High peak-to-average power ratio(PAPR)is the main disadvantage of visible light communication-based orthogonal frequency division multiplexing(VLC-OFDM)systems.To address this problem,a novel precoding method is propo...High peak-to-average power ratio(PAPR)is the main disadvantage of visible light communication-based orthogonal frequency division multiplexing(VLC-OFDM)systems.To address this problem,a novel precoding method is proposed in this paper.The complex-valued precoding matrix is constructed by a Vandermonde matrix.The researched results show the proposed precoding scheme has better PAPR performance when compared to the conventional real-valued precoding methods.Moreover,a general closed-form expression of bit error rate(BER)for Vandermonde precoded VLC-OFDM is derived for multipath fading channel.The obtained BER formula shows that Vandermonde precoding can improve the BER performance of VLC-OFDM system over multipath fading channel.This is verified by the simulation results.The researched results also show that different precoding schemes have the same BER performance but different PAPR performance.展开更多
Existing Generalized Receive Spatial Modulation(GRSM)with Symbol-Level Precoding(SLP)forces the received signals(excluding noise)at unintended antennas to be zero,which restricts the generation of strong constructive ...Existing Generalized Receive Spatial Modulation(GRSM)with Symbol-Level Precoding(SLP)forces the received signals(excluding noise)at unintended antennas to be zero,which restricts the generation of strong constructive interference to intended receive antennas and thus limits the performance improvement over conventional GRSM with Zero-Forcing(ZF)precoding.In this paper,we propose a novel GRSM-SLP scheme that relaxes the zero receive power constraint and achieves superior performance by integrating Intelligent Reflecting Surfaces(IRSs).Specifically,our advanced GRSM-RSLP jointly exploits SLP at the transmitter and passive beamforming at the IRS to maximize the power difference between intended and unintended receive antennas,where the received signals at unintended antennas are relaxed to lie in a sphere centered at origin with a preset radius that depends on the Signal-to-Noise Ratio(SNR)value.The precoding matrix and passive beamforming vectors are optimized alternately by considering both phase shift keying and quadrature amplitude modulation signaling.It is worth emphasizing that GRSM-RSLP is a universal solution,also applicable to systems without IRS,although it performs better in IRS-assisted systems.We finally conduct extensive simulations to prove the superiority of GRSM-RSLP over GRSM-ZF and GRSM-SLP.Simulation results show that the performance of GRSM-RSLP is significantly influenced by the number of unintended antennas,and the larger the number,the better its performance.In the best-case scenario,GRSM-RSLP can achieve SNR gains of up to 10.5 dB and 12.5 dB over GRSM-SLP and GRSM-ZF,respectively.展开更多
Compared to high-resolution digital-toanalog converters(DACs), deploying 1-bit DACs requires much less hardware complexity for a massive multi-user multiple-input multiple-output(MUMIMO) system. However, the feasible ...Compared to high-resolution digital-toanalog converters(DACs), deploying 1-bit DACs requires much less hardware complexity for a massive multi-user multiple-input multiple-output(MUMIMO) system. However, the feasible domain of a1-bit transmitting signal is non-continuous, and thus it is more challenging to exploit multi-user interference(MUI) by precoding. In this paper, to improve symbol decision accuracy, we investigate MUI exploitation 1-bit precoding methods for massive MU-MIMO systems under QAM modulations. Because MUIs may be constructive or destructive, we define a modified mean square error(MSE) metric for QAM constellations to jointly evaluate the effect of both MUIs and noise. Then, we model the 1-bit precoding optimization problems to minimize the sum modified MSE or the maximum modified MSE, where both the transmitting vector and receiving processing factor are optimization variables. Based on whether the receiving processing factor remains constant during the whole transmission block, two scenarios are taken into consideration. Referring to existing interference exploitation 1-bit precoding methods, we design efficient algorithms to solve the two modified MSE based problems.Compared to existing 1-bit precoding methods, our proposed methods provide better bit error rate performance, especially in more practical scenario Ⅱ(constant receiving processing factor in one block).展开更多
Low Earth Orbit(LEO)multibeam satellites will be widely used in the next generation of satellite communication systems,whose inter-beam interference will inevitably limit the performance of the whole system.Nonlinear ...Low Earth Orbit(LEO)multibeam satellites will be widely used in the next generation of satellite communication systems,whose inter-beam interference will inevitably limit the performance of the whole system.Nonlinear precoding such as Tomlinson-Harashima precoding(THP)algorithm has been proved to be a promising technology to solve this problem,which has smaller noise amplification effect compared with linear precoding.However,the similarity of different user channels(defined as channel correlation)will degrade the performance of THP algorithm.In this paper,we qualitatively analyze the inter-beam interference in the whole process of LEO satellite over a specific coverage area,and the impact of channel correlation on Signal-to-Noise Ratio(SNR)of receivers when THP is applied.One user grouping algorithm is proposed based on the analysis of channel correlation,which could decrease the number of users with high channel correlation in each precoding group,thus improve the performance of THP.Furthermore,our algorithm is designed under the premise of co-frequency deployment and orthogonal frequency division multiplexing(OFDM),which leads to more users under severe inter-beam interference compared to the existing research on geostationary orbit satellites broadcasting systems.Simulation results show that the proposed user grouping algorithm possesses higher channel capacity and better bit error rate(BER)performance in high SNR conditions relative to existing works.展开更多
In this paper,we present a novel and robust nonlinear precoding(NLP)design and detection structure specifically tailored for multiple-input multipleoutput space division multiple access(MIMO-SDMA)systems toward 6G wir...In this paper,we present a novel and robust nonlinear precoding(NLP)design and detection structure specifically tailored for multiple-input multipleoutput space division multiple access(MIMO-SDMA)systems toward 6G wireless.Our approach aims to effectively mitigate the impact of imperfect channel estimation by leveraging the channel fluctuation mean square error(MSE)for reconstructing a highly accurate precoding matrix at the transmitter.Furthermore,we introduce a simplified receiver structure that eliminates the need for equalization,resulting in reduced interference and notable enhancements in overall system performance.We conduct both computer simulations and experimental tests to validate the efficacy of our proposed approach.The results reveals that the proposed NLP scheme offers significant performance improvements,making it particularly well-suited for the forthcoming 6G wireless.展开更多
基金supported by the Zhejiang Provincial Natural Science Foundation of China(No.LZ21F010001)the Natural Science Foundation of Zhejiang University of Science and Technology(No.2023QN095)。
文摘High peak-to-average power ratio(PAPR)is the main disadvantage of visible light communication-based orthogonal frequency division multiplexing(VLC-OFDM)systems.To address this problem,a novel precoding method is proposed in this paper.The complex-valued precoding matrix is constructed by a Vandermonde matrix.The researched results show the proposed precoding scheme has better PAPR performance when compared to the conventional real-valued precoding methods.Moreover,a general closed-form expression of bit error rate(BER)for Vandermonde precoded VLC-OFDM is derived for multipath fading channel.The obtained BER formula shows that Vandermonde precoding can improve the BER performance of VLC-OFDM system over multipath fading channel.This is verified by the simulation results.The researched results also show that different precoding schemes have the same BER performance but different PAPR performance.
基金supported in part by the National Key R&D Program of China under Grant 2023YFB2904500in part by the National Natural Science Foundation of China under Grant 62471183in part by the Fundamental Research Funds for the Central Universities under Grant 2024ZYGXZR076.
文摘Existing Generalized Receive Spatial Modulation(GRSM)with Symbol-Level Precoding(SLP)forces the received signals(excluding noise)at unintended antennas to be zero,which restricts the generation of strong constructive interference to intended receive antennas and thus limits the performance improvement over conventional GRSM with Zero-Forcing(ZF)precoding.In this paper,we propose a novel GRSM-SLP scheme that relaxes the zero receive power constraint and achieves superior performance by integrating Intelligent Reflecting Surfaces(IRSs).Specifically,our advanced GRSM-RSLP jointly exploits SLP at the transmitter and passive beamforming at the IRS to maximize the power difference between intended and unintended receive antennas,where the received signals at unintended antennas are relaxed to lie in a sphere centered at origin with a preset radius that depends on the Signal-to-Noise Ratio(SNR)value.The precoding matrix and passive beamforming vectors are optimized alternately by considering both phase shift keying and quadrature amplitude modulation signaling.It is worth emphasizing that GRSM-RSLP is a universal solution,also applicable to systems without IRS,although it performs better in IRS-assisted systems.We finally conduct extensive simulations to prove the superiority of GRSM-RSLP over GRSM-ZF and GRSM-SLP.Simulation results show that the performance of GRSM-RSLP is significantly influenced by the number of unintended antennas,and the larger the number,the better its performance.In the best-case scenario,GRSM-RSLP can achieve SNR gains of up to 10.5 dB and 12.5 dB over GRSM-SLP and GRSM-ZF,respectively.
文摘Compared to high-resolution digital-toanalog converters(DACs), deploying 1-bit DACs requires much less hardware complexity for a massive multi-user multiple-input multiple-output(MUMIMO) system. However, the feasible domain of a1-bit transmitting signal is non-continuous, and thus it is more challenging to exploit multi-user interference(MUI) by precoding. In this paper, to improve symbol decision accuracy, we investigate MUI exploitation 1-bit precoding methods for massive MU-MIMO systems under QAM modulations. Because MUIs may be constructive or destructive, we define a modified mean square error(MSE) metric for QAM constellations to jointly evaluate the effect of both MUIs and noise. Then, we model the 1-bit precoding optimization problems to minimize the sum modified MSE or the maximum modified MSE, where both the transmitting vector and receiving processing factor are optimization variables. Based on whether the receiving processing factor remains constant during the whole transmission block, two scenarios are taken into consideration. Referring to existing interference exploitation 1-bit precoding methods, we design efficient algorithms to solve the two modified MSE based problems.Compared to existing 1-bit precoding methods, our proposed methods provide better bit error rate performance, especially in more practical scenario Ⅱ(constant receiving processing factor in one block).
基金supported by the Key R&D Project of the Ministry of Science and Technology of China(2020YFB1808005)。
文摘Low Earth Orbit(LEO)multibeam satellites will be widely used in the next generation of satellite communication systems,whose inter-beam interference will inevitably limit the performance of the whole system.Nonlinear precoding such as Tomlinson-Harashima precoding(THP)algorithm has been proved to be a promising technology to solve this problem,which has smaller noise amplification effect compared with linear precoding.However,the similarity of different user channels(defined as channel correlation)will degrade the performance of THP algorithm.In this paper,we qualitatively analyze the inter-beam interference in the whole process of LEO satellite over a specific coverage area,and the impact of channel correlation on Signal-to-Noise Ratio(SNR)of receivers when THP is applied.One user grouping algorithm is proposed based on the analysis of channel correlation,which could decrease the number of users with high channel correlation in each precoding group,thus improve the performance of THP.Furthermore,our algorithm is designed under the premise of co-frequency deployment and orthogonal frequency division multiplexing(OFDM),which leads to more users under severe inter-beam interference compared to the existing research on geostationary orbit satellites broadcasting systems.Simulation results show that the proposed user grouping algorithm possesses higher channel capacity and better bit error rate(BER)performance in high SNR conditions relative to existing works.
基金supported in part by National Key R&D Program of China(2020YFB1807203)National Science Foundation of China under Grant number 62071111+2 种基金the Fundamental Research Funds for the Central Universities under Grant 2242022k60006Natural Science Foundation of Sichuan Province under Grant number 2022NSFSC0487the National Key Laboratory of Wireless Communications Foundation under Grant IFN20230104。
文摘In this paper,we present a novel and robust nonlinear precoding(NLP)design and detection structure specifically tailored for multiple-input multipleoutput space division multiple access(MIMO-SDMA)systems toward 6G wireless.Our approach aims to effectively mitigate the impact of imperfect channel estimation by leveraging the channel fluctuation mean square error(MSE)for reconstructing a highly accurate precoding matrix at the transmitter.Furthermore,we introduce a simplified receiver structure that eliminates the need for equalization,resulting in reduced interference and notable enhancements in overall system performance.We conduct both computer simulations and experimental tests to validate the efficacy of our proposed approach.The results reveals that the proposed NLP scheme offers significant performance improvements,making it particularly well-suited for the forthcoming 6G wireless.