possessing relatively large pores,high surface areas,and unsaturated metal sites are attractive materials for use as electrocatalysts in the reduction of N_(2)to NH_(3).In this work,a MIL-101(Fe)/MoS_(3)hybrid catalyst,prepared by using a precursor-transformation strategy,is shown to be an effective electrocatalyst for the N_(2)reduction reaction(NRR).Under solvothermal conditions,micro-sized octahedral MIL-101(Fe)precursors are converted into ultra-small nanodots,while amorphous MoS_(3)derived from(NH_(4))_(2)MoS_(4)provides a surface suitable for anchoring the MIL-101(Fe)nanodots.The asprepared composite exhibits excellent electrocatalytic activity and durability for the NRR with a Faraday efficiency of 36.71%and an NH_(3)yield of 25.7μg h^(-1)mg_(cat)^(-1)at-0.1 V vs.RHE in 0.1 M HCl.The results show that the dispersion and adherence of MIL-101(Fe)nanodots on amorphous MoS_(3)improves the exposure of active centers and aids mass transfer,resulting in greatly enhanced catalytic activity and stability.展开更多
基金supported by the National Natural Science Foundation of China(21773163,21531006,22001021)the State Key Laboratory of Organometallic Chemistry of Shanghai Institute of Organic Chemistry(KF2021005)+3 种基金Natural Science Foundation of Jiangsu Province(BK20201048)Natural Science Research Project of Higher Education Institutions in Jiangsu Province(20KJB150008)Collaborative Innovation Center of Suzhou Nano Science and Technologythe Project of Scientific and Technologic Infrastructure of Suzhou(SZS201905)。
文摘Metal-organic frameworks possessing relatively large pores,high surface areas,and unsaturated metal sites are attractive materials for use as electrocatalysts in the reduction of N_(2)to NH_(3).In this work,a MIL-101(Fe)/MoS_(3)hybrid catalyst,prepared by using a precursor-transformation strategy,is shown to be an effective electrocatalyst for the N_(2)reduction reaction(NRR).Under solvothermal conditions,micro-sized octahedral MIL-101(Fe)precursors are converted into ultra-small nanodots,while amorphous MoS_(3)derived from(NH_(4))_(2)MoS_(4)provides a surface suitable for anchoring the MIL-101(Fe)nanodots.The asprepared composite exhibits excellent electrocatalytic activity and durability for the NRR with a Faraday efficiency of 36.71%and an NH_(3)yield of 25.7μg h^(-1)mg_(cat)^(-1)at-0.1 V vs.RHE in 0.1 M HCl.The results show that the dispersion and adherence of MIL-101(Fe)nanodots on amorphous MoS_(3)improves the exposure of active centers and aids mass transfer,resulting in greatly enhanced catalytic activity and stability.