Photodynamic therapy(PDT) has been widely investigated for cancer therapy. The intracellular accumulation of reactive oxygen species(ROS)-damaged protein facilitates tumor cell apoptosis. However, there is growing evi...Photodynamic therapy(PDT) has been widely investigated for cancer therapy. The intracellular accumulation of reactive oxygen species(ROS)-damaged protein facilitates tumor cell apoptosis. However, there is growing evidence that the ubiquitin-proteasome pathway(UPP) significantly impedes PDT by preventing the enrichment of ROS-damaged proteins in tumor cells. To tackle this challenge, we report a facile dual-drug nanoassembly based on the discovery of an interesting co-assembly of bortezomib(BTZ, a proteasome inhibitor) and pyropheophorbide a(PPa) for proteasome inhibition-mediated PDT sensitization.The precisely engineered nanoassembly with the optimal dose ratio of BTZ and PPa demonstrates multiple advantages, including simple fabrication, high drug co-loading efficiency, flexible dose adjustment,good colloidal stability, long systemic circulation, favorable tumor-specific accumulation, as well as significant enrichment of ROS-damaged proteins in tumor cells. As a result, the cooperative nanoassembly exhibits potent synergistic antitumor activity in vivo. This study provides a novel dual-drug engineering modality for multimodal cancer treatment.展开更多
New precisely cooperative attacks, such as the coordi- nated cross plane session termination (CXPST) attack, need thou- sands upon thousands machines to attack diverse selected links simultaneously with the given ra...New precisely cooperative attacks, such as the coordi- nated cross plane session termination (CXPST) attack, need thou- sands upon thousands machines to attack diverse selected links simultaneously with the given rate. However, almost all command and control(C&C) mechanisms only provide publishing one com- mand to the whole once, so-called one-to-all C&C model, and are not productive to support CXPST-alike attacks. In this paper, we present one-to-any C&C model on coordination among the unco- operative controlled nodes. As an instance of one-to-any C&C model, directional command publishing (DCP) mechanism lever- aging on Kademlia is provided with a range-mapping key creating algorithm for commands to compute the publishing range and a statistically stochastic node querying scheme to obtain the com- mands immediately. With theoretical analysis and simulation, it is indicated that one-to-any C&C model fits for precisely coordi- nated operation on uncooperative controlled nodes with least complexity, better accuracy and efficiency. Furthermore, DCP mechanism can support one-to-all command publishing at the same time. As an example of future C&C model, studying on one-to-any C&C model may help to promote the development of more efficient countermeasures.展开更多
China launched the NigComSat-1R communications satellite with a Long March 3B/E from the Xichang Satellite Launch Center (XSLC) at 00:41 on December 20.Twenty six minutes after the lift-off,the satellite separated wit...China launched the NigComSat-1R communications satellite with a Long March 3B/E from the Xichang Satellite Launch Center (XSLC) at 00:41 on December 20.Twenty six minutes after the lift-off,the satellite separated with the rocket and entered precisely into a geostationary transfer orbit with a perigee of 203km,an apogee of 42007km and an inelination of 24.8 degrees.展开更多
Irregular craniofacial bone defects caused by craniofacial fractures always result in craniofacial bone and contour asymmetry and should therefore be reconstructed.Polyetheretherketone(PEEK)is an ideal substitute for ...Irregular craniofacial bone defects caused by craniofacial fractures always result in craniofacial bone and contour asymmetry and should therefore be reconstructed.Polyetheretherketone(PEEK)is an ideal substitute for autologous bone grafts and has been widely used in craniofacial bone defect reconstruction.The precise design of custom-made PEEK implants is particularly important to optimise reconstruction.Herein,the workflow and principles for the design and manufacture of PEEK implants are summarised,and a protocol for the precise design of an irregular craniofacial bone defect PEEK implant is presented.According to the method and principles,the design flow was efficient and could be standardised,and design errors could be avoided as much as possible.展开更多
