The optimal preconditioner and the superoptimal preconditioner were proposed in 1988 and 1992 respectively. They have been studied widely since then. Recently, Chen and Jin [6] extend the superoptimal preconditioner t...The optimal preconditioner and the superoptimal preconditioner were proposed in 1988 and 1992 respectively. They have been studied widely since then. Recently, Chen and Jin [6] extend the superoptimal preconditioner to a more general case by using the Moore-Penrose inverse. In this paper, we further study some useful properties of the optimal and the generalized superoptimal preconditioners. Several existing results are extended and new properties are developed.展开更多
For the large sparse block two-by-two real nonsingular matrices, we establish a general framework of structured preconditioners through matrix transformation and matrix approximations. For the specific versions such a...For the large sparse block two-by-two real nonsingular matrices, we establish a general framework of structured preconditioners through matrix transformation and matrix approximations. For the specific versions such as modified block Jacobi-type, modified block Gauss-Seidel-type, and modified block unsymmetric (symmetric) Gauss-Seidel-type preconditioners, we precisely describe their concrete expressions and deliberately analyze eigenvalue distributions and positive definiteness of the preconditioned matrices. Also, we show that when these structured preconditioners are employed to precondition the Krylov subspace methods such as GMRES and restarted GMRES, fast and effective iteration solvers can be obtained for the large sparse systems of linear equations with block two-by-two coefficient matrices. In particular, these structured preconditioners can lead to high-quality preconditioning matrices for some typical matrices from the real-world applications.展开更多
Hadjidimos(1978) proposed a classical accelerated overrelaxation(AOR) iterative method to solve the system of linear equations, and discussed its convergence under the conditions that the coefficient matrices are irre...Hadjidimos(1978) proposed a classical accelerated overrelaxation(AOR) iterative method to solve the system of linear equations, and discussed its convergence under the conditions that the coefficient matrices are irreducible diagonal dominant, L-matrices, and consistently orders matrices. Several preconditioned AOR methods have been proposed to solve system of linear equations Ax = b, where A ∈ R^(n×n) is an L-matrix. In this work, we introduce a new class preconditioners for solving linear systems and give a comparison result and some convergence result for this class of preconditioners. Numerical results for corresponding preconditioned GMRES methods are given to illustrate the theoretical results.展开更多
As a result of the interplay between advances in computer hardware, software, and algorithm, we are now in a new era of large-scale reservoir simulation, which focuses on accurate flow description, fine reservoir char...As a result of the interplay between advances in computer hardware, software, and algorithm, we are now in a new era of large-scale reservoir simulation, which focuses on accurate flow description, fine reservoir characterization, efficient nonlinear/linear solvers, and parallel implementation. In this paper, we discuss a multilevel preconditioner in a new-generation simulator and its implementation on multicore computers. This preconditioner relies on the method of subspace corrections to solve large-scale linear systems arising from fully implicit methods in reservoir simulations. We investigate the parallel efficiency and robustness of the proposed method by applying it to million-cell benchmark problems.展开更多
In this paper we give an overview of the present state of fast solvers for the solution of the incompressible Navier-Stokes equations discretized by the finite element method and linearized by Newton or Picard's m...In this paper we give an overview of the present state of fast solvers for the solution of the incompressible Navier-Stokes equations discretized by the finite element method and linearized by Newton or Picard's method.It is shown that block preconditioners form an excellent approach for the solution,however if the grids are not to fine preconditioning with a Saddle point ILU matrix(SILU) may be an attractive alternative. The applicability of all methods to stabilized elements is investigated.In case of the stand-alone Stokes equations special preconditioners increase the efficiency considerably.展开更多
A class of preconditioned iterative methods, i.e., preconditioned generalized accelerated overrelaxation (GAOR) methods, is proposed to solve linear systems based on a class of weighted linear least squares problems...A class of preconditioned iterative methods, i.e., preconditioned generalized accelerated overrelaxation (GAOR) methods, is proposed to solve linear systems based on a class of weighted linear least squares problems. The convergence and comparison results are obtained. The comparison results show that the convergence rate of the preconditioned iterative methods is better than that of the original methods. Furthermore, the effectiveness of the proposed methods is shown in the numerical experiment.展开更多
