期刊文献+
共找到103篇文章
< 1 2 6 >
每页显示 20 50 100
Determining the natural vibration period of towering structure using GNSS precise point positioning
1
作者 WANG Zhiming WU Jizhong 《Journal of Southeast University(English Edition)》 2025年第2期199-206,共8页
This study explores the use of the Global Navigation Satellite System(GNSS)precise point positioning(PPP)technology to determine the natural vibration periods of towering structures through simulations and field testi... This study explores the use of the Global Navigation Satellite System(GNSS)precise point positioning(PPP)technology to determine the natural vibration periods of towering structures through simulations and field testing.During the simulation phase,a GNSS receiver captured vi-bration waveforms generated by a single-axis motion simulator based on preset signal parameters,analyzing how different satellite system configurations affect the efficiency of extracting vibration parameters.Subsequently,field tests were conducted on a high-rise steel singletube tower.The results indicate that in the simulation environment,no matter the PPP positioning data under single GPS or multisystem combination,the vibration frequency of singleaxis motion simulator can be accurately extracted after frequency do-main analysis,with multisystem setups providing more precise amplitude parameters.In the field test,the natural vibration periods of the main vibration modes of high-rise steel single-tube tower measured by PPP technology closely match the results of the first two modes derived from finite element analysis.The first mode period calculated by the em-pirical formula is approximately 6%higher than those determined through finite element analysis and PPP.This study demonstrates the potential of PPP for structural vibration analysis,offering significant benefits for assessing dynamic responses and monitoring the health of towering structures. 展开更多
关键词 towering structure natural vibration period precise point positioning frequency domain decomposition
在线阅读 下载PDF
GSeisRT: A Continental BDS/GNSS Point Positioning Engine for Wide-Area Seismic Monitoring in Real Time
2
作者 Jianghui Geng Kunlun Zhang +6 位作者 Shaoming Xin Jiang Guo David Mencin Tan Wang Sebastian Riquelme Elisabetta D’Anastasio Muhammad Al Kautsar 《Engineering》 2025年第4期57-69,共13页
Precise coseismic displacements in earthquake/tsunamic early warning are necessary to characterize earthquakes in real time in order to enable decision-makers to issue alerts for public safety.Real-time global navigat... Precise coseismic displacements in earthquake/tsunamic early warning are necessary to characterize earthquakes in real time in order to enable decision-makers to issue alerts for public safety.Real-time global navigation satellite systems(GNSSs)have been a valuable tool in monitoring seismic motions,allowing permanent displacement computation to be unambiguously achieved.As a valuable tool presented to the seismic commu nity,the GSeisRT software developed by Wuhan University(China)can realize multi-GNSS precise point positioning with ambiguity resolution(PPP-AR)and achieve centimeterlevel to sub-centimeter-level precision in real time.While the stable maintenance of a global precise point positioning(PPP)service is challenging,this software is capable of estimating satellite clocks and phase biases in real time using a regional GNSS network.This capability makes GSeisRT especially suitable for proprietary GNSS networks and,more importantly,the highest possible positio ning precision and reliability can be obtained.According to real-time results from the Network of the Americas,the mean root mean square(RMS)errors of kinematic PPP-AR over a 24 h span are as low as 1.2,1.3,and 3.0 cm in the east,north,and up components,respectively.Within the few minutes that span a typical seismic event,a horizontal displacement precision of 4 mm can be achieved.The positioning precision of the GSeisRT regional PPP/PPP-AR is 30%-40%higher than that of the global PPP/PPP-AR.Since 2019,GSeisRT has successfully recorded the static,dynamic,and peak ground displacements for the 2020Oaxaca,Mexico moment magnitude(Mw)7.4 event;the 2020 Lone Pine,California Mw 5.8 event;and the 2021 Qinghai,China Mw 7.3 event in real time.The resulting immediate magnitude estimates have an error of around 0.1 only.The GSeisRT software is open to the scientific community and has been applied by the China Earthquake Ne tworks Center,the EarthScope Consortium of the United States,the National Seismological Center of Chile,Institute of Geological and Nuclear Sciences Limited(GNS Science Te PūAo)of New Zealand,and the Geospatial Information Agency of Indonesia. 展开更多
关键词 Real-time Precise point positioning Multi global navigation satellite system Seismic monitoring Rapid earthquake response
在线阅读 下载PDF
Performance of GNSS positioning in PPP mode using MADOCA precise products
3
作者 Brian Bramanto Rachel Theresia +1 位作者 Irwan Gumilar Sidik T.Wibowo 《Geodesy and Geodynamics》 EI CSCD 2024年第6期642-651,共10页
The Global Navigation Satellite System (GNSS) is widely utilized for accurate positioning.One commonly applied method to obtain precise coordinate estimates is by implementing the relative positioning in network mode.... The Global Navigation Satellite System (GNSS) is widely utilized for accurate positioning.One commonly applied method to obtain precise coordinate estimates is by implementing the relative positioning in network mode.However,this approach can be complex and challenging.Fortunately,The Japan Aerospace Exploration Agency (JAXA) offers freely available satellite orbit and clock correction products called Multi-GNSS Advanced Demonstration Tool for Orbit and Clock Analysis (MADOCA),which can enhance positioning accuracy through the precise point positioning (PPP) method.This study focuses on evaluating PPP static mode positioning using MADOCA products and comparing the results with the highly precise relative positioning method.By analyzing a network of 20 GNSS stations in Indonesia,we found that the PPP method using MADOCA products provided favorable positioning estimates.The median discrepancies and the corresponding median absolute deviation (MAD) for easting,northing,and up components were estimated as 9±18 mm,10±9 mm,and 3±40 mm,respectively.These results indicate that PPP with MADOCA products can be a reliable alternative for establishing Indonesia's horizontal control networks,particularly for orders 0,1,2,and 3,and for a broad spectrum of geoscience monitoring activities.However,considerations such as epoch transformations and seismic activities should be taken into account for accurate positioning applications that comply with the definition of the national reference framework. 展开更多
关键词 Global Navigation Satellite System(GNSS) Precise point positioning(PPP) MADOCA positioning evaluation
原文传递
The convergence mechanism of Low Earth Orbit enhanced GNSS(LeGNSS)Precise Point Positioning(PPP)
4
作者 Yanning Zheng Haibo Ge Bofeng Li 《Geo-Spatial Information Science》 CSCD 2024年第6期2211-2226,共16页
The recruitment of the Low Earth Orbit(LEO)constellation is recognized as an effective way to augment Global Navigation Satellite System(GNSS)Precise Point Positioning(PPP)in the near future.Its potential to accelerat... The recruitment of the Low Earth Orbit(LEO)constellation is recognized as an effective way to augment Global Navigation Satellite System(GNSS)Precise Point Positioning(PPP)in the near future.Its potential to accelerate PPP convergence has been proved with simulated data.However,the mechanism of how the geometric change of LEO accelerates the convergence of GNSS PPP has not been studied from a theoretical perspective,which hampers the understanding and exploitation of the enhancement of LEO.In this article,the convergence mechanism of LEO enhanced GNSS PPP is investigated in terms of theoretical analysis and simulated verification.To show the characteristics of the ambiguities during convergence,eigenvalue decomposition is used to divide the ambiguities into orthogonal components,named geometric-related component,clock-error-related component,and independent component.The results show that the precision of geometric-related components of ambiguities,which correlates with position parameters,is low at a single epoch,while the precision can be greatly improved with the fast geometric change of LEO.On the other hand,the precision of clock-error-related components of ambiguities,which correlates with clock errors,cannot be improved by fast geometric change of LEO constellation due to its irrelevance to geometry,which causes the precision of each ambiguity to be low.Further investigations show that single-differenced ambiguities could overcome this drawback and are beneficial to ambiguity resolution. 展开更多
关键词 Low Earth Orbit enhanced GNSS(LeGNSS) Precise Point positioning(PPP) convergence time CORRELATION
原文传递
Performance Evaluation of Low-Cost Dual-Frequency GNSS Receivers for Precise Positioning in Senegal: Issues and Challenges
5
作者 Diogoye Diouf Oustasse Abdoulaye Sall +1 位作者 Ibrahima Khalil Gueye Fatou Ndiaye 《Journal of Analytical Sciences, Methods and Instrumentation》 2024年第2期23-37,共15页
The development of this technology has favored the advances noted in recent years in the field of precise positioning. It has also paved the way for a wide range of research into the evaluation of their performance an... The development of this technology has favored the advances noted in recent years in the field of precise positioning. It has also paved the way for a wide range of research into the evaluation of their performance and reliability, their potential use in different fields, the improvement of performance and combined systems, etc. Single-frequency GNSS receivers, which for a long time remained the only category of low-cost GNSS receivers, often limited by their level of accuracy (metric) mainly due to their single-frequency nature, have been joined in the last decade by dual-frequency GNSS receivers developed by certain manufacturers of positioning equipment. These receivers now offer possible alternatives to the relatively expensive conventional (topographic quality) or geodetic receivers and. In this study, the performance of these low-cost dual-frequency receivers was evaluated in static and real-time kinematic GNSS positioning modes. Static positioning was carried out on three points with sessions of 2 h and 4 h over three days with antenna swapping (CHC i50, Leica GS14 and Emlid Reach RS2+). Real-time observations were carried out on eleven (11) points