期刊文献+
共找到370篇文章
< 1 2 19 >
每页显示 20 50 100
一种基于实测的时谐Maxwell方程离散系统预条件算法自适应策略
1
作者 邓蕴桐 胡少亮 徐小文 《计算物理》 北大核心 2025年第4期381-390,共10页
针对系统级封装应用时谐Maxwell方程离散系统求解中单一算法无法对所有算例取得最优性能,以及给定算例难以确定最优算法的问题,提出一种基于实测的预条件算法自适应策略。首先,结合当前该类应用普遍采用的加性Schwarz区域分解算法(ASM)... 针对系统级封装应用时谐Maxwell方程离散系统求解中单一算法无法对所有算例取得最优性能,以及给定算例难以确定最优算法的问题,提出一种基于实测的预条件算法自适应策略。首先,结合当前该类应用普遍采用的加性Schwarz区域分解算法(ASM)和辅助子空间Maxwell算法(AMS),提出一种组合预条件算法,扩充了当前该类系统的可行算法空间。在此基础上,针对可行算法空间,在每个算例求解之前,基于对每个算法的实际测试,选择其中最优的算法用于迭代过程的求解。来自包括3个实际模型共6个典型算例的数值实验表明:该自适应策略可以取得接近现有算法空间中最优算法的性能,相对于算法空间的任意单一算法,其整体求解效率较高,具有较大的实用性和应用潜力。 展开更多
关键词 时谐Maxwell方程 预条件算法 自适应策略 辅助子空间算法 区域分解
原文传递
基于国产DCU加速器的混合精度多重网格预条件算法及应用
2
作者 张林杰 邢欣 +1 位作者 赵梨 冯春生 《数据与计算发展前沿(中英文)》 2025年第5期41-53,共13页
【目的】多重网格法是求解椭圆型偏微分方程离散系统的一种极为有效的方法,其高效异构并行算法的研究与软件研制一直是科学与工程计算领域的重点和难点。【方法】本文面向国产加速卡,提出了一种异构并行的多重网格方法,并将其应用于求... 【目的】多重网格法是求解椭圆型偏微分方程离散系统的一种极为有效的方法,其高效异构并行算法的研究与软件研制一直是科学与工程计算领域的重点和难点。【方法】本文面向国产加速卡,提出了一种异构并行的多重网格方法,并将其应用于求解非等温油藏问题的限制压力-温度残量(CPTR)预条件方法中。在此基础上,设计了两种异构并行混合精度加速算法。【结论】数值实验表明,异构并行多重网格法和CPTR预条件方法均具有显著的加速效果,分别实现了36倍和10倍以上的加速;此外,混合精度策略在保证计算精度的同时,进一步提升了CPTR预条件方法的性能,与双精度版本相比可提速15%-32%。 展开更多
关键词 多重网格法 多阶段预条件方法 混合精度 异构并行 国产加速器 油藏模拟
在线阅读 下载PDF
Construction and Analysis of Structured Preconditioners for Block Two-by-Two Matrices 被引量:8
3
作者 白中治 《Journal of Shanghai University(English Edition)》 CAS 2004年第4期397-405,共9页
For the large sparse block two-by-two real nonsingular matrices, we establish a general framework of structured preconditioners through matrix transformation and matrix approximations. For the specific versions such a... For the large sparse block two-by-two real nonsingular matrices, we establish a general framework of structured preconditioners through matrix transformation and matrix approximations. For the specific versions such as modified block Jacobi-type, modified block Gauss-Seidel-type, and modified block unsymmetric (symmetric) Gauss-Seidel-type preconditioners, we precisely describe their concrete expressions and deliberately analyze eigenvalue distributions and positive definiteness of the preconditioned matrices. Also, we show that when these structured preconditioners are employed to precondition the Krylov subspace methods such as GMRES and restarted GMRES, fast and effective iteration solvers can be obtained for the large sparse systems of linear equations with block two-by-two coefficient matrices. In particular, these structured preconditioners can lead to high-quality preconditioning matrices for some typical matrices from the real-world applications. 展开更多
关键词 block two-by-two matrix PRECONDITIONER modified block relaxation iteration eigenvalue distribution positive definiteness.
在线阅读 下载PDF
Preconditioners for Incompressible Navier-Stokes Solvers 被引量:2
4
作者 A.Segal M.ur Rehman C.Vuik 《Numerical Mathematics(Theory,Methods and Applications)》 SCIE 2010年第3期245-275,共31页
In this paper we give an overview of the present state of fast solvers for the solution of the incompressible Navier-Stokes equations discretized by the finite element method and linearized by Newton or Picard's m... In this paper we give an overview of the present state of fast solvers for the solution of the incompressible Navier-Stokes equations discretized by the finite element method and linearized by Newton or Picard's method.It is shown that block preconditioners form an excellent approach for the solution,however if the grids are not to fine preconditioning with a Saddle point ILU matrix(SILU) may be an attractive alternative. The applicability of all methods to stabilized elements is investigated.In case of the stand-alone Stokes equations special preconditioners increase the efficiency considerably. 展开更多
关键词 Navier-Stokes equations finite element method block preconditioners SIMPLE-typeschemes iterative methods incompressible fluids.
在线阅读 下载PDF
Biorthogonal Wavelet Based Algebraic Multigrid Preconditioners for Large Sparse Linear Systems 被引量:1
5
作者 A. Padmanabha Reddy Nagendrappa M. Bujurke 《Applied Mathematics》 2011年第11期1378-1381,共4页
In this article algebraic multigrid as preconditioners are designed, with biorthogonal wavelets, as intergrid operators for the Krylov subspace iterative methods. Construction of hierarchy of matrices in algebraic mul... In this article algebraic multigrid as preconditioners are designed, with biorthogonal wavelets, as intergrid operators for the Krylov subspace iterative methods. Construction of hierarchy of matrices in algebraic multigrid context is based on lowpass filter version of Wavelet Transform. The robustness and efficiency of this new approach is tested by applying it to large sparse, unsymmetric and ill-conditioned matrices from Tim Davis collection of sparse matrices. Proposed preconditioners have potential in reducing cputime, operator complexity and storage space of algebraic multigrid V-cycle and meet the desired accuracy of solution compared with that of orthogonal wavelets. 展开更多
关键词 ALGEBRAIC MULTIGRID PRECONDITIONER Wavelet Transform Sparse Matrix Krylov SUBSPACE ITERATIVE Methods
在线阅读 下载PDF
Explicit Iterative Methods of Second Order and Approximate Inverse Preconditioners for Solving Complex Computational Problems
6
作者 Anastasia-Dimitra Lipitakis 《Applied Mathematics》 2020年第4期307-327,共21页
Explicit Exact and Approximate Inverse Preconditioners for solving complex linear systems are introduced. A class of general iterative methods of second order is presented and the selection of iterative parameters is ... Explicit Exact and Approximate Inverse Preconditioners for solving complex linear systems are introduced. A class of general iterative methods of second order is presented and the selection of iterative parameters is discussed. The second order iterative methods behave quite similar to first order methods and the development of efficient preconditioners for solving the original linear system is a decisive factor for making the second order iterative methods superior to the first order iterative methods. Adaptive preconditioned Conjugate Gradient methods using explicit approximate preconditioners for solving efficiently large sparse systems of algebraic equations are also presented. The generalized Approximate Inverse Matrix techniques can be efficiently used in conjunction with explicit iterative schemes leading to effective composite semi-direct solution methods for solving large linear systems of algebraic equations. 展开更多
关键词 APPROXIMATE INVERSE preconditioners ITERATIVE METHODS Second Order ITERATIVE Schemes Exact INVERSE METHODS APPROXIMATE INVERSE EXPLICIT Preconditioning Conjugate Gradients Convergence Analysis
在线阅读 下载PDF
Finite Difference Preconditioners for Legendre Based Spectral Element Methods on Elliptic Boundary Value Problems
7
作者 Seonhee Kim Amik St-Cyr Sang Dong Kim 《Applied Mathematics》 2013年第5期838-847,共10页
Finite difference type preconditioners for spectral element discretizations based on Legendre-Gauss-Lobatto points are analyzed. The latter is employed for the approximation of uniformly elliptic partial differential ... Finite difference type preconditioners for spectral element discretizations based on Legendre-Gauss-Lobatto points are analyzed. The latter is employed for the approximation of uniformly elliptic partial differential problems. In this work, it is shown that the condition number of the resulting preconditioned system is bounded independently of both of the polynomial degrees used in the spectral element method and the element sizes. Several numerical tests verify the h-p independence of the proposed preconditioning. 展开更多
关键词 Finite Difference PRECONDITIONER ITERATIVE METHOD Spectral Element METHOD ELLIPTIC Operator
在线阅读 下载PDF
Uniform Subspace Correction Preconditioners for Discontinuous Galerkin Methods with hp‑Refnement
8
作者 Will Pazner Tzanio Kolev 《Communications on Applied Mathematics and Computation》 2022年第2期697-727,共31页
In this paper,we develop subspace correction preconditioners for discontinuous Galerkin(DG)discretizations of elliptic problems with hp-refnement.These preconditioners are based on the decomposition of the DG fnite el... In this paper,we develop subspace correction preconditioners for discontinuous Galerkin(DG)discretizations of elliptic problems with hp-refnement.These preconditioners are based on the decomposition of the DG fnite element space into a conforming subspace,and a set of small nonconforming edge spaces.The conforming subspace is preconditioned using a matrix-free low-order refned technique,which in this work,we extend to the hprefnement context using a variational restriction approach.The condition number of the resulting linear system is independent of the granularity of the mesh h,and the degree of the polynomial approximation p.The method is amenable to use with meshes of any degree of irregularity and arbitrary distribution of polynomial degrees.Numerical examples are shown on several test cases involving adaptively and randomly refned meshes,using both the symmetric interior penalty method and the second method of Bassi and Rebay(BR2). 展开更多
关键词 Discontinuous Galerkin preconditioners Domain decomposition hprefnement
在线阅读 下载PDF
Domain Decomposition Preconditioners for Mixed Finite-Element Discretization of High-Contrast Elliptic Problems
9
作者 Hui Xie Xuejun Xu 《Communications on Applied Mathematics and Computation》 2019年第1期141-165,共25页
In this paper,we design an efficient domain decomposition(DD)preconditioner for the saddle-point problem resulting from the mixed finite-element discretization of multiscale elliptic problems.By proper equivalent alge... In this paper,we design an efficient domain decomposition(DD)preconditioner for the saddle-point problem resulting from the mixed finite-element discretization of multiscale elliptic problems.By proper equivalent algebraic operations,the original saddle-point system can be transformed to another saddle-point system which can be preconditioned by a block-diagonel matrix efficiently.Actually,the first block of this block-diagonal matrix corresponds to a multiscale H(div)problem,and thus,the direct inverse of this block is unpractical and unstable for the large-scale problem.To remedy this issue,a two-level overlapping DD preconditioner is proposed for this//(div)problem.Our coarse space consists of some velocities obtained from mixed formulation of local eigenvalue problems on the coarse edge patches multiplied by the partition of unity functions and the trivial coarse basis(e.g.,Raviart-Thomas element)on the coarse grid.The condition number of our preconditioned DD method for this multiscale H(div)system is bounded by C(1+务)(1+log4(^)),where 6 denotes the width of overlapping region,and H,h are the typical sizes of the subdomain and fine mesh.Numerical examples are presented to confirm the validity and robustness of our DD preconditioner. 展开更多
关键词 High contrast.Mixed FEM DD PRECONDITIONER Spectral coarse space
在线阅读 下载PDF
电力系统全纯嵌入潮流的并行计算 被引量:2
10
作者 李雪 高翔 +2 位作者 姜涛 王长江 李国庆 《电工技术学报》 EI CSCD 北大核心 2024年第18期5839-5854,共16页
潮流计算是电力系统规划和运行的基础,全纯嵌入潮流计算方法(HELM)因无需初值且具有全局收敛性,因而在电力系统潮流计算中受到极大关注。然而,采用HELM求解大规模电力系统潮流时,高维幂级数系数线性方程组求解和节点电压的幂级数有理的... 潮流计算是电力系统规划和运行的基础,全纯嵌入潮流计算方法(HELM)因无需初值且具有全局收敛性,因而在电力系统潮流计算中受到极大关注。然而,采用HELM求解大规模电力系统潮流时,高维幂级数系数线性方程组求解和节点电压的幂级数有理的逼近计算量大、耗时久,是制约HELM计算效率提升的关键。为此,该文提出一种基于稳定双正交共轭梯度(BICGSTAB)和Aitken差分的电力系统全纯嵌入潮流并行计算方法,该方法首先采用近似逆预处理的BICGSTAB法并行迭代求解HELM的高维幂级数系数线性方程组,以快速计算节点电压的各阶幂级数系数;其次,借助Aitken差分法实现所有节点电压幂级数有理逼近值的并行计算;然后,基于CPU-GPU异构平台设计所提算法的并行流程,以实现大规模电力系统潮流的快速求解;最后,通过节点在1 354~13 802的不同规模测试系统对所提方法进行分析、验证。结果表明,所提电力系统潮流全纯嵌入并行计算方法可实现电力系统潮流的准确、快速求解。 展开更多
关键词 全纯嵌入法 潮流计算 Aitken差分法 CPU-GPU异构运算平台 预处理器
在线阅读 下载PDF
面向GPU架构的CCFD-KSSolver组件设计和实现
11
作者 张浩源 马文鹏 +2 位作者 袁武 张鉴 陆忠华 《数据与计算发展前沿》 CSCD 2024年第1期68-78,共11页
【应用背景】在如计算流体力学和材料科学等高性能应用领域中,大型稀疏线性方程的求解直接影响高性能应用的效率与精度。异构众核已成为现代超算系统体系结构的重要特征和发展趋势。【方法】本文面向CPU+GPU异构超算系统设计并实现了线... 【应用背景】在如计算流体力学和材料科学等高性能应用领域中,大型稀疏线性方程的求解直接影响高性能应用的效率与精度。异构众核已成为现代超算系统体系结构的重要特征和发展趋势。【方法】本文面向CPU+GPU异构超算系统设计并实现了线性解法器组件CCFD-KSSolver。该组件针对异构体系结构特征,实现了针对多物理场块结构矩阵的Krylov子空间解法器和多种典型预处理方法,采用了如计算通信重叠、GPU访存优化、CPUGPU协同计算等优化技术提升CCFD-KSSolver的计算效率。【结果】顶盖驱动流的实验表明,当子区域数目为8时,Block-ISAI相比于CPU和cuSPARSE的子区域求解器分别取得20.09倍和3.34倍的加速比,且具有更好的扩展性;对于百万阶规模的矩阵,应用3种子区域求解器的KSSolver在8个GPU上的并行效率分别为83.8%、55.7%、87.4%。【结论】本文选择具有块结构的经典多物理中的应用对解法器及预处理软构件进行测试,证明其稳定高效性,有力支撑了以流体力学数值模拟为代表的高性能计算与应用在异构系统上的开展。 展开更多
关键词 GPU KSSolver 并行优化 预条件 高性能计算
在线阅读 下载PDF
Searching for the optimal precondition procedure for mesenchymal stem/stromal cell treatment:Facts and perspectives
12
作者 Yu-Dong Zhao Yong-Can Huang Wei-Shi Li 《World Journal of Stem Cells》 SCIE 2024年第6期615-618,共4页
Mesenchymal stem/stromal cells are potential optimal cell sources for stem cell therapies,and pretreatment has proven to enhance cell vitality and function.In a recent publication,Li et al explored a new combination o... Mesenchymal stem/stromal cells are potential optimal cell sources for stem cell therapies,and pretreatment has proven to enhance cell vitality and function.In a recent publication,Li et al explored a new combination of pretreatment condi-tions.Here,we present an editorial to comment on their work and provide our view on mesenchymal stem/stromal cell precondition. 展开更多
关键词 Mesenchymal stem cell PRECONDITION HYPOXIA Inflammation
暂未订购
一种基于对角化的抛物型最优控制问题的预处理子
13
作者 高广 《应用数学进展》 2024年第5期2530-2540,共11页
本文研究了求解抛物型偏微分方程约束的最优控制问题,利用对角化技巧,提出了一个新的基于对角化的预处理子,用于快速求解大型稀疏方程组。数值实验说明了预处理子的良好加速效果和稳定性。
关键词 预处理子 最优控制 抛物方程 对角化
在线阅读 下载PDF
求解热传导方程的二阶对角Runge-Kutta方法的时间并行预处理子
14
作者 谢银雯 张建华 《井冈山大学学报(自然科学版)》 2024年第6期8-16,共9页
针对二阶对角Runge-Kutta方法离散二维热传导方程导出的all-at-once线性系统,本研究提出了一个高效α循环矩阵预处理子,证明了二阶对角Runge-Kutta方法的A稳定性,给出预处理矩阵向量乘积的快速计算步骤,并从理论上分析出迭代矩阵的谱上... 针对二阶对角Runge-Kutta方法离散二维热传导方程导出的all-at-once线性系统,本研究提出了一个高效α循环矩阵预处理子,证明了二阶对角Runge-Kutta方法的A稳定性,给出预处理矩阵向量乘积的快速计算步骤,并从理论上分析出迭代矩阵的谱上界具有与网格大小无关的收敛性质。最后数值实验证实了预处理子的有效性。 展开更多
关键词 热传导方程 RUNGE-KUTTA方法 α循环预处理子 GMRES方法
在线阅读 下载PDF
求解双鞍点问题的一个新预处理子
15
作者 马婉君 《温州大学学报(自然科学版)》 2024年第3期13-22,共10页
对双鞍点问题系数矩阵的子块引入一个合适的对称正定矩阵(不含参数),可以有效避免参数选取困难.基于这种思想,提出了一种新的迭代方法和预处理子用来求解双鞍点问题,给出该迭代方法的收敛条件,并对预处理系统的系数矩阵进行谱分析,数值... 对双鞍点问题系数矩阵的子块引入一个合适的对称正定矩阵(不含参数),可以有效避免参数选取困难.基于这种思想,提出了一种新的迭代方法和预处理子用来求解双鞍点问题,给出该迭代方法的收敛条件,并对预处理系统的系数矩阵进行谱分析,数值实验验证了该预处理子的有效性. 展开更多
关键词 双鞍点问题 预处理子 谱半径 收敛速度
在线阅读 下载PDF
波动方程all-at-once系统的快速α循环绝对值预处理
16
作者 徐果 张建华 《江西科学》 2024年第2期239-243,共5页
为了加快预处理MINRES方法求解波动方程all-at-once系统的收敛速度,基于绝对值预处理子和块状三对角Toeplitz预处理子,提出一种新的α循环绝对值预处理子。理论上证明了预处理矩阵可近似分裂成正交矩阵与低秩矩阵的和,且其特征值聚集在&... 为了加快预处理MINRES方法求解波动方程all-at-once系统的收敛速度,基于绝对值预处理子和块状三对角Toeplitz预处理子,提出一种新的α循环绝对值预处理子。理论上证明了预处理矩阵可近似分裂成正交矩阵与低秩矩阵的和,且其特征值聚集在±1附近,保证了预处理MINRES方法的快速收敛性质。数值实验结果进一步表明了新预处理子的有效性。 展开更多
关键词 波动方程 all-at-once系统 预处理MINRES α循环绝对值预处理子
在线阅读 下载PDF
Riesz空间分数阶扩散方程的快速预处理方法
17
作者 黄小青 张建华 《哈尔滨商业大学学报(自然科学版)》 CAS 2024年第6期702-709,共8页
空间分数阶微分方程的数值求解是科学与工程计算研究领域的热点问题.针对Crank-Nicolson格式和四阶有限中心差分离散Riesz空间分数阶扩散方程导出的非对称all-at-once线性方程组,构造了τ矩阵块α循环预处理子.理论分析证明预处理后的... 空间分数阶微分方程的数值求解是科学与工程计算研究领域的热点问题.针对Crank-Nicolson格式和四阶有限中心差分离散Riesz空间分数阶扩散方程导出的非对称all-at-once线性方程组,构造了τ矩阵块α循环预处理子.理论分析证明预处理后的系数矩阵可分解为单位矩阵与一个低秩矩阵和小范数矩阵的和.数值实验结果证实了τ矩阵块α循环预处理广义最小残差法求解非对称all-at-once线性方程组的有效性. 展开更多
关键词 Riesz空间分数阶扩散方程 all-at-once线性方程组 CRANK-NICOLSON格式 四阶有限中心差分法 τ预处理 广义最小残差法
在线阅读 下载PDF
Capability matchmaking of semantic web services with preconditions and effects 被引量:2
18
作者 王海 李增智 范琳 《Journal of Southeast University(English Edition)》 EI CAS 2009年第4期464-467,共4页
In order to solve the problem that the current matchmaking methods for semantic web service mainly focus on the matchmaking of IO (inputs, outputs) descriptions which may result in one-sidedness, a description-logic... In order to solve the problem that the current matchmaking methods for semantic web service mainly focus on the matchmaking of IO (inputs, outputs) descriptions which may result in one-sidedness, a description-logic-based IOPE (inputs, outputs, preconditions, effects) description and matchmaking method is proposed for semantic web service. The description logic concept is used to annotate service IO and the description logic assertion is employed to describe service PE(preconditions, effects). TBox subsumption checking is used to measure the subsumption relationship between IO descriptions of service request and advertising; ABox consistency checking is used for checking the logical implication between PE descriptions of service request and advertising. Based upon the logical implication, four kinds of PE matching degrees are proposed to measure and compare the pros and cons of the results of matchmaking. They are the exact, perfect, side-effect and common match. Experiments show that the method has a higher precision rate under the same recall rate compared with the existing method. 展开更多
关键词 capability matchmaking semantic web service precondition and effect
在线阅读 下载PDF
Blind Deconvolution Method Based on Precondition Conjugate Gradients 被引量:1
19
作者 朱振宇 裴江云 +2 位作者 吕小林 刘洪 李幼铭 《Petroleum Science》 SCIE CAS CSCD 2004年第3期37-40,共4页
In seismic data processing, blind deconvolution is a key technology. Introduced in this paper is a flow of one kind of blind deconvolution. The optimal precondition conjugate gradients (PCG) in Kyrlov subspace is als... In seismic data processing, blind deconvolution is a key technology. Introduced in this paper is a flow of one kind of blind deconvolution. The optimal precondition conjugate gradients (PCG) in Kyrlov subspace is also used to improve the stability of the algorithm. The computation amount is greatly decreased. 展开更多
关键词 Blind deconvolution precondition conjugate gradients (PCG) reflectivity series
原文传递
ON THE BREAKDOWNS OF THE GALERKIN AND LEAST-SQUARES METHODS 被引量:2
20
作者 Zhong Baojiang(钟宝江) 《Numerical Mathematics A Journal of Chinese Universities(English Series)》 SCIE 2002年第2期137-148,共12页
The Galerkin and least-squares methods are two classes of the most popular Krylov subspace methOds for solving large linear systems of equations. Unfortunately, both the methods may suffer from serious breakdowns of t... The Galerkin and least-squares methods are two classes of the most popular Krylov subspace methOds for solving large linear systems of equations. Unfortunately, both the methods may suffer from serious breakdowns of the same type: In a breakdown situation the Galerkin method is unable to calculate an approximate solution, while the least-squares method, although does not really break down, is unsucessful in reducing the norm of its residual. In this paper we first establish a unified theorem which gives a relationship between breakdowns in the two methods. We further illustrate theoretically and experimentally that if the coefficient matrix of a lienar system is of high defectiveness with the associated eigenvalues less than 1, then the restarted Galerkin and least-squares methods will be in great risks of complete breakdowns. It appears that our findings may help to understand phenomena observed practically and to derive treatments for breakdowns of this type. 展开更多
关键词 large linear systems iterative methods Krylov subspace methods GALERKIN method least-squares method FOM GMRES breakdown stagnation restarting preconditioners.
在线阅读 下载PDF
上一页 1 2 19 下一页 到第
使用帮助 返回顶部