Cancer of unknown primary(CUP)is a recalcitrant disease with poor prognosis because it lacks standard first-line therapy.CUP consists of diverse malignancy groups,making personalized precision therapy essential.The pr...Cancer of unknown primary(CUP)is a recalcitrant disease with poor prognosis because it lacks standard first-line therapy.CUP consists of diverse malignancy groups,making personalized precision therapy essential.The present study aimed to identify an effective therapy for a CUP patient using a patient-derived orthotopic xenograft(PDOX)model.This paper reports the usefulness of the PDOX model to precisely identify effective and ineffective chemotherapy and to compare the efficacy of S.typhimurium A1-R with first-line chemotherapy using the CUP PDOX model.The present study is the first to use a CUP PDOX model,which was able to precisely distinguish the chemotherapeutic course.We found that a carboplatinum(CAR)-based regimen was effective for this CUP patient.We also demonstrated that S.typhimurium A1-R was more effective against the CUP tumor than first-line chemotherapy.Our results indicate that S.typhimurium A1-R has clinical potential for CUP,a resistant disease that requires effective therapy.展开更多
CONSPECTUS:Nanozymes are nanomaterials with intrinsic enzyme-like properties that can overcome the current limitations of natural enzymes,such as high preparation cost,instability,restricted application scenarios,etc....CONSPECTUS:Nanozymes are nanomaterials with intrinsic enzyme-like properties that can overcome the current limitations of natural enzymes,such as high preparation cost,instability,restricted application scenarios,etc.Since the Fe3O4 nanoparticles(NPs)were shown to possess the peroxidase(POD)-like activity in 2007,thousands of nanomaterials were reported to mimic the catalytic properties of various types of enzymes including catalase(CAT),haloperoxidase,superoxide dismutase(SOD),glucose oxidase,glutathione peroxidase,hydrolase,nuclease,nitroreductase,and others.展开更多
Nature|大型汉族人群队列助力中国台湾精准医疗精准医学的发展依赖于大规模、具有深度表型和基因变异图谱数据的人群队列,然而这在非欧洲人群中数据仍严重不足。中国台湾精准医学计划(Taiwan Precision Medicine Initiative,TPMI)旨在...Nature|大型汉族人群队列助力中国台湾精准医疗精准医学的发展依赖于大规模、具有深度表型和基因变异图谱数据的人群队列,然而这在非欧洲人群中数据仍严重不足。中国台湾精准医学计划(Taiwan Precision Medicine Initiative,TPMI)旨在建立一个具有广泛代表性的中国台湾汉族人群队列,以支持大规模基因组与健康医学研究(2025年10月15日在线发表,doi:10.1038/s41586-025-09680-x)。展开更多
Gastrointestinal(GI)cancers remain a leading cause of cancer-related morbidity and mortality worldwide.Artificial intelligence(AI),particularly machine learning and deep learning(DL),has shown promise in enhancing can...Gastrointestinal(GI)cancers remain a leading cause of cancer-related morbidity and mortality worldwide.Artificial intelligence(AI),particularly machine learning and deep learning(DL),has shown promise in enhancing cancer detection,diagnosis,and prognostication.A narrative review of literature published from January 2015 to march 2025 was conducted using PubMed,Web of Science,and Scopus.Search terms included"gastrointestinal cancer","artificial intelligence","machine learning","deep learning","radiomics","multimodal detection"and"predictive modeling".Studies were included if they focused on clinically relevant AI applications in GI oncology.AI algorithms for GI cancer detection have achieved high performance across imaging modalities,with endoscopic DL systems reporting accuracies of 85%-97%for polyp detection and segmentation.Radiomics-based models have predicted molecular biomarkers such as programmed cell death ligand 2 expression with area under the curves up to 0.92.Large language models applied to radiology reports demonstrated diagnostic accuracy comparable to junior radiologists(78.9%vs 80.0%),though without incremental value when combined with human interpretation.Multimodal AI approaches integrating imaging,pathology,and clinical data show emerging potential for precision oncology.AI in GI oncology has reached clinically relevant accuracy levels in multiple diagnostic tasks,with multimodal approaches and predictive biomarker modeling offering new opportunities for personalized care.However,broader validation,integration into clinical workflows,and attention to ethical,legal,and social implications remain critical for widespread adoption.展开更多
Wu et al recently applied multi-region 16S rRNA sequencing to characterize the gastric cancer microbiome,demonstrating improved taxonomic resolution and detection sensitivity over conventional single-region approaches...Wu et al recently applied multi-region 16S rRNA sequencing to characterize the gastric cancer microbiome,demonstrating improved taxonomic resolution and detection sensitivity over conventional single-region approaches.While the study represents a valuable methodological step forward,it remains limited by singlecenter design,lack of quantitative calibration,and insufficient control for contamination and inter-laboratory variability.This editorial critically appraises these methodological gaps and emphasizes that future efforts must focus on harmonized,consensus-driven workflows to ensure reproducibility and clinical reliability.The translational potential of multi-region 16S lies in moving from descriptive microbial profiling to actionable clinical integration,particularly for recurrence prediction,treatment-response monitoring,and perioperative complication risk assessment.By addressing these methodological,economic,and ethical challenges,the field can advance toward evidence-based and clinically deployable microbiome-guided precision oncology.展开更多