This paper presents an investigation into the effect of surface asperities on the over-rolling of bearing surfaces in transient elastohydrodynamic lubrication(EHL) line contact. The governing equations are discretized...This paper presents an investigation into the effect of surface asperities on the over-rolling of bearing surfaces in transient elastohydrodynamic lubrication(EHL) line contact. The governing equations are discretized by the finite difference method. The resulting nonlinear system of algebraic equations is solved by the Jacobian-free Newtongeneralized minimal residual(GMRES) from the Krylov subspace method(KSM). The acceleration of the GMRES iteration is accomplished by a wavelet-based preconditioner.The profiles of the lubricant pressure and film thickness are obtained at each time step when the indented surface moves through the contact region. The prediction of pressure as a function of time provides an insight into the understanding of fatigue life of bearings.The analysis confirms the need for the time-dependent approach of EHL problems with surface asperities. This method requires less storage and yields an accurate solution with much coarser grids. It is stable, efficient, allows a larger time step, and covers a wide range of parameters of interest.展开更多
The preconditioned generalized minimal residual(GMRES) method is a common method for solving non-symmetric,large and sparse linear systems which originated in discrete ordinary differential equations by Boundary value...The preconditioned generalized minimal residual(GMRES) method is a common method for solving non-symmetric,large and sparse linear systems which originated in discrete ordinary differential equations by Boundary value methods.In this paper,we propose a new circulant preconditioner to speed up the convergence rate of the GMRES method, which is a convex linear combination of P-circulant and Strang-type circulant preconditioners. Theoretical and practical arguments are given to show that this preconditioner is feasible and effective in some cases.展开更多
In this article algebraic multigrid as preconditioners are designed, with biorthogonal wavelets, as intergrid operators for the Krylov subspace iterative methods. Construction of hierarchy of matrices in algebraic mul...In this article algebraic multigrid as preconditioners are designed, with biorthogonal wavelets, as intergrid operators for the Krylov subspace iterative methods. Construction of hierarchy of matrices in algebraic multigrid context is based on lowpass filter version of Wavelet Transform. The robustness and efficiency of this new approach is tested by applying it to large sparse, unsymmetric and ill-conditioned matrices from Tim Davis collection of sparse matrices. Proposed preconditioners have potential in reducing cputime, operator complexity and storage space of algebraic multigrid V-cycle and meet the desired accuracy of solution compared with that of orthogonal wavelets.展开更多
Several preconditioners are proposed for improving the convergence rate of the iterative method derived from splitting. In this paper, the comparison theorem of preconditioned iterative method for regular splitting is...Several preconditioners are proposed for improving the convergence rate of the iterative method derived from splitting. In this paper, the comparison theorem of preconditioned iterative method for regular splitting is proved. And the convergence and comparison theorem for any preconditioner are indicated. This comparison theorem indicates the possibility of finding new preconditioner and splitting. The purpose of this paper is to show that the preconditioned iterative method yields a new splitting satisfying the regular or weak regular splitting. And new combination preconditioners are proposed. In order to denote the validity of the comparison theorem, some numerical examples are shown.展开更多
Image restoration is often solved by minimizing an energy function consisting of a data-fidelity term and a regularization term.A regularized convex term can usually preserve the image edges well in the restored image...Image restoration is often solved by minimizing an energy function consisting of a data-fidelity term and a regularization term.A regularized convex term can usually preserve the image edges well in the restored image.In this paper,we consider a class of convex and edge-preserving regularization functions,i.e.,multiplicative half-quadratic regularizations,and we use the Newton method to solve the correspondingly reduced systems of nonlinear equations.At each Newton iterate,the preconditioned conjugate gradient method,incorporated with a constraint preconditioner,is employed to solve the structured Newton equation that has a symmetric positive definite coefficient matrix. The eigenvalue bounds of the preconditioned matrix are deliberately derived,which can be used to estimate the convergence speed of the preconditioned conjugate gradient method.We use experimental results to demonstrate that this new approach is efficient, and the effect of image restoration is reasonably well.展开更多
Bordered linear systems arise from many industrial applications, such as reservoir simulation and structural engineering. Traditional ILU preconditioners which throw away the additional equations are often too crude f...Bordered linear systems arise from many industrial applications, such as reservoir simulation and structural engineering. Traditional ILU preconditioners which throw away the additional equations are often too crude for these systems. We describe a practical implementation of ILU preconditioners which are more accurate and more robust. The emphasis of this paper is on implementation rather than on theory.展开更多
This paper proposes a two-parameter block triangular splitting(TPTS)preconditioner for the general block two-by-two linear systems.The eigenvalues of the corresponding preconditioned matrix are proved to cluster aroun...This paper proposes a two-parameter block triangular splitting(TPTS)preconditioner for the general block two-by-two linear systems.The eigenvalues of the corresponding preconditioned matrix are proved to cluster around 0 or 1 under mild conditions.The limited numerical results show that the TPTS preconditioner is more efficient than the classic block-diagonal and block-triangular preconditioners when applied to the flexible generalized minimal residual(FGMRES)method.展开更多
In this paper, we present the construction of purely algebraic Daubechies wavelet based preconditioners for Krylov subspace iterative methods to solve linear sparse system of equations. Effective preconditioners are d...In this paper, we present the construction of purely algebraic Daubechies wavelet based preconditioners for Krylov subspace iterative methods to solve linear sparse system of equations. Effective preconditioners are designed with DWTPerMod algorithm by knowing size of the matrix and the order of Daubechies wavelet. A notable feature of this algorithm is that it enables wavelet level to be chosen automatically making it more robust than other wavelet based preconditioners and avoids user choosing a level of transform. We demonstrate the efficiency of these preconditioners by applying them to several matrices from Tim Davis collection of sparse matrices for restarted GMRES.展开更多
Finite difference type preconditioners for spectral element discretizations based on Legendre-Gauss-Lobatto points are analyzed. The latter is employed for the approximation of uniformly elliptic partial differential ...Finite difference type preconditioners for spectral element discretizations based on Legendre-Gauss-Lobatto points are analyzed. The latter is employed for the approximation of uniformly elliptic partial differential problems. In this work, it is shown that the condition number of the resulting preconditioned system is bounded independently of both of the polynomial degrees used in the spectral element method and the element sizes. Several numerical tests verify the h-p independence of the proposed preconditioning.展开更多
In this paper, a family of high-order compact finite difference methods in combination preconditioned methods are used for solution of the Diffusion-Convection equation. We developed numerical methods by replacing the...In this paper, a family of high-order compact finite difference methods in combination preconditioned methods are used for solution of the Diffusion-Convection equation. We developed numerical methods by replacing the time and space derivatives by compact finite-difference approximations. The system of resulting nonlinear finite difference equations are solved by preconditioned Krylov subspace methods. Numerical results are given to verify the behavior of high-order compact approximations in combination preconditioned methods for stability, convergence. Also, the accuracy and efficiency of the proposed scheme are considered.展开更多
In this paper,we develop subspace correction preconditioners for discontinuous Galerkin(DG)discretizations of elliptic problems with hp-refnement.These preconditioners are based on the decomposition of the DG fnite el...In this paper,we develop subspace correction preconditioners for discontinuous Galerkin(DG)discretizations of elliptic problems with hp-refnement.These preconditioners are based on the decomposition of the DG fnite element space into a conforming subspace,and a set of small nonconforming edge spaces.The conforming subspace is preconditioned using a matrix-free low-order refned technique,which in this work,we extend to the hprefnement context using a variational restriction approach.The condition number of the resulting linear system is independent of the granularity of the mesh h,and the degree of the polynomial approximation p.The method is amenable to use with meshes of any degree of irregularity and arbitrary distribution of polynomial degrees.Numerical examples are shown on several test cases involving adaptively and randomly refned meshes,using both the symmetric interior penalty method and the second method of Bassi and Rebay(BR2).展开更多
A two-level additive Schwarz preconditioner based on the overlapping domain decomposition approach is proposed for the local C0 discontinuous Galerkin (LCDG) method of Kirchhoff plates.Then with the help of an intergr...A two-level additive Schwarz preconditioner based on the overlapping domain decomposition approach is proposed for the local C0 discontinuous Galerkin (LCDG) method of Kirchhoff plates.Then with the help of an intergrid transfer operator and its error estimates,it is proved that the condition number is bounded by O(1 + (H4/δ4)),where H is the diameter of the subdomains and δ measures the overlap among subdomains.And for some special cases of small overlap,the estimate can be improved as O(1 + (H3/δ3)).At last,some numerical results are reported to demonstrate the high efficiency of the two-level additive Schwarz preconditioner.展开更多
This paper introduces the preconditioned methods for Space-Time Adaptive Processing(STAP).Using the Block-Toeplitz-Toeplitz-Block(BTTB)structure of the clutter-plus-noise covari-ance matrix,a Block-Circulant-Circulant...This paper introduces the preconditioned methods for Space-Time Adaptive Processing(STAP).Using the Block-Toeplitz-Toeplitz-Block(BTTB)structure of the clutter-plus-noise covari-ance matrix,a Block-Circulant-Circulant-Block(BCCB)preconditioner is constructed.Based on thepreconditioner,a Preconditioned Multistage Wiener Filter(PMWF)which can be implemented by thePreconditioned Conjugate Gradient(PCG)method is proposed.Simulation results show that thePMWF has faster convergence rate and lower processing rank compared with the MWF.展开更多
In this paper,we design an efficient domain decomposition(DD)preconditioner for the saddle-point problem resulting from the mixed finite-element discretization of multiscale elliptic problems.By proper equivalent alge...In this paper,we design an efficient domain decomposition(DD)preconditioner for the saddle-point problem resulting from the mixed finite-element discretization of multiscale elliptic problems.By proper equivalent algebraic operations,the original saddle-point system can be transformed to another saddle-point system which can be preconditioned by a block-diagonel matrix efficiently.Actually,the first block of this block-diagonal matrix corresponds to a multiscale H(div)problem,and thus,the direct inverse of this block is unpractical and unstable for the large-scale problem.To remedy this issue,a two-level overlapping DD preconditioner is proposed for this//(div)problem.Our coarse space consists of some velocities obtained from mixed formulation of local eigenvalue problems on the coarse edge patches multiplied by the partition of unity functions and the trivial coarse basis(e.g.,Raviart-Thomas element)on the coarse grid.The condition number of our preconditioned DD method for this multiscale H(div)system is bounded by C(1+务)(1+log4(^)),where 6 denotes the width of overlapping region,and H,h are the typical sizes of the subdomain and fine mesh.Numerical examples are presented to confirm the validity and robustness of our DD preconditioner.展开更多
基金supported by the research grant UL020/08-Y2/MAT/ JXQ01/FST from University of Macao
文摘The optimal preconditioner and the superoptimal preconditioner were proposed in 1988 and 1992 respectively. They have been studied widely since then. Recently, Chen and Jin [6] extend the superoptimal preconditioner to a more general case by using the Moore-Penrose inverse. In this paper, we further study some useful properties of the optimal and the generalized superoptimal preconditioners. Several existing results are extended and new properties are developed.
文摘For the large sparse block two-by-two real nonsingular matrices, we establish a general framework of structured preconditioners through matrix transformation and matrix approximations. For the specific versions such as modified block Jacobi-type, modified block Gauss-Seidel-type, and modified block unsymmetric (symmetric) Gauss-Seidel-type preconditioners, we precisely describe their concrete expressions and deliberately analyze eigenvalue distributions and positive definiteness of the preconditioned matrices. Also, we show that when these structured preconditioners are employed to precondition the Krylov subspace methods such as GMRES and restarted GMRES, fast and effective iteration solvers can be obtained for the large sparse systems of linear equations with block two-by-two coefficient matrices. In particular, these structured preconditioners can lead to high-quality preconditioning matrices for some typical matrices from the real-world applications.
文摘Hadjidimos(1978) proposed a classical accelerated overrelaxation(AOR) iterative method to solve the system of linear equations, and discussed its convergence under the conditions that the coefficient matrices are irreducible diagonal dominant, L-matrices, and consistently orders matrices. Several preconditioned AOR methods have been proposed to solve system of linear equations Ax = b, where A ∈ R^(n×n) is an L-matrix. In this work, we introduce a new class preconditioners for solving linear systems and give a comparison result and some convergence result for this class of preconditioners. Numerical results for corresponding preconditioned GMRES methods are given to illustrate the theoretical results.
基金support through PetroChina New-generation Reservoir Simulation Software (2011A-1010)the Program of Research on Continental Sedimentary Oil Reservoir Simulation (z121100004912001)+7 种基金founded by Beijing Municipal Science & Technology Commission and PetroChina Joint Research Funding12HT1050002654partially supported by the NSFC Grant 11201398Hunan Provincial Natural Science Foundation of China Grant 14JJ2063Specialized Research Fund for the Doctoral Program of Higher Education of China Grant 20124301110003partially supported by the Dean’s Startup Fund, Academy of Mathematics and System Sciences and the State High Tech Development Plan of China (863 Program 2012AA01A309partially supported by NSFC Grant 91130002Program for Changjiang Scholars and Innovative Research Team in University of China Grant IRT1179the Scientific Research Fund of the Hunan Provincial Education Department of China Grant 12A138
文摘As a result of the interplay between advances in computer hardware, software, and algorithm, we are now in a new era of large-scale reservoir simulation, which focuses on accurate flow description, fine reservoir characterization, efficient nonlinear/linear solvers, and parallel implementation. In this paper, we discuss a multilevel preconditioner in a new-generation simulator and its implementation on multicore computers. This preconditioner relies on the method of subspace corrections to solve large-scale linear systems arising from fully implicit methods in reservoir simulations. We investigate the parallel efficiency and robustness of the proposed method by applying it to million-cell benchmark problems.
文摘In this paper we give an overview of the present state of fast solvers for the solution of the incompressible Navier-Stokes equations discretized by the finite element method and linearized by Newton or Picard's method.It is shown that block preconditioners form an excellent approach for the solution,however if the grids are not to fine preconditioning with a Saddle point ILU matrix(SILU) may be an attractive alternative. The applicability of all methods to stabilized elements is investigated.In case of the stand-alone Stokes equations special preconditioners increase the efficiency considerably.
基金supported by the National Natural Science Foundation of China (No. 11071033)the Fundamental Research Funds for the Central Universities (No. 090405013)
文摘A class of preconditioned iterative methods, i.e., preconditioned generalized accelerated overrelaxation (GAOR) methods, is proposed to solve linear systems based on a class of weighted linear least squares problems. The convergence and comparison results are obtained. The comparison results show that the convergence rate of the preconditioned iterative methods is better than that of the original methods. Furthermore, the effectiveness of the proposed methods is shown in the numerical experiment.
基金financial support from the Indian National Science Academy,New Delhi,IndiaBiluru Gurubasava Mahaswamiji Institute of Technology for the encouragement and support。
文摘This paper presents an investigation into the effect of surface asperities on the over-rolling of bearing surfaces in transient elastohydrodynamic lubrication(EHL) line contact. The governing equations are discretized by the finite difference method. The resulting nonlinear system of algebraic equations is solved by the Jacobian-free Newtongeneralized minimal residual(GMRES) from the Krylov subspace method(KSM). The acceleration of the GMRES iteration is accomplished by a wavelet-based preconditioner.The profiles of the lubricant pressure and film thickness are obtained at each time step when the indented surface moves through the contact region. The prediction of pressure as a function of time provides an insight into the understanding of fatigue life of bearings.The analysis confirms the need for the time-dependent approach of EHL problems with surface asperities. This method requires less storage and yields an accurate solution with much coarser grids. It is stable, efficient, allows a larger time step, and covers a wide range of parameters of interest.
基金Supported by the Scientific Research Foundation for Advisor Program of Higher Education of Gansu Province(1009-6)Supported by the Scientific Research Foundation for Youth Scholars of Hexi University(qn201015)
文摘The preconditioned generalized minimal residual(GMRES) method is a common method for solving non-symmetric,large and sparse linear systems which originated in discrete ordinary differential equations by Boundary value methods.In this paper,we propose a new circulant preconditioner to speed up the convergence rate of the GMRES method, which is a convex linear combination of P-circulant and Strang-type circulant preconditioners. Theoretical and practical arguments are given to show that this preconditioner is feasible and effective in some cases.
文摘In this article algebraic multigrid as preconditioners are designed, with biorthogonal wavelets, as intergrid operators for the Krylov subspace iterative methods. Construction of hierarchy of matrices in algebraic multigrid context is based on lowpass filter version of Wavelet Transform. The robustness and efficiency of this new approach is tested by applying it to large sparse, unsymmetric and ill-conditioned matrices from Tim Davis collection of sparse matrices. Proposed preconditioners have potential in reducing cputime, operator complexity and storage space of algebraic multigrid V-cycle and meet the desired accuracy of solution compared with that of orthogonal wavelets.
文摘Several preconditioners are proposed for improving the convergence rate of the iterative method derived from splitting. In this paper, the comparison theorem of preconditioned iterative method for regular splitting is proved. And the convergence and comparison theorem for any preconditioner are indicated. This comparison theorem indicates the possibility of finding new preconditioner and splitting. The purpose of this paper is to show that the preconditioned iterative method yields a new splitting satisfying the regular or weak regular splitting. And new combination preconditioners are proposed. In order to denote the validity of the comparison theorem, some numerical examples are shown.
基金supported by the National Basic Research Program (No.2005CB321702)the National Outstanding Young Scientist Foundation(No. 10525102)the Specialized Research Grant for High Educational Doctoral Program(Nos. 20090211120011 and LZULL200909),Hong Kong RGC grants and HKBU FRGs
文摘Image restoration is often solved by minimizing an energy function consisting of a data-fidelity term and a regularization term.A regularized convex term can usually preserve the image edges well in the restored image.In this paper,we consider a class of convex and edge-preserving regularization functions,i.e.,multiplicative half-quadratic regularizations,and we use the Newton method to solve the correspondingly reduced systems of nonlinear equations.At each Newton iterate,the preconditioned conjugate gradient method,incorporated with a constraint preconditioner,is employed to solve the structured Newton equation that has a symmetric positive definite coefficient matrix. The eigenvalue bounds of the preconditioned matrix are deliberately derived,which can be used to estimate the convergence speed of the preconditioned conjugate gradient method.We use experimental results to demonstrate that this new approach is efficient, and the effect of image restoration is reasonably well.
文摘Bordered linear systems arise from many industrial applications, such as reservoir simulation and structural engineering. Traditional ILU preconditioners which throw away the additional equations are often too crude for these systems. We describe a practical implementation of ILU preconditioners which are more accurate and more robust. The emphasis of this paper is on implementation rather than on theory.
基金the National Natural Science Foundation of China under Grant Nos.61273311 and 61803247.
文摘This paper proposes a two-parameter block triangular splitting(TPTS)preconditioner for the general block two-by-two linear systems.The eigenvalues of the corresponding preconditioned matrix are proved to cluster around 0 or 1 under mild conditions.The limited numerical results show that the TPTS preconditioner is more efficient than the classic block-diagonal and block-triangular preconditioners when applied to the flexible generalized minimal residual(FGMRES)method.
文摘In this paper, we present the construction of purely algebraic Daubechies wavelet based preconditioners for Krylov subspace iterative methods to solve linear sparse system of equations. Effective preconditioners are designed with DWTPerMod algorithm by knowing size of the matrix and the order of Daubechies wavelet. A notable feature of this algorithm is that it enables wavelet level to be chosen automatically making it more robust than other wavelet based preconditioners and avoids user choosing a level of transform. We demonstrate the efficiency of these preconditioners by applying them to several matrices from Tim Davis collection of sparse matrices for restarted GMRES.
文摘Finite difference type preconditioners for spectral element discretizations based on Legendre-Gauss-Lobatto points are analyzed. The latter is employed for the approximation of uniformly elliptic partial differential problems. In this work, it is shown that the condition number of the resulting preconditioned system is bounded independently of both of the polynomial degrees used in the spectral element method and the element sizes. Several numerical tests verify the h-p independence of the proposed preconditioning.
文摘In this paper, a family of high-order compact finite difference methods in combination preconditioned methods are used for solution of the Diffusion-Convection equation. We developed numerical methods by replacing the time and space derivatives by compact finite-difference approximations. The system of resulting nonlinear finite difference equations are solved by preconditioned Krylov subspace methods. Numerical results are given to verify the behavior of high-order compact approximations in combination preconditioned methods for stability, convergence. Also, the accuracy and efficiency of the proposed scheme are considered.
基金This work was performed under the auspices of the U.S.Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and was partially supported by the LLNL-LDRD Program under Project No.20-ERD-002(LLNL-JRNL-814157).
文摘In this paper,we develop subspace correction preconditioners for discontinuous Galerkin(DG)discretizations of elliptic problems with hp-refnement.These preconditioners are based on the decomposition of the DG fnite element space into a conforming subspace,and a set of small nonconforming edge spaces.The conforming subspace is preconditioned using a matrix-free low-order refned technique,which in this work,we extend to the hprefnement context using a variational restriction approach.The condition number of the resulting linear system is independent of the granularity of the mesh h,and the degree of the polynomial approximation p.The method is amenable to use with meshes of any degree of irregularity and arbitrary distribution of polynomial degrees.Numerical examples are shown on several test cases involving adaptively and randomly refned meshes,using both the symmetric interior penalty method and the second method of Bassi and Rebay(BR2).
文摘A two-level additive Schwarz preconditioner based on the overlapping domain decomposition approach is proposed for the local C0 discontinuous Galerkin (LCDG) method of Kirchhoff plates.Then with the help of an intergrid transfer operator and its error estimates,it is proved that the condition number is bounded by O(1 + (H4/δ4)),where H is the diameter of the subdomains and δ measures the overlap among subdomains.And for some special cases of small overlap,the estimate can be improved as O(1 + (H3/δ3)).At last,some numerical results are reported to demonstrate the high efficiency of the two-level additive Schwarz preconditioner.
基金the Innovation Foundation of NUDT forPh.D.graduates.
文摘This paper introduces the preconditioned methods for Space-Time Adaptive Processing(STAP).Using the Block-Toeplitz-Toeplitz-Block(BTTB)structure of the clutter-plus-noise covari-ance matrix,a Block-Circulant-Circulant-Block(BCCB)preconditioner is constructed.Based on thepreconditioner,a Preconditioned Multistage Wiener Filter(PMWF)which can be implemented by thePreconditioned Conjugate Gradient(PCG)method is proposed.Simulation results show that thePMWF has faster convergence rate and lower processing rank compared with the MWF.
文摘In this paper,we design an efficient domain decomposition(DD)preconditioner for the saddle-point problem resulting from the mixed finite-element discretization of multiscale elliptic problems.By proper equivalent algebraic operations,the original saddle-point system can be transformed to another saddle-point system which can be preconditioned by a block-diagonel matrix efficiently.Actually,the first block of this block-diagonal matrix corresponds to a multiscale H(div)problem,and thus,the direct inverse of this block is unpractical and unstable for the large-scale problem.To remedy this issue,a two-level overlapping DD preconditioner is proposed for this//(div)problem.Our coarse space consists of some velocities obtained from mixed formulation of local eigenvalue problems on the coarse edge patches multiplied by the partition of unity functions and the trivial coarse basis(e.g.,Raviart-Thomas element)on the coarse grid.The condition number of our preconditioned DD method for this multiscale H(div)system is bounded by C(1+务)(1+log4(^)),where 6 denotes the width of overlapping region,and H,h are the typical sizes of the subdomain and fine mesh.Numerical examples are presented to confirm the validity and robustness of our DD preconditioner.