in open, poorly open and not at all open environments, in order to assess not only performance but also receiver sensitivity in environments with a high risk of multipath. The results obtained showed an average agreement of 2 cm in planimetry between the low-cost Emlid RS2+ receiver and the Leica GS14 and CHC i50 receivers. The differences in altimetry are nevertheless greater (sometimes up to decimetres for certain points). Real-time positioning results provided an average convergence of around 1 cm on the E, N and H components with the results from the low-cost Emlid Reach RS2+ and Ublox ZED-F9P receivers and the CHC i50 receiver. Analysis of the results obtained has enabled us to highlight the various issues and challenges associated with this new generation of GNSS receivers, with a view to enhancing their appropriation and optimal integration in the professional and research worlds. 展开更多
关键词 Low-Cost GNSS NRTK Precise positioning ISSUES CHALLENGES
在线阅读 下载PDF
Deformation caused by the 2011 eastern Japan great earthquake monitored using the GPS single-epoch precise point positioning technique 被引量:5
6
作者 郭金运 原永东 +2 位作者 孔巧丽 李国伟 王方建 《Applied Geophysics》 SCIE CSCD 2012年第4期483-493,497,共12页
Crustal deformation can provide constraints for studying earthquake rupture and shock wave transmission for the Mw9.0 eastern Japan great earthquake. Using the single- epoch precise point positioning (PPP) method an... Crustal deformation can provide constraints for studying earthquake rupture and shock wave transmission for the Mw9.0 eastern Japan great earthquake. Using the single- epoch precise point positioning (PPP) method and the appropriate positioning flow, we process GPS data from six IGS (International GNSS Service) sites (e.g., MIZU, TSK2, USUD, MTKA, AIRA and KSMV) located in Japan and obtain the positioning results with centimeter scale precision. The displacement time series of the six sites are analyzed using the least squares spectral analysis method to estimate deformations caused by the Mw9.0 mainshock and the Mw7.9 aftershock, and the cumulative displacements after 1 day. Mainshock displacements at station MIZU, the nearest site to the mainshock in the North (N), East (E), and Up (U) directions, are -1.202 m, 2.180 m and -0.104 m, respectively, and the cumulative deformations after 1 day are -1.117 m, 2.071 m and -0.072 m, respectively. The displacements at station KSMV, the nearest site to the Mw7.9 aftershock in the N, E and U directions, are -0.032 m, 0.742 m and -0.345 m, respectively. The other sites obviously experienced eastern movements and subsidence. The deformation vectors indicate that the horizontal displacements caused by the earthquake point to the epicenter and rupture. Elastic bounds evidently took place at all sites. The results indicate that the crustal movements and earthquake were part of a megathrust caused by the Pacific Plate sinking under the North American Plate to the northeast of Japan island arc. 展开更多
关键词 Eastern Japan great earthquake GPS single-epoch precise point positioning crustal deformation
在线阅读 下载PDF
Modified algorithm of combined GPS/GLONASS precise point positioning for applications in open-pit mines 被引量:2
7
作者 蔡昌盛 罗小敏 朱建军 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第5期1547-1553,共7页
A modified algorithm of combined GPS/GLONASS precise point positioning (GG-PPP) was developed by decreasing the number of unknowns to be estimated so that accurate position solutions can be achieved in the case of l... A modified algorithm of combined GPS/GLONASS precise point positioning (GG-PPP) was developed by decreasing the number of unknowns to be estimated so that accurate position solutions can be achieved in the case of less number of visible satellites. The system time difference between GPS and GLONASS (STDGG) and zenith tropospheric delay (ZTD) values were firstly estimated in an open sky condition using the traditional GG-PPP algorithm. Then, they were used as a priori known values in the modified algorithm instead of estimating them as unknowns. The proposed algorithm was tested using observations collected at BJFS station in a simulated open-pit mine environment. The results show that the position filter converges much faster to a stable value in all three coordinate components using the modified algorithm than using the traditional algorithm. The modified algorithm achieves higher positioning accuracy as well. The accuracy improvement in the horizontal direction and vertical direction reaches 69% and 95% at a satellite elevation mask angle of 50°, respectively. 展开更多
关键词 GPS GLONASS precise point positioning elevation mask angle open-pit mine
在线阅读 下载PDF
Modeling and performance analysis of real⁃time BDS⁃3 PPP⁃B2b one⁃way timing with uncombined observations 被引量:1
8
作者 WANG Yong LIU Tianjun +2 位作者 GU Shengfeng GE Yulong JIANG Weiping 《Journal of Southeast University(English Edition)》 2025年第1期67-77,共11页
Currently,the BeiDou⁃3(BDS⁃3)precise point positioning(PPP)service(PPP⁃B2b)mostly employs the ionosphere⁃free(IF)combination model for precise timing,which tends to amplify the noise in observation values.To address t... Currently,the BeiDou⁃3(BDS⁃3)precise point positioning(PPP)service(PPP⁃B2b)mostly employs the ionosphere⁃free(IF)combination model for precise timing,which tends to amplify the noise in observation values.To address this issue,this paper proposes a real⁃time BDS⁃3 precise unidirectional timing model based on uncombined(UC)observations using the BDS⁃3 PPP⁃B2b service.This model resolves the challenge of the amplified observation noise inherent in the IF combination model.The experiment involved selecting eight global navigation satellite system(GNSS)observation stations within China and collecting continuous observation data for 15 d.A comparative analy⁃sis with the traditional dual⁃frequency IF combination PPP timing model showed that the BDS⁃3 UC PPP timing based on the BDS⁃3 PPP⁃B2b service can achieve a timing preci⁃sion of 0.5 ns.In addition,it was found that due to global positioning system(GPS)satellite clock products in the BDS⁃3 PPP⁃B2b service not being unified to the standard time,the GPS IF PPP timing method based on the BDS⁃3 PPP⁃B2b service is not recommended for precise timing.In summary,the BDS⁃3 UC PPP timing model proposed in this paper is suitable for precise timing,providing observa⁃tion values with smaller noise,and its timing accuracy is comparable to that of the BDS⁃3 IF PPP,with slightly better frequency stability. 展开更多
关键词 precise point positioning service precise tim⁃ing BDS⁃3 uncombined precise point positioning
在线阅读 下载PDF
Real-time retrieval of high-precision ZTD maps using GNSS observation
9
作者 Qingzhi Zhao Wei Wang +11 位作者 Jinfang Yin Kan Wu Lv Zhou Yibin Yao Pengcheng Wang Jing Su Xiaocheng Wang Han Wang Jia Bao Yumeng Hu Zhou Zhuo Yuting Gao 《Geodesy and Geodynamics》 2025年第5期524-535,共12页
Zenith Tropospheric Delay(ZTD)is an important factor that restricts the high-precision positioning of global navigation satellite system(GNSS),and it is of great significance in establishing a real-time and highprecis... Zenith Tropospheric Delay(ZTD)is an important factor that restricts the high-precision positioning of global navigation satellite system(GNSS),and it is of great significance in establishing a real-time and highprecision ZTD model.However,existing ZTD models only consider the impact of linear terms on ZTD estimation,whereas the nonlinear factors have rarely been investigated before and thus become the focus of this study.A real-time and high-precision ZTD model for large height difference area is proposed by considering the linear and nonlinear characteristics of ZTD spatiotemporal variations and is called the realtime linear and nonlinearity ZTD(RLNZ)model.This model uses the ZTD estimated from the Global Pressure and Temperature 3(GPT3)model as the initial value.The linear impacts of periodic term and height on the estimation of ZTD difference between GNSS and GPT3 model are first considered.In addition,nonlinear factors such as geographical location and time are further used to fit the remaining nonlinear ZTD residuals using the general regression neural network method.Finally,the RLNZ-derived ZTD is obtained at an arbitrary location.The western United States,with height difference ranging from-500 to 4000 m,is selected,and the hourly ZTD of 484 GNSS stations provided by the Nevada Geodetic Laboratory(NGL)and the data of 9 radiosonde(RS)stations in the year 2021 are used.Experiment results show that a better performance of ZTD estimation can be retrieved from the proposed RLNZ model when compared with the GPT3 model.Statistical results show the averaged root mean square(RMS),Bias,and mean absolute error(MAE)of ZTD from GPT3 and RLNZ models are 33.7/0.8/25.7 mm and 22.6/0.1/17.4 mm,respectively.The average improvement rate of the RLNZ model is 33% when compared to the GPT3 model.Finally,the application of the proposed RLNZ model in simulated real-time Precise Point Positioning(PPP)indicates that the accuracy of PPP in N,E and U components is improved by 8%,2%,and 6% when compared with that from the GPT3-based PPP.Meanwhile,the convergence time in N and U components is improved by 23% and 7%,respectively.Such results verify the superiority of the proposed RLNZ model in retrieving realtime ZTD maps for GNSS positioning and navigation applications. 展开更多
关键词 Zenith tropospheric delay Global navigation satellite system RLNZ model Precise point positioning
原文传递
Low orbit regional enhanced navigation constellation for BDS3 design based on Bayesian optimization algorithm
10
作者 Chunhua Jiang Zhenyu Luo +1 位作者 Meiqian Guan Huizhong Zhu 《Geodesy and Geodynamics》 2025年第5期558-568,共11页
The application of Low Earth Orbit(LEO)satellite navigation can enhance geometric structure,increase observations and contribute to navigation and positioning.To improve the performance of the navigation constellation... The application of Low Earth Orbit(LEO)satellite navigation can enhance geometric structure,increase observations and contribute to navigation and positioning.To improve the performance of the navigation constellation in China,this study proposes an optimized method of LEO-enhanced navigation constellation for BDS based on Bayesian optimization algorithm.In this paper,four different optimal LEO constellation configurations are designed,and their enhancements to BDS3 navigation performance are analyzed,including Geometric Dilution of Precision(GDOP),the numbers of visible satellites,and the rapid convergence of precision point positioning(PPP).Additionally,the enhancement advantages in China compared to other regions are further discussed.The results demonstrate that regional enhanced constellations with 70,72,80,and 81 satellites at an altitude of 1000 km can significantly improve the navigation performance of the navigation constellation.Globally,the addition of optimized LEO constellations has reduced the hybrid constellation GDOP by 19.0%,18.3%,19.9%,and 20.3%.Similar results can be obtained using the genetic algorithm(GA),but the computational efficiency of Bayesian optimization algorithm is 53.9%higher than that of the genetic algorithm.The number of visible satellites of enhanced constellations in China has increased by more than four on average,which is better than that in other regions.In the PPP experiment,the convergence time of the stations in China and other regions is shortened by 83.0%and 76.2%,respectively,and the navigation performance of hybrid constellations in China is better. 展开更多
关键词 LEO constellation design Orbit optimization Bayesian optimization Precision point positioning(PPP)
原文传递
Development and validation of an integrity monitoring framework of real-time PPP correction data
11
作者 Guangyu ZHOU Fu ZHENG Chuang SHI 《Chinese Journal of Aeronautics》 2025年第8期3-18,共16页
An integrity monitoring framework is proposed to ensure the quality of the real-time Precise Point Positioning(PPP)correction data at the service end.The key contributions are designing quantitative metrics to charact... An integrity monitoring framework is proposed to ensure the quality of the real-time Precise Point Positioning(PPP)correction data at the service end.The key contributions are designing quantitative metrics to characterize the integrity status of the precise Orbit,Clock(OC)and Code Bias(OCB)corrections,and deriving the corresponding algorithms to detect and exclude anomalies,and to evaluate the real-time accuracy levels of the OCB.Compared to many prior works whose interests focused on analyzing and improving the averaged long-term accuracy,this work is established from integrity perspective.In particular,a two-layer fault detection and identification approach is developed to reduce the miss detection and false alert probabilities.The test statistics are constructed based on the raw observations from a network of worldwide sparsely distributed monitor stations.In addition,a realistic data-driven model is established to compute the Quality Indicators(QI)for healthy OCB products.The proposed scheme is validated respectively for multi-constellation OC and code bias,using historical correction data.The results suggest that the detection algorithms can effectively identify and alert the faults,so that the remaining correction errors approximate well to Gaussian distributions.Moreover,the computed QI are shown to be consistent with the truth error variations in real time.Most importantly,the position domain verification shows noticeable positioning accuracy and robustness improvements under both nominal and faulty conditions of the OCB correction data. 展开更多
关键词 INTEGRITY Fault detection Quality indicator Preciseorbit and clock Codebias Precise point positioning
原文传递
Cascaded metasurfaces for adaptive aberration correction
12
作者 Lei Zhang Tie Jun Cui 《Opto-Electronic Advances》 2025年第5期1-3,共3页
Aberration-corrected focus scanning is crucial for high-precision optics,but the conventional optical systems rely on bulky and complicated dynamic correctors.Recently,Shiyi Xiao's group proposed a method using tw... Aberration-corrected focus scanning is crucial for high-precision optics,but the conventional optical systems rely on bulky and complicated dynamic correctors.Recently,Shiyi Xiao's group proposed a method using two rotating cascaded transmissive metasurfaces for adaptive aberration correction in focus scanning.The optimized phase profiles enable precise control of the focal position for scanning custom-curved surfaces.This concept was experimentally validated by two allsilicon meta-devices in the terahertz regime,paving the way for high-precision and compact optical devices in various applications. 展开更多
关键词 precise control focal position optimized phase profiles rotating cascaded transmissive metasurfaces focus scanningthe adaptive aberration correction dynamic correctorsrecentlyshiyi terahertz reg cascaded metasurfaces
在线阅读 下载PDF
Different mathematical methods for ZTD spatial prediction and their performance in BDS PPP augmentation using GNSS network of China
13
作者 Yongzhao FAN Fengyu XIA +1 位作者 Dezhong CHEN Nana JIANG 《Chinese Journal of Aeronautics》 2025年第8期76-92,共17页
The mathematical method of ZTD(zenith tropospheric delay)spatial prediction is important for precise ZTD derivation and real-time precise point positioning(PPP)augmentation.This paper analyses the performance of the p... The mathematical method of ZTD(zenith tropospheric delay)spatial prediction is important for precise ZTD derivation and real-time precise point positioning(PPP)augmentation.This paper analyses the performance of the popular optimal function coefficient(OFC),sphere cap harmonic analysis(SCHA),kriging and inverse distance weighting(IDW)interpolation in ZTD spatial prediction and Beidou satellite navigation system(BDS)-PPP augmentation over China.For ZTD spatial prediction,the average time consumption of the OFC,kriging,and IDW methods is less than 0.1 s,which is significantly better than that of the SCHA method(63.157 s).The overall ZTD precision of the OFC is 3.44 cm,which outperforms those of the SCHA(9.65 cm),Kriging(10.6 cm),and IDW(11.8 cm)methods.We confirmed that the low performance of kriging and IDW is caused by their weakness in modelling ZTD variation in the vertical direction.To mitigate such deficiencies,an elevation normalization factor(ENF)is introduced into the kriging and IDW models(kriging-ENF and IDW-ENF).The overall ZTD spatial prediction accuracies of IDW-ENF and kriging-ENF are 2.80 cm and 2.01 cm,respectively,which are both superior to those of the OFC and the widely used empirical model GPT3(4.92 cm).For BDS-PPP enhancement,the ZTD provided by the kriging-ENF,IDW-ENF and OFC as prior constraints can effectively reduce the convergence time.Compared with unconstrained BDS-PPP,our proposed kriging-ENF outperforms IDW-ENF and OFC by reducing the horizontal and vertical convergence times by approximately 13.2%and 5.8%in Ningxia and 30.4%and 7.84%in Guangdong,respectively.These results indicate that kriging-ENF is a promising method for ZTD spatial prediction and BDS-PPP enhancement over China. 展开更多
关键词 GNSS Zeni thtropospheric delay Zenith tropospheric delay spatial prediction methods Elevation normalization factor Beidou satellite navigation system Precise point positioning augmentation
原文传递
Comprehensive Analysis of Beidou-3 PPP-B2b Performance Based on Adaptive Robust Extend Kalman Filter
14
作者 WAN Yuan MAO Xuchu 《Journal of Shanghai Jiaotong university(Science)》 2025年第6期1208-1219,共12页
Beidou-3 navigation satellite system(BDS-3)initiated a real-time service for precise point positioning(PPP)using the B2b signal,mainly for users in China and surrounding areas.In this paper,the performance of PPP-B2b ... Beidou-3 navigation satellite system(BDS-3)initiated a real-time service for precise point positioning(PPP)using the B2b signal,mainly for users in China and surrounding areas.In this paper,the performance of PPP-B2b service is experimentally analyzed first.Then,the ionosphere-free model is established.In order to solve the problem of slow convergence for traditional PPP,an adaptive robust extend Kalman filter(AREKF)algorithm is developed.Unlike the error compensation models,it reflects the noise information in real time by adjusting the covariance matrix of the measurements and the weight matrix of the state vector.The experimental results are analyzed last.Evaluation results indicate that the corrections provided by PPP-B2b can significantly reduce the discontinuous error of the orbits and clock offsets caused by broadcast ephemeris updating.Positioning results confirm that AREKF outperforms EKF both in static and kinematic modes.Around 20%improvement in accuracy and 25%improvement in convergence speed are achieved,making it valuable for PPP processing. 展开更多
关键词 precise point positioning(PPP) PPP-B2b corrections Beidou-3 adaptive robust extend Kalman filter(AREKF) accuracy assessment
原文传递
A Precision-Positioning Method for a High-Acceleration Low-Load Mechanism Based on Optimal Spatial and Temporal Distribution of Inertial Energy 被引量:5
15
作者 Xin Chen Youdun Bai +2 位作者 Zhijun Yang Jian Gao Gongfa Chen 《Engineering》 SCIE EI 2015年第3期391-398,共8页
High-speed and precision positioning are fundamental requirements for high-acceleration low-load mechanisms in integrated circuit (IC) packaging equipment. In this paper, we derive the transient nonlinear dynamicres... High-speed and precision positioning are fundamental requirements for high-acceleration low-load mechanisms in integrated circuit (IC) packaging equipment. In this paper, we derive the transient nonlinear dynamicresponse equations of high-acceleration mechanisms, which reveal that stiffness, frequency, damping, and driving frequency are the primary factors. Therefore, we propose a new structural optimization and velocity-planning method for the precision positioning of a high-acceleration mechanism based on optimal spatial and temporal distribution of inertial energy. For structural optimization, we first reviewed the commonly flexible multibody dynamic optimization using equivalent static loads method (ESLM), and then we selected the modified ESLM for optimal spatial distribution of inertial energy; hence, not only the stiffness but also the inertia and frequency of the real modal shapes are considered. For velocity planning, we developed a new velocity-planning method based on nonlinear dynamic-response optimization with varying motion conditions. Our method was verified on a high-acceleration die bonder. The amplitude of residual vibration could be decreased by more than 20% via structural optimization and the positioning time could be reduced by more than 40% via asymmetric variable velocity planning. This method provides an effective theoretical support for the precision positioning of high-acceleration low-load mechanisms. 展开更多
关键词 high-acceleration low-load mechanism precision positioning spatial and temporal distribution inertial energy equivalent static loads method (ESLM) velocity planning
在线阅读 下载PDF
Integrity monitoring of fixed ambiguity Precise Point Positioning(PPP)solutions 被引量:3
16
作者 Altti JOKINEN Shaojun FENG +4 位作者 Wolfgang SCHUSTER Washington OCHIENG Chris HIDE Terry MOORE Chris HILL 《Geo-Spatial Information Science》 SCIE EI 2013年第3期141-148,共8页
Traditional positioning methods,such as conventional Real Time Kinematic(cRTK)rely upon local reference networks to enable users to achieve high-accuracy positioning.The need for such relatively dense networks has sig... Traditional positioning methods,such as conventional Real Time Kinematic(cRTK)rely upon local reference networks to enable users to achieve high-accuracy positioning.The need for such relatively dense networks has significant cost implications.Precise Point Positioning(PPP)on the other hand is a positioning method capable of centimeter-level positioning without the need for such local networks,hence providing significant cost benefits especially in remote areas.This paper presents the state-of-the-art PPP method using both GPS and GLONASS measurements to estimate the float position solution before attempting to resolve GPS integer ambiguities.Integrity monitoring is carried out using the Imperial College Carrier-phase Receiver Autonomous Integrity Monitoring method.A new method to detect and exclude GPS base-satellite failures is developed.A base-satellite is a satellite whose measurements are differenced from other satellite’s measurements when using between-satellite-differenced measurements to estimate position.The failure detection and exclusion methods are tested using static GNSS data recorded by International GNSS Service stations both in static and dynamic processing modes.The results show that failure detection can be achieved in all cases tested and failure exclusion can be achieved for static cases.In the kinematic processing cases,failure exclusion is more difficult because the higher noise in the measurement residuals increases the difficulty to distinguish between failures associated with the base-satellite and other satellites. 展开更多
关键词 Precise Point positioning(PPP) INTEGRITY ambiguity resolution failure exclusion
原文传递
A two-step robust adaptive filtering algorithm for GNSS kinematic precise point positioning 被引量:2
17
作者 Qieqie ZHANG Luodi ZHAO Long ZHAO 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2021年第10期210-219,共10页
In kinematic navigation and positioning,abnormal observations and kinematic model disturbances are one of the key factors affecting the stability and reliability of positioning performance.Generally,robust adaptive fi... In kinematic navigation and positioning,abnormal observations and kinematic model disturbances are one of the key factors affecting the stability and reliability of positioning performance.Generally,robust adaptive filtering algorithm is used to reduce the influence of them on positioning results.However,it is difficult to accurately identify and separate the influence of abnormal observations and kinematic model disturbances on positioning results,especially in the application of kinematic Precise Point Positioning(PPP).This has always been a key factor limiting the performance of conventional robust adaptive filtering algorithms.To address this problem,this paper proposes a two-step robust adaptive filtering algorithm,which includes two filtering steps:without considering the kinematic model information,the first step of filtering only detects the abnormal observations.Based on the filtering results of the first step,the second step makes further detection on the kinematic model disturbances and conducts adaptive processing.Theoretical analysis and experiment results indicate that the two-step robust adaptive filtering algorithm can further enhance the robustness of the filtering against the influence of abnormal observations and kinematic model disturbances on the positioning results.Ultimately,improvement of the stability and reliability of kinematic PPP is significant. 展开更多
关键词 Classification factor adaptive filtering Global positioning system Precise position holding Robust filtering Two-step filtering
原文传递
New methods for dual constellation single receiver positioning and integrity monitoring 被引量:3
18
作者 Shaojun FENG Altti JOKINEN +1 位作者 Carl MILNER Washington OCHIENG 《Geo-Spatial Information Science》 SCIE EI 2013年第3期201-209,共9页
Navigation system integrity monitoring is crucial for mission(e.g.safety)critical applications.Receiver autonomous integrity monitoring(RAIM)based on consistency checking of redundant measurements is widely used for m... Navigation system integrity monitoring is crucial for mission(e.g.safety)critical applications.Receiver autonomous integrity monitoring(RAIM)based on consistency checking of redundant measurements is widely used for many applications.However,there are many challenges to the use of RAIM associated with multiple constellations and applications with very stringent requirements.This paper discusses two positioning techniques and corresponding integrity monitoring methods.The first is the use of single frequency pseudorange-based dual constellations.It employs a new cross constellation single difference scheme to benefit from the similarities while addressing the differences between the constellations.The second technique uses dual frequency carrier phase measurements from GLONASS and the global positioning system for precise point positioning.The results show significant improvements both in positioning accuracy and integrity monitoring as a result of the use of two constellations.The dual constellation positioning and integrity monitoring algorithms have the potential to be extended to multiple constellations. 展开更多
关键词 receiver autonomous integrity monitoring(RAIM) ambiguity validation multiple constellations precise point positioning(PPP)
原文传递
Quality monitoring of real-time GNSS precise positioning service system 被引量:2
19
作者 Run Ji Xinyuan Jiang +3 位作者 Xinghan Chen Huizhong Zhu Maorong Ge Frank Neitzel 《Geo-Spatial Information Science》 SCIE EI CSCD 2023年第1期1-15,共15页
The Real-Time Global Navigation Satellite System(GNSS)Precise Positioning Service(RTPPS)is recognized as the most promising system by providing precise satellite orbit and clock correc-tions for users to achieve centi... The Real-Time Global Navigation Satellite System(GNSS)Precise Positioning Service(RTPPS)is recognized as the most promising system by providing precise satellite orbit and clock correc-tions for users to achieve centimeter-level positioning with a stand-alone receiver in real-time.Although the products are available with high accuracy almost all the time,they may occasionally suffer from unexpected significant biases,which consequently degrades the positioning perfor-mance.Therefore,quality monitoring at the system-level has become more and more crucial for providing a reliable GNSS service.In this paper,we propose a method for the monitoring of realtime satellite orbit and clock products using a monitoring station network based on the Quality Control(QC)theory.The satellites with possible biases are first detected based on the outliers identified by Precise Point Positioning(PPP)in the monitoring station network.Then,the corresponding orbit and clock parameters with temporal constraints are introduced and esti-mated through the sequential Least Square(LS)estimator and the corresponding Instantaneous User Range Errors(IUREs)can be determined.A quality indicator is calculated based on the IUREs in the monitoring network and compared with a pre-defined threshold.The quality monitoring method is experimentally evaluated by monitoring the real-time orbit and clock products generated by GeoForschungsZentrum(GFZ),Potsdam.The results confirm that the problematic satellites can be detected accurately and effectively with missed detection rate 4×10^(-6) and false alarm rate 1:2×10^(-5).Considering the quality alarms,the PPP results in terms of RMS of positioning differences with respect to the International GNSS Service(IGS)weekly solution in the north,east and up directions can be improved by 12%,10%and 27%,respectively. 展开更多
关键词 Global Navigation Satellite System(GNSS) real-time precise positioning quality monitoring precise point positioning satellite product bias
原文传递
Signal quality analysis and quality check of BDS3 Precise Point Positioning in the Arctic Ocean 被引量:2
20
作者 Xiaoguo Guan Hongzhou Chai +3 位作者 Guorui Xiao Zhenqiang Du Wenlong Qi Xueping Wang 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2022年第2期166-179,共14页
This study analyzes the signal quality and the accuracy of BeiDou 3 rd generation Satellite Navigation System(BDS3) Precise Point Positioning(PPP) in the Arctic Ocean. Assessment of signal quality of BDS3 includes sig... This study analyzes the signal quality and the accuracy of BeiDou 3 rd generation Satellite Navigation System(BDS3) Precise Point Positioning(PPP) in the Arctic Ocean. Assessment of signal quality of BDS3 includes signal to noise ratio(SNR), multipath(MP), dilution of precision(DOP), and code-minus-carrier combination(CC). The results show that, 5 to 13 satellites are visible at any time in the Arctic Ocean area as of September 2018, which are sufficient for positioning. In the mid-latitude oceanic region and in the Arctic Ocean, the SNR is 25–52 dB Hz and the MP ranges from-2 m to 2 m. As the latitude increases, the DOP values show large variation, which may be related to the distribution of BDS satellites. The CC values of signals B1 I and BIC range from-5 m to 5 m in the mid-latitude sea area and the Arctic Ocean, which means the effect of pseudorange noise is small. Moreover, as to obtain the external precise reference value for GNSS positioning in the Arctic Ocean region is difficult, it is hard to evaluate the accuracy of positioning results. An improved isotropy-based protection level method based on Receiver Autonomous Integrity Monitoring is proposed in the paper, which adopts median filter to smooth the gross errors to assess the precision and reliability of PPP in the Arctic Ocean. At first, the improved algorithm is verified with the data from the International GNSS Service Station Tixi. Then the accuracy of BDS3 PPP in the Arctic Ocean is calculated based on the improved algorithm. Which shows that the kinematic accuracy of PPP can reach the decimeter level in both the horizontal and vertical directions, and it meets the precision requirements of maritime navigation. 展开更多
关键词 BDS3 Arctic Ocean signal quality analysis protection level quality check Precise Point positioning satellite navigation
在线阅读 下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部