Complex genetic architecture is the major cause of heterogeneity in epilepsy,which poses challenges for accurate diagnosis and precise treatment.A large number of epilepsy candidate genes have been identified from cli...Complex genetic architecture is the major cause of heterogeneity in epilepsy,which poses challenges for accurate diagnosis and precise treatment.A large number of epilepsy candidate genes have been identified from clinical studies,particularly with the widespread use of next-generation sequencing.Validating these candidate genes is emerging as a valuable yet challenging task.Drosophila serves as an ideal animal model for validating candidate genes associated with neurogenetic disorders such as epilepsy,due to its rapid reproduction rate,powerful genetic tools,and efficient use of ethological and electrophysiological assays.Here,we systematically summarize the advantageous techniques of the Drosophila model used to investigate epilepsy genes,including genetic tools for manipulating target gene expression,ethological assays for seizure-like behaviors,electrophysiological techniques,and functional imaging for recording neural activity.We then introduce several typical strategies for identifying epilepsy genes and provide new insights into gene-gene interactions in epilepsy with polygenic causes.We summarize well-established precision medicine strategies for epilepsy and discuss prospective treatment options,including drug therapy and gene therapy for genetic epilepsy based on the Drosophila model.Finally,we also address genetic counseling and assisted reproductive technology as potential approaches for the prevention of genetic epilepsy.展开更多
Post-kidney transplant rejection is a critical factor influencing transplant success rates and the survival of transplanted organs.With the rapid advancement of artificial intelligence technologies,machine learning(ML...Post-kidney transplant rejection is a critical factor influencing transplant success rates and the survival of transplanted organs.With the rapid advancement of artificial intelligence technologies,machine learning(ML)has emerged as a powerful data analysis tool,widely applied in the prediction,diagnosis,and mechanistic study of kidney transplant rejection.This mini-review systematically summarizes the recent applications of ML techniques in post-kidney transplant rejection,covering areas such as the construction of predictive models,identification of biomarkers,analysis of pathological images,assessment of immune cell infiltration,and formulation of personalized treatment strategies.By integrating multi-omics data and clinical information,ML has significantly enhanced the accuracy of early rejection diagnosis and the capability for prognostic evaluation,driving the development of precision medicine in the field of kidney transplantation.Furthermore,this article discusses the challenges faced in existing research and potential future directions,providing a theoretical basis and technical references for related studies.展开更多
The rapid growth of biomedical data,particularly multi-omics data including genomes,transcriptomics,proteomics,metabolomics,and epigenomics,medical research and clinical decision-making confront both new opportunities...The rapid growth of biomedical data,particularly multi-omics data including genomes,transcriptomics,proteomics,metabolomics,and epigenomics,medical research and clinical decision-making confront both new opportunities and obstacles.The huge and diversified nature of these datasets cannot always be managed using traditional data analysis methods.As a consequence,deep learning has emerged as a strong tool for analysing numerous omics data due to its ability to handle complex and non-linear relationships.This paper explores the fundamental concepts of deep learning and how they are used in multi-omics medical data mining.We demonstrate how autoencoders,variational autoencoders,multimodal models,attention mechanisms,transformers,and graph neural networks enable pattern analysis and recognition across all omics data.Deep learning has been found to be effective in illness classification,biomarker identification,gene network learning,and therapeutic efficacy prediction.We also consider critical problems like as data quality,model explainability,whether findings can be repeated,and computational power requirements.We now consider future elements of combining omics with clinical and imaging data,explainable AI,federated learning,and real-time diagnostics.Overall,this study emphasises the need of collaborating across disciplines to advance deep learning-based multi-omics research for precision medicine and comprehending complicated disorders.展开更多
Gastrointestinal tumors require personalized treatment strategies due to their heterogeneity and complexity.Multimodal artificial intelligence(AI)addresses this challenge by integrating diverse data sources-including ...Gastrointestinal tumors require personