Vibration-induced bias deviation,which is generated by intensity fluctuations and additional phase differences,is one of the vital errors for fiber optic gyroscopes(FOGs)operating in vibration environment and has seve...Vibration-induced bias deviation,which is generated by intensity fluctuations and additional phase differences,is one of the vital errors for fiber optic gyroscopes(FOGs)operating in vibration environment and has severely restricted the applications of high-precision FOGs.The conventional methods for suppressing vibration-induced errors mostly concentrate on reinforcing the mechanical structure and optical path as well as the compensation under some specific operation parameters,which have very limited effects for high-precision FOGs maintaining performances under vibration.In this work,a technique of suppressing the vibration-induced bias deviation through removing the part related to the varying gain from the rotation-rate output is put forward.Particularly,the loop gain is extracted out by adding a gain-monitoring wave.By demodulating the loop gain and the rotation rate simultaneously under distinct frequencies and investigating their quantitative relationship,the vibrationinduced bias error is compensated without limiting the operating parameters or environments,like the applied modulation depth.The experimental results show that the proposed method has achieved the reduction of bias error from about 0.149°/h to0.014°/h during the random vibration with frequencies from20 Hz to 2000 Hz.This technique provides a feasible route for enhancing the performances of high-precision FOGs heading towards high environmental adaptability.展开更多
Land surface temperature(LST)is the key variable in land-atmosphere interaction,having an important impact on weather and climate forecasting.However,achieving consistent analysis of LST and the atmosphere in assimila...Land surface temperature(LST)is the key variable in land-atmosphere interaction,having an important impact on weather and climate forecasting.However,achieving consistent analysis of LST and the atmosphere in assimilation is quite challenging.This is because there is limited knowledge about the cross-component background error covariance(BEC)between LST and atmospheric state variables.This study aims to clarify whether there is a relationship between the error of LST and atmospheric variables,and whether this relationship varies spatially and temporally.To this end,the BEC coupled with atmospheric variables and LST was constructed(LST-BEC),and its characteristics were analyzed based on the 2023 mei-yu season.The general characteristics of LST-BEC show that the LST is mainly correlated with the atmospheric temperature and the correlation decreases gradually with a rise in atmospheric height,and the error standard deviation of the LST is noticeably larger than that of the low-level atmospheric temperature.The spatiotemporal characteristics of LST-BEC on the heavy-rain day and light-rain day show that the error correlation and error standard deviation of LST and low-level atmospheric temperature and humidity are closely related to the weather background,and also have obvious diurnal variations.These results provide valuable information for strongly coupled land-atmosphere assimilation.展开更多
In the dynamic landscape of modern healthcare and precision medicine,the digital revolution is reshaping medical industries at an unprecedented pace,and traditional Chinese medicine(TCM)is no exception[1-4].The paper...In the dynamic landscape of modern healthcare and precision medicine,the digital revolution is reshaping medical industries at an unprecedented pace,and traditional Chinese medicine(TCM)is no exception[1-4].The paper“From digits towards digitization:the past,present,and future of traditional Chinese medicine”by Academician&TCM National Master Qi WANG(王琦).展开更多
Artificial intelligence(AI)is driving a paradigm shift in gastroenterology and hepa-tology by delivering cutting-edge tools for disease screening,diagnosis,treatment,and prognostic management.Through deep learning,rad...Artificial intelligence(AI)is driving a paradigm shift in gastroenterology and hepa-tology by delivering cutting-edge tools for disease screening,diagnosis,treatment,and prognostic management.Through deep learning,radiomics,and multimodal data integration,AI has achieved diagnostic parity with expert cli-nicians in endoscopic image analysis(e.g.,early gastric cancer detection,colorectal polyp identification)and non-invasive assessment of liver pathologies(e.g.,fibrosis staging,fatty liver typing)while demonstrating utility in personalized care scenarios such as predicting hepatocellular carcinoma recurrence and opti-mizing inflammatory bowel disease treatment responses.Despite these advance-ments challenges persist including limited model generalization due to frag-mented datasets,algorithmic limitations in rare conditions(e.g.,pediatric liver diseases)caused by insufficient training data,and unresolved ethical issues related to bias,accountability,and patient privacy.Mitigation strategies involve constructing standardized multicenter databases,validating AI tools through prospective trials,leveraging federated learning to address data scarcity,and de-veloping interpretable systems(e.g.,attention heatmap visualization)to enhance clinical trust.Integrating generative AI,digital twin technologies,and establishing unified ethical/regulatory frameworks will accelerate AI adoption in primary care and foster equitable healthcare access while interdisciplinary collaboration and evidence-based implementation remain critical for realizing AI’s potential to redefine precision care for digestive disorders,improve global health outcomes,and reshape healthcare equity.展开更多
Artificial intelligence(AI)and machine learning(ML)are transforming spine care by addressing diagnostics,treatment planning,and rehabilitation challenges.This study highlights advancements in precision medicine for sp...Artificial intelligence(AI)and machine learning(ML)are transforming spine care by addressing diagnostics,treatment planning,and rehabilitation challenges.This study highlights advancements in precision medicine for spinal pathologies,leveraging AI and ML to enhance diagnostic accuracy through deep learning algorithms,enabling faster and more accurate detection of abnormalities.AIpowered robotics and surgical navigation systems improve implant placement precision and reduce complications in complex spine surgeries.Wearable devices and virtual platforms,designed with AI,offer personalized,adaptive therapies that improve treatment adherence and recovery outcomes.AI also enables preventive interventions by assessing spine condition risks early.Despite progress,challenges remain,including limited healthcare datasets,algorithmic biases,ethical concerns,and integration into existing systems.Interdisciplinary collaboration and explainable AI frameworks are essential to unlock AI’s full potential in spine care.Future developments include multimodal AI systems integrating imaging,clinical,and genetic data for holistic treatment approaches.AI and ML promise significant improvements in diagnostic accuracy,treatment personalization,service accessibility,and cost efficiency,paving the way for more streamlined and effective spine care,ultimately enhancing patient outcomes.展开更多
The proposed hybrid optimization algorithm integrates particle swarm optimizatio(PSO)with Ant Colony Optimization(ACO)to improve a number of pitfalls within PSO methods traditionally considered and/or applied to indus...The proposed hybrid optimization algorithm integrates particle swarm optimizatio(PSO)with Ant Colony Optimization(ACO)to improve a number of pitfalls within PSO methods traditionally considered and/or applied to industrial robots.Particle Swarm Optimization may frequently suffer from local optima and inaccuracies in identifying the geometric parameters,which are necessary for applications requiring high-accuracy performances.The proposed approach integrates pheromone-based learning of ACO with the D-H method of developing an error model;hence,the global search effectiveness together with the convergence accuracy is further improved.Comparison studies of the hybrid PSO-ACO algorithm show higher precision and effectiveness in the optimization of geometric error parameters compared to the traditional methods.This is a remarkable reduction of localization errors,thus yielding accuracy and reliability in industrial robotic systems,as the results show.This approach improves performance in those applications that demand high geometric calibration by reducing the geometric error.The paper provides an overview of input for developing robotics and automation,giving importance to precision in industrial engineering.The proposed hybrid methodology is a good way to enhance the working accuracy and effectiveness of industrial robots and shall enable their wide application to complex tasks that require a high degree of accuracy.展开更多
The gears of new energy vehicles are required to withstand higher rotational speeds and greater loads,which puts forward higher precision essentials for gear manufacturing.However,machining process parameters can caus...The gears of new energy vehicles are required to withstand higher rotational speeds and greater loads,which puts forward higher precision essentials for gear manufacturing.However,machining process parameters can cause changes in cutting force/heat,resulting in affecting gear machining precision.Therefore,this paper studies the effect of different process parameters on gear machining precision.A multi-objective optimization model is established for the relationship between process parameters and tooth surface deviations,tooth profile deviations,and tooth lead deviations through the cutting speed,feed rate,and cutting depth of the worm wheel gear grinding machine.The response surface method(RSM)is used for experimental design,and the corresponding experimental results and optimal process parameters are obtained.Subsequently,gray relational analysis-principal component analysis(GRA-PCA),particle swarm optimization(PSO),and genetic algorithm-particle swarm optimization(GA-PSO)methods are used to analyze the experimental results and obtain different optimal process parameters.The results show that optimal process parameters obtained by the GRA-PCA,PSO,and GA-PSO methods improve the gear machining precision.Moreover,the gear machining precision obtained by GA-PSO is superior to other methods.展开更多
In this paper,a wideband true time delay line for X-band is designed to overcome the beam dispersion problem in a high-resolution spaceborne synthetic aperture radar phased array antenna system.The delay line loads th...In this paper,a wideband true time delay line for X-band is designed to overcome the beam dispersion problem in a high-resolution spaceborne synthetic aperture radar phased array antenna system.The delay line loads the electromagnetic bandgap structure on the upper surface of the substrate integrated waveguide.This is equivalent to including an additional inductance-capacitance for energy storage,which realizes the slow-wave effect.A microstrip line-SIW tapered transition structure is introduced to achieve a low loss and a large bandwidth.In the frequency band between 8-12 GHz,the measured results show that the delay multiplier of the delay line reaches 4 times,i.e.,delay line’s delay time is 4 times larger than 50Ωmicrostrip line with same length.Furthermore,the delay fluctuation,i.e.,the difference between the maximum and minimum delay as a percentage of the standard delay is only 2.5%,the insertion loss is less than-2.5 dB,and the return loss is less than-15 dB.Compared with the existing delay lines,the proposed delay line has the advantages of high delay efficiency,low delay error,wide bandwidth and low loss,which has good practical value and application prospects.展开更多
In this paper,we develop a multi-scalar auxiliary variables(MSAV)scheme for the Cahn-Hilliard Magnetohydrodynamics system by introducing two scalar auxiliary variables(SAV).This scheme is linear,fully decoupled and un...In this paper,we develop a multi-scalar auxiliary variables(MSAV)scheme for the Cahn-Hilliard Magnetohydrodynamics system by introducing two scalar auxiliary variables(SAV).This scheme is linear,fully decoupled and unconditionally stable in energy.Subsequently,we provide a detailed implementation procedure for full decoupling.Thus,at each time step,only a series of linear differential equations with constant coefficients need to be solved.To validate the effectiveness of our approach,we conduct an error analysis for this first-order scheme.Finally,some numerical experiments are provided to verify the energy dissipation of the system and the convergence of the proposed approach.展开更多
Capacitive voltage transformers (CVTs) are essential in high-voltage systems. An accurate error assessment is crucial for precise energy metering. However, tracking real-time quantitative changes in capacitive voltage...Capacitive voltage transformers (CVTs) are essential in high-voltage systems. An accurate error assessment is crucial for precise energy metering. However, tracking real-time quantitative changes in capacitive voltage transformer errors, particularly minor variations in multi-channel setups, remains challenging. This paper proposes a method for online error tracking of multi-channel capacitive voltage transformers using a Co-Prediction Matrix. The approach leverages the strong correlation between in-phase channels, particularly the invariance of the signal proportions among them. By establishing a co-prediction matrix based on these proportional relationships, The influence of voltage changes on the primary measurements is mitigated. Analyzing the relationships between the co-prediction matrices over time allows for inferring true measurement errors. Experimental validation with real-world data confirms the effectiveness of the method, demonstrating its capability to continuously track capacitive voltage transformer measurement errors online with precision over extended durations.展开更多
The management of breast cancer,one of the most common and heterogeneous malignancies,has transformed with the advent of precision medicine.This review explores current developments in genetic profiling,molecular diag...The management of breast cancer,one of the most common and heterogeneous malignancies,has transformed with the advent of precision medicine.This review explores current developments in genetic profiling,molecular diagnostics,and targeted therapies that have revolutionized breast cancer treatment.Key innovations,such as cyclin-dependent kinases 4/6(CDK4/6)inhibitors,antibodydrug conjugates(ADCs),and immune checkpoint inhibitors(ICIs),have improved outcomes for hormone receptor-positive(HR+),HER2-positive(HER2+),and triple-negative breast cancer(TNBC)subtypes remarkably.Additionally,emerging treatments,such as PI3K inhibitors,poly(ADP-ribose)polymerase(PARP)inhibitors,and m RNA-based therapies,offer new avenues for targeting specific genetic mutations and improving treatment response,particularly in difficult-to-treat breast cancer subtypes.The integration of liquid biopsy technologies provides a non-invasive approach for real-time monitoring of tumor evolution and treatment response,thus enabling dynamic adjustments to therapy.Molecular imaging and artificial intelligence(AI)are increasingly crucial in enhancing diagnostic precision,personalizing treatment plans,and predicting therapeutic outcomes.As precision medicine continues to evolve,it has the potential to significantly improve survival rates,decrease recurrence,and enhance quality of life for patients with breast cancer.By combining cutting-edge diagnostics,personalized therapies,and emerging treatments,precision medicine can transform breast cancer care by offering more effective,individualized,and less invasive treatment options.展开更多
The increasing use of UAV-based LiDAR systems for high-resolution mapping highlights the need for reliable,field-validated accuracy assessment methods.This study presents a practical technique for evaluating geometric...The increasing use of UAV-based LiDAR systems for high-resolution mapping highlights the need for reliable,field-validated accuracy assessment methods.This study presents a practical technique for evaluating geometric and radiometric performance using georeferenced,high-reflectivity foil targets.The method enables precise extraction of target centers and correction of systematic georeferencing errors through 3D transformation.The approach was applied at the Tora Cement Factory in Cairo,Egypt—an industrial site with complex topography—using a DJI Matrice 300 RTK UAV equipped with the Zenmuse L1 LiDAR sensor and Zenmuse P1 photogrammetric camera.Three test flights were performed at altitudes of 50 m(nadir and oblique)and 70 m(oblique),with a high-resolution Structure-from-Motion(SfM)point cloud generated for reference.After transformation,the global RMSE of the LiDAR dataset was reduced to approximately 2.8∼3.2 cm,improving upon the raw uncorrected accuracy of up to 4.6 cm.Surface-wise comparisons showed RMSEs of 3.1 cm on flat areas,3.8 cm on rugged terrain,and 4.5 cm on vertical structures.Additionally,the RGB data embedded in the LiDAR point cloud exhibited a systematic spatial offset between 18 and 43 cm,with an average internal standard deviation near 5 cm,indicating a potential limitation for radiometric applications.The proposed method offers a cost-effective,accurate,and repeatable solution for UAV LiDAR validation and supports operational deployment,quality assurance,and system calibration in real-world scenarios.展开更多
In the era of precision medicine,the breast cancer surgical treatment field is gradually moving toward a de-escalation model.Through precise preoperative assessments and multidisciplinary decision-making,surgical trau...In the era of precision medicine,the breast cancer surgical treatment field is gradually moving toward a de-escalation model.Through precise preoperative assessments and multidisciplinary decision-making,surgical trauma can be decreased,and patients’quality of life can be improved by ensuring safety.Herein,we explore the axillary de-escalation surgery model for breast cancer.展开更多
Precision Psychiatry in Mood Disorders refers to the application of precision medicine principles in the field of mood disorders,such as depression and bipolar disorder.It involves the use of advanced technologies,bio...Precision Psychiatry in Mood Disorders refers to the application of precision medicine principles in the field of mood disorders,such as depression and bipolar disorder.It involves the use of advanced technologies,biomarkers,and personalized treatment approaches to improve the accuracy of diagnosis,prognosis,and treatment selection for individuals with mood disorders.展开更多
Contour error is the deviation between the actual displacement and reference trajectory,which is directly related to the machining accuracy.Contour error compensation poses substantial challenges because of the time-v...Contour error is the deviation between the actual displacement and reference trajectory,which is directly related to the machining accuracy.Contour error compensation poses substantial challenges because of the time-varying,nonlinear,and strongly coupled characteristics of parallel machining modules.In addition,the time delay in the system reduces the timeliness of the feedback data,thereby making online contour error calculations and compensation particularly difficult.To solve this problem,the generation mechanism of the time delay of the feedback data and contour error is revealed,and a systematic method for the identification of the time-delay parameter based on Beckhoff’s tracking error calculation mechanism is proposed.The temporal alignment between the position commands and feedback data enables the online calculation of the contour error.On this basis,the tracking error of the drive axes(an important factor resulting in end-effector contour errors)is used for the contour error calculation.Considering the ambiguous parameter-setting logic of the servo drive,the servo parameter is calculated in reverse using the steady-state error to obtain the tracking error model of the drive axes.Furthermore,combined with the system time-delay model,an online correction method for the tracking error estimation model is established.To achieve an accurate mapping of the drive-axis tracking error and end-effector contour error,a bounded iterative search method for the nearest contour point and online calculation model for the contour error are respectively established.Finally,an online compensation controller for contour error is designed.Its effectiveness is verified by a machining experiment on a frame workpiece.The machining results show that the contour error reduces from 68μm to 45μm,and the finish machining accuracy increases by 34%.This study provides a feasible method for online compensation of contour error in a system with time delay.展开更多
In this paper, we proposed an output voltage stabilization of a DC-DC Zeta converter using hybrid control. We modeled the Zeta converter under continuous conduction mode operation. We derived a switching control law t...In this paper, we proposed an output voltage stabilization of a DC-DC Zeta converter using hybrid control. We modeled the Zeta converter under continuous conduction mode operation. We derived a switching control law that brings the output voltage to the desired level. Due to infinite switching occurring at the desired level, we enhanced the switching control law by allowing a sizeable output voltage ripple. We derived mathematical models that allow one to choose the desired switching frequency. In practice, the existence of the non-ideal properties of the Zeta converter results in steady-state output voltage error. By analyzing the power loss in the zeta converter, we proposed an improved switching control law that eliminates the steady-state output voltage error. The effectiveness of the proposed method is illustrated with simulation results.展开更多
Accuracy allocation is crucial in the accuracy design of machining tools.Current accuracy allocation methods primarily focus on positional deviation,with little consideration for tool direction deviation.To address th...Accuracy allocation is crucial in the accuracy design of machining tools.Current accuracy allocation methods primarily focus on positional deviation,with little consideration for tool direction deviation.To address this issue,we propose a geometric error cost sensitivity-based accuracy allocation method for five-axis machine tools.A geometric error model consisting of 4l error components is constructed based on homogeneous transformation matrices.Volumetric points with positional and tool direction deviations are randomly sampled to evaluate the accuracy of the machine tool.The sensitivity of each error component at these sampling points is analyzed using the Sobol method.To balance the needs of geometric precision and manufacturing cost,a geometric error cost sensitivity function is developed to estimate the required cost.By allocating error components affecting tool direction deviation first and the remaining components second,this allocation scheme ensures that both deviations meet the requirements.We also perform numerical simulation of a BC-type(B-axis and C-axis type)five-axis machine tool to validate the method.The results show that the new allocation scheme reduces the total geometric error cost by 27.8%compared to a uniform allocation scheme,and yields the same positional and tool direction machining accuracies.展开更多
Organoids are three-dimensional stem cell-derived models that offer a more physiologically relevant representation of tumor biology compared to traditional two-dimensional cell cultures or animal models.Organoids pres...Organoids are three-dimensional stem cell-derived models that offer a more physiologically relevant representation of tumor biology compared to traditional two-dimensional cell cultures or animal models.Organoids preserve the complex tissue architecture and cellular diversity of human cancers,enabling more accurate predictions of tumor growth,metastasis,and drug responses.Integration with microfluidic platforms,such as organ-on-a-chip systems,further enhances the ability to model tumor-environment interactions in real-time.Organoids facilitate in-depth exploration of tumor heterogeneity,molecular mechanisms,and the development of personalized treatment strategies when coupled with multi-omics technologies.Organoids provide a platform for investigating tumor-immune cell interactions,which aid in the design and testing of immune-based therapies and vaccines.Taken together,these features position organoids as a transformative tool in advancing cancer research and precision medicine.展开更多
Lynch syndrome(LS)is the most common hereditary colorectal cancer(CRC)predisposition syndrome,characterized by a high mutational burden and microsatellite instability-high(MSI-H)tumors.Immunology of LS-associated CRC(...Lynch syndrome(LS)is the most common hereditary colorectal cancer(CRC)predisposition syndrome,characterized by a high mutational burden and microsatellite instability-high(MSI-H)tumors.Immunology of LS-associated CRC(LS-CRC)is unique,with significant implications for treatment.Despite well-established knowledge of LS immunology,immunotherapy dose and treatment response can vary significantly based on local tumor immunity and specific germline pathogenic variant of LS genes.This variability necessitates tailored surveillance strategies and new personalised immunotherapy approaches for LS patients.LS-CRC often benefits from immunotherapy due to the distinct tumor microenvironment(TME)and the variety of tumor infiltrating lymphocytes(TILs).This perspective discusses a novel approach of analysing spatial TILs at a single-cell level using tumor whole slide images(WSIs)that accounts for the distinct TME of LS-CRC.By emphasizing the necessity of personalized medicine in hereditary cancer syndromes,the future research and clinical practices that enhance patient outcomes through precision oncology is inspired.展开更多
Micro-grinding has been widely used in aerospace and other industry.However,the small diameter of the micro-grinding tool has limited its machining performance and efficiency.In order to solve the above problems,micro...Micro-grinding has been widely used in aerospace and other industry.However,the small diameter of the micro-grinding tool has limited its machining performance and efficiency.In order to solve the above problems,micro-structure has been applied on the micro-grinding tool.A morphology modeling has been established in this study to characterize the surface of microstructured micro-grinding tool,and the grinding performance of micro-structured micro-grinding tool has been analyzed through undeformed chip thickness,abrasive edge width,and effective distance between abrasives.Then deviation analysis,path optimization and parameter optimization of microchannel array precision grinding have been finished to improve processing quality and efficiency,and the deflection angle has the most obvious effects on the rectangular slot depth,micro-structured micro-grinding tool could reduce 10%surface roughness and 20%grinding force compared to original micro-grinding tool.Finally,the microchannel array has been machined with a size deviation of 2μm and surface roughness of 0.2μm.展开更多
基金Fundamental Research Funds for the Central Universities(YWF-23-L-1225)National Natural Science Foundation of China(62201025)Chinese Aeronautical Establishment(2022Z037051001)。
文摘Vibration-induced bias deviation,which is generated by intensity fluctuations and additional phase differences,is one of the vital errors for fiber optic gyroscopes(FOGs)operating in vibration environment and has severely restricted the applications of high-precision FOGs.The conventional methods for suppressing vibration-induced errors mostly concentrate on reinforcing the mechanical structure and optical path as well as the compensation under some specific operation parameters,which have very limited effects for high-precision FOGs maintaining performances under vibration.In this work,a technique of suppressing the vibration-induced bias deviation through removing the part related to the varying gain from the rotation-rate output is put forward.Particularly,the loop gain is extracted out by adding a gain-monitoring wave.By demodulating the loop gain and the rotation rate simultaneously under distinct frequencies and investigating their quantitative relationship,the vibrationinduced bias error is compensated without limiting the operating parameters or environments,like the applied modulation depth.The experimental results show that the proposed method has achieved the reduction of bias error from about 0.149°/h to0.014°/h during the random vibration with frequencies from20 Hz to 2000 Hz.This technique provides a feasible route for enhancing the performances of high-precision FOGs heading towards high environmental adaptability.
基金sponsored by the National Natural Science Foundation of China[grant number U2442218]。
文摘Land surface temperature(LST)is the key variable in land-atmosphere interaction,having an important impact on weather and climate forecasting.However,achieving consistent analysis of LST and the atmosphere in assimilation is quite challenging.This is because there is limited knowledge about the cross-component background error covariance(BEC)between LST and atmospheric state variables.This study aims to clarify whether there is a relationship between the error of LST and atmospheric variables,and whether this relationship varies spatially and temporally.To this end,the BEC coupled with atmospheric variables and LST was constructed(LST-BEC),and its characteristics were analyzed based on the 2023 mei-yu season.The general characteristics of LST-BEC show that the LST is mainly correlated with the atmospheric temperature and the correlation decreases gradually with a rise in atmospheric height,and the error standard deviation of the LST is noticeably larger than that of the low-level atmospheric temperature.The spatiotemporal characteristics of LST-BEC on the heavy-rain day and light-rain day show that the error correlation and error standard deviation of LST and low-level atmospheric temperature and humidity are closely related to the weather background,and also have obvious diurnal variations.These results provide valuable information for strongly coupled land-atmosphere assimilation.
文摘In the dynamic landscape of modern healthcare and precision medicine,the digital revolution is reshaping medical industries at an unprecedented pace,and traditional Chinese medicine(TCM)is no exception[1-4].The paper“From digits towards digitization:the past,present,and future of traditional Chinese medicine”by Academician&TCM National Master Qi WANG(王琦).
基金Supported by the Natural Science Foundation of Jilin Province,No.YDZJ202401182ZYTSJilin Provincial Key Laboratory of Precision Infectious Diseases,No.20200601011JCJilin Provincial Engineering Laboratory of Precision Prevention and Control for Common Diseases,Jilin Province Development and Reform Commission,No.2022C036.
文摘Artificial intelligence(AI)is driving a paradigm shift in gastroenterology and hepa-tology by delivering cutting-edge tools for disease screening,diagnosis,treatment,and prognostic management.Through deep learning,radiomics,and multimodal data integration,AI has achieved diagnostic parity with expert cli-nicians in endoscopic image analysis(e.g.,early gastric cancer detection,colorectal polyp identification)and non-invasive assessment of liver pathologies(e.g.,fibrosis staging,fatty liver typing)while demonstrating utility in personalized care scenarios such as predicting hepatocellular carcinoma recurrence and opti-mizing inflammatory bowel disease treatment responses.Despite these advance-ments challenges persist including limited model generalization due to frag-mented datasets,algorithmic limitations in rare conditions(e.g.,pediatric liver diseases)caused by insufficient training data,and unresolved ethical issues related to bias,accountability,and patient privacy.Mitigation strategies involve constructing standardized multicenter databases,validating AI tools through prospective trials,leveraging federated learning to address data scarcity,and de-veloping interpretable systems(e.g.,attention heatmap visualization)to enhance clinical trust.Integrating generative AI,digital twin technologies,and establishing unified ethical/regulatory frameworks will accelerate AI adoption in primary care and foster equitable healthcare access while interdisciplinary collaboration and evidence-based implementation remain critical for realizing AI’s potential to redefine precision care for digestive disorders,improve global health outcomes,and reshape healthcare equity.
文摘Artificial intelligence(AI)and machine learning(ML)are transforming spine care by addressing diagnostics,treatment planning,and rehabilitation challenges.This study highlights advancements in precision medicine for spinal pathologies,leveraging AI and ML to enhance diagnostic accuracy through deep learning algorithms,enabling faster and more accurate detection of abnormalities.AIpowered robotics and surgical navigation systems improve implant placement precision and reduce complications in complex spine surgeries.Wearable devices and virtual platforms,designed with AI,offer personalized,adaptive therapies that improve treatment adherence and recovery outcomes.AI also enables preventive interventions by assessing spine condition risks early.Despite progress,challenges remain,including limited healthcare datasets,algorithmic biases,ethical concerns,and integration into existing systems.Interdisciplinary collaboration and explainable AI frameworks are essential to unlock AI’s full potential in spine care.Future developments include multimodal AI systems integrating imaging,clinical,and genetic data for holistic treatment approaches.AI and ML promise significant improvements in diagnostic accuracy,treatment personalization,service accessibility,and cost efficiency,paving the way for more streamlined and effective spine care,ultimately enhancing patient outcomes.
文摘The proposed hybrid optimization algorithm integrates particle swarm optimizatio(PSO)with Ant Colony Optimization(ACO)to improve a number of pitfalls within PSO methods traditionally considered and/or applied to industrial robots.Particle Swarm Optimization may frequently suffer from local optima and inaccuracies in identifying the geometric parameters,which are necessary for applications requiring high-accuracy performances.The proposed approach integrates pheromone-based learning of ACO with the D-H method of developing an error model;hence,the global search effectiveness together with the convergence accuracy is further improved.Comparison studies of the hybrid PSO-ACO algorithm show higher precision and effectiveness in the optimization of geometric error parameters compared to the traditional methods.This is a remarkable reduction of localization errors,thus yielding accuracy and reliability in industrial robotic systems,as the results show.This approach improves performance in those applications that demand high geometric calibration by reducing the geometric error.The paper provides an overview of input for developing robotics and automation,giving importance to precision in industrial engineering.The proposed hybrid methodology is a good way to enhance the working accuracy and effectiveness of industrial robots and shall enable their wide application to complex tasks that require a high degree of accuracy.
基金Projects(U22B2084,52275483,52075142)supported by the National Natural Science Foundation of ChinaProject(2023ZY01050)supported by the Ministry of Industry and Information Technology High Quality Development,China。
文摘The gears of new energy vehicles are required to withstand higher rotational speeds and greater loads,which puts forward higher precision essentials for gear manufacturing.However,machining process parameters can cause changes in cutting force/heat,resulting in affecting gear machining precision.Therefore,this paper studies the effect of different process parameters on gear machining precision.A multi-objective optimization model is established for the relationship between process parameters and tooth surface deviations,tooth profile deviations,and tooth lead deviations through the cutting speed,feed rate,and cutting depth of the worm wheel gear grinding machine.The response surface method(RSM)is used for experimental design,and the corresponding experimental results and optimal process parameters are obtained.Subsequently,gray relational analysis-principal component analysis(GRA-PCA),particle swarm optimization(PSO),and genetic algorithm-particle swarm optimization(GA-PSO)methods are used to analyze the experimental results and obtain different optimal process parameters.The results show that optimal process parameters obtained by the GRA-PCA,PSO,and GA-PSO methods improve the gear machining precision.Moreover,the gear machining precision obtained by GA-PSO is superior to other methods.
基金Supported by the National Natural Science Foundation of China(61971401)。
文摘In this paper,a wideband true time delay line for X-band is designed to overcome the beam dispersion problem in a high-resolution spaceborne synthetic aperture radar phased array antenna system.The delay line loads the electromagnetic bandgap structure on the upper surface of the substrate integrated waveguide.This is equivalent to including an additional inductance-capacitance for energy storage,which realizes the slow-wave effect.A microstrip line-SIW tapered transition structure is introduced to achieve a low loss and a large bandwidth.In the frequency band between 8-12 GHz,the measured results show that the delay multiplier of the delay line reaches 4 times,i.e.,delay line’s delay time is 4 times larger than 50Ωmicrostrip line with same length.Furthermore,the delay fluctuation,i.e.,the difference between the maximum and minimum delay as a percentage of the standard delay is only 2.5%,the insertion loss is less than-2.5 dB,and the return loss is less than-15 dB.Compared with the existing delay lines,the proposed delay line has the advantages of high delay efficiency,low delay error,wide bandwidth and low loss,which has good practical value and application prospects.
基金Research Project Supported by Shanxi Scholarship Council of China(2021-029)International Cooperation Base and Platform Project of Shanxi Province(202104041101019)Basic Research Plan of Shanxi Province(202203021211129)。
文摘In this paper,we develop a multi-scalar auxiliary variables(MSAV)scheme for the Cahn-Hilliard Magnetohydrodynamics system by introducing two scalar auxiliary variables(SAV).This scheme is linear,fully decoupled and unconditionally stable in energy.Subsequently,we provide a detailed implementation procedure for full decoupling.Thus,at each time step,only a series of linear differential equations with constant coefficients need to be solved.To validate the effectiveness of our approach,we conduct an error analysis for this first-order scheme.Finally,some numerical experiments are provided to verify the energy dissipation of the system and the convergence of the proposed approach.
文摘Capacitive voltage transformers (CVTs) are essential in high-voltage systems. An accurate error assessment is crucial for precise energy metering. However, tracking real-time quantitative changes in capacitive voltage transformer errors, particularly minor variations in multi-channel setups, remains challenging. This paper proposes a method for online error tracking of multi-channel capacitive voltage transformers using a Co-Prediction Matrix. The approach leverages the strong correlation between in-phase channels, particularly the invariance of the signal proportions among them. By establishing a co-prediction matrix based on these proportional relationships, The influence of voltage changes on the primary measurements is mitigated. Analyzing the relationships between the co-prediction matrices over time allows for inferring true measurement errors. Experimental validation with real-world data confirms the effectiveness of the method, demonstrating its capability to continuously track capacitive voltage transformer measurement errors online with precision over extended durations.
基金supported by grants from the National Natural Science Foundation of China(Grant Nos.82103614 and 32171363)Natural Science Foundation of Fujian Province of China(Grant No.2021J05007)+4 种基金funding from the start-up fund for Fujian Key Laboratory of Precision Diagnosis and Treatment in Breast CancerXiamen’s Key Laboratory of Precision Medicine for Endocrine-Related Cancersstart-up and supporting funds from the Third Affiliated Hospital of Kunming Medical University,Yunnan Cancer Hospital for Guo-Jun Zhang and Jing-Wen BaiKey Research and development program for social development of Yunnan Science and Technology Department(Grant No.202403AC100014-2)horizontal project funding from the Third Affiliated Hospital of Kunming Medical University(Grant Nos.20233160A0866 and 20243160A0511)。
文摘The management of breast cancer,one of the most common and heterogeneous malignancies,has transformed with the advent of precision medicine.This review explores current developments in genetic profiling,molecular diagnostics,and targeted therapies that have revolutionized breast cancer treatment.Key innovations,such as cyclin-dependent kinases 4/6(CDK4/6)inhibitors,antibodydrug conjugates(ADCs),and immune checkpoint inhibitors(ICIs),have improved outcomes for hormone receptor-positive(HR+),HER2-positive(HER2+),and triple-negative breast cancer(TNBC)subtypes remarkably.Additionally,emerging treatments,such as PI3K inhibitors,poly(ADP-ribose)polymerase(PARP)inhibitors,and m RNA-based therapies,offer new avenues for targeting specific genetic mutations and improving treatment response,particularly in difficult-to-treat breast cancer subtypes.The integration of liquid biopsy technologies provides a non-invasive approach for real-time monitoring of tumor evolution and treatment response,thus enabling dynamic adjustments to therapy.Molecular imaging and artificial intelligence(AI)are increasingly crucial in enhancing diagnostic precision,personalizing treatment plans,and predicting therapeutic outcomes.As precision medicine continues to evolve,it has the potential to significantly improve survival rates,decrease recurrence,and enhance quality of life for patients with breast cancer.By combining cutting-edge diagnostics,personalized therapies,and emerging treatments,precision medicine can transform breast cancer care by offering more effective,individualized,and less invasive treatment options.
文摘The increasing use of UAV-based LiDAR systems for high-resolution mapping highlights the need for reliable,field-validated accuracy assessment methods.This study presents a practical technique for evaluating geometric and radiometric performance using georeferenced,high-reflectivity foil targets.The method enables precise extraction of target centers and correction of systematic georeferencing errors through 3D transformation.The approach was applied at the Tora Cement Factory in Cairo,Egypt—an industrial site with complex topography—using a DJI Matrice 300 RTK UAV equipped with the Zenmuse L1 LiDAR sensor and Zenmuse P1 photogrammetric camera.Three test flights were performed at altitudes of 50 m(nadir and oblique)and 70 m(oblique),with a high-resolution Structure-from-Motion(SfM)point cloud generated for reference.After transformation,the global RMSE of the LiDAR dataset was reduced to approximately 2.8∼3.2 cm,improving upon the raw uncorrected accuracy of up to 4.6 cm.Surface-wise comparisons showed RMSEs of 3.1 cm on flat areas,3.8 cm on rugged terrain,and 4.5 cm on vertical structures.Additionally,the RGB data embedded in the LiDAR point cloud exhibited a systematic spatial offset between 18 and 43 cm,with an average internal standard deviation near 5 cm,indicating a potential limitation for radiometric applications.The proposed method offers a cost-effective,accurate,and repeatable solution for UAV LiDAR validation and supports operational deployment,quality assurance,and system calibration in real-world scenarios.
基金supported by grants from the Natural Science Foundation of Shandong Province(Grant No.ZR2024QH058).
文摘In the era of precision medicine,the breast cancer surgical treatment field is gradually moving toward a de-escalation model.Through precise preoperative assessments and multidisciplinary decision-making,surgical trauma can be decreased,and patients’quality of life can be improved by ensuring safety.Herein,we explore the axillary de-escalation surgery model for breast cancer.
文摘Precision Psychiatry in Mood Disorders refers to the application of precision medicine principles in the field of mood disorders,such as depression and bipolar disorder.It involves the use of advanced technologies,biomarkers,and personalized treatment approaches to improve the accuracy of diagnosis,prognosis,and treatment selection for individuals with mood disorders.
基金Supported by National Natural Science Foundation of China(Grant Nos.52375018,92148301).
文摘Contour error is the deviation between the actual displacement and reference trajectory,which is directly related to the machining accuracy.Contour error compensation poses substantial challenges because of the time-varying,nonlinear,and strongly coupled characteristics of parallel machining modules.In addition,the time delay in the system reduces the timeliness of the feedback data,thereby making online contour error calculations and compensation particularly difficult.To solve this problem,the generation mechanism of the time delay of the feedback data and contour error is revealed,and a systematic method for the identification of the time-delay parameter based on Beckhoff’s tracking error calculation mechanism is proposed.The temporal alignment between the position commands and feedback data enables the online calculation of the contour error.On this basis,the tracking error of the drive axes(an important factor resulting in end-effector contour errors)is used for the contour error calculation.Considering the ambiguous parameter-setting logic of the servo drive,the servo parameter is calculated in reverse using the steady-state error to obtain the tracking error model of the drive axes.Furthermore,combined with the system time-delay model,an online correction method for the tracking error estimation model is established.To achieve an accurate mapping of the drive-axis tracking error and end-effector contour error,a bounded iterative search method for the nearest contour point and online calculation model for the contour error are respectively established.Finally,an online compensation controller for contour error is designed.Its effectiveness is verified by a machining experiment on a frame workpiece.The machining results show that the contour error reduces from 68μm to 45μm,and the finish machining accuracy increases by 34%.This study provides a feasible method for online compensation of contour error in a system with time delay.
文摘In this paper, we proposed an output voltage stabilization of a DC-DC Zeta converter using hybrid control. We modeled the Zeta converter under continuous conduction mode operation. We derived a switching control law that brings the output voltage to the desired level. Due to infinite switching occurring at the desired level, we enhanced the switching control law by allowing a sizeable output voltage ripple. We derived mathematical models that allow one to choose the desired switching frequency. In practice, the existence of the non-ideal properties of the Zeta converter results in steady-state output voltage error. By analyzing the power loss in the zeta converter, we proposed an improved switching control law that eliminates the steady-state output voltage error. The effectiveness of the proposed method is illustrated with simulation results.
基金supported by the Key R&D Program of Zhejiang Province(Nos.2023C01166 and 2024SJCZX0046)the Zhejiang Provincial Natural Science Foundation of China(Nos.LDT23E05013E05 and LD24E050009)the Natural Science Foundation of Ningbo(No.2021J150),China.
文摘Accuracy allocation is crucial in the accuracy design of machining tools.Current accuracy allocation methods primarily focus on positional deviation,with little consideration for tool direction deviation.To address this issue,we propose a geometric error cost sensitivity-based accuracy allocation method for five-axis machine tools.A geometric error model consisting of 4l error components is constructed based on homogeneous transformation matrices.Volumetric points with positional and tool direction deviations are randomly sampled to evaluate the accuracy of the machine tool.The sensitivity of each error component at these sampling points is analyzed using the Sobol method.To balance the needs of geometric precision and manufacturing cost,a geometric error cost sensitivity function is developed to estimate the required cost.By allocating error components affecting tool direction deviation first and the remaining components second,this allocation scheme ensures that both deviations meet the requirements.We also perform numerical simulation of a BC-type(B-axis and C-axis type)five-axis machine tool to validate the method.The results show that the new allocation scheme reduces the total geometric error cost by 27.8%compared to a uniform allocation scheme,and yields the same positional and tool direction machining accuracies.
基金supported by the Chinese Academy of Medical Sciences(Grant No.2021RU002)Beijing Natural Science Foundation(Grant No.Z240013)+2 种基金National Natural Science Foundation of China(Grant Nos.82450111,82388102,82373416,and 92259303)Beijing Research Ward Excellence Program(Grant Nos.BRWEP2024W034080200 and BRWEP2024W034080204)Peking University People’s Hospital Research and Development Funds(Grant No.RZG2024-02).
文摘Organoids are three-dimensional stem cell-derived models that offer a more physiologically relevant representation of tumor biology compared to traditional two-dimensional cell cultures or animal models.Organoids preserve the complex tissue architecture and cellular diversity of human cancers,enabling more accurate predictions of tumor growth,metastasis,and drug responses.Integration with microfluidic platforms,such as organ-on-a-chip systems,further enhances the ability to model tumor-environment interactions in real-time.Organoids facilitate in-depth exploration of tumor heterogeneity,molecular mechanisms,and the development of personalized treatment strategies when coupled with multi-omics technologies.Organoids provide a platform for investigating tumor-immune cell interactions,which aid in the design and testing of immune-based therapies and vaccines.Taken together,these features position organoids as a transformative tool in advancing cancer research and precision medicine.
文摘Lynch syndrome(LS)is the most common hereditary colorectal cancer(CRC)predisposition syndrome,characterized by a high mutational burden and microsatellite instability-high(MSI-H)tumors.Immunology of LS-associated CRC(LS-CRC)is unique,with significant implications for treatment.Despite well-established knowledge of LS immunology,immunotherapy dose and treatment response can vary significantly based on local tumor immunity and specific germline pathogenic variant of LS genes.This variability necessitates tailored surveillance strategies and new personalised immunotherapy approaches for LS patients.LS-CRC often benefits from immunotherapy due to the distinct tumor microenvironment(TME)and the variety of tumor infiltrating lymphocytes(TILs).This perspective discusses a novel approach of analysing spatial TILs at a single-cell level using tumor whole slide images(WSIs)that accounts for the distinct TME of LS-CRC.By emphasizing the necessity of personalized medicine in hereditary cancer syndromes,the future research and clinical practices that enhance patient outcomes through precision oncology is inspired.
基金co-supported by the Enterprise Innovation and Development Joint Program of the National Natural Science Foundation of China(No.U20B2032)Open Project Funding of State Key Laboratory for High Performance Tools(GXNGJSKL-2024-08)+1 种基金Open Foundation of the State Key Laboratory of Intelligent Manufacturing Equipment and Technology(IMETKF2023005)Introduced Innovative Scientific Research Team Project of Zhongshan(the tenth batch)(CXTD2023008)。
文摘Micro-grinding has been widely used in aerospace and other industry.However,the small diameter of the micro-grinding tool has limited its machining performance and efficiency.In order to solve the above problems,micro-structure has been applied on the micro-grinding tool.A morphology modeling has been established in this study to characterize the surface of microstructured micro-grinding tool,and the grinding performance of micro-structured micro-grinding tool has been analyzed through undeformed chip thickness,abrasive edge width,and effective distance between abrasives.Then deviation analysis,path optimization and parameter optimization of microchannel array precision grinding have been finished to improve processing quality and efficiency,and the deflection angle has the most obvious effects on the rectangular slot depth,micro-structured micro-grinding tool could reduce 10%surface roughness and 20%grinding force compared to original micro-grinding tool.Finally,the microchannel array has been machined with a size deviation of 2μm and surface roughness of 0.2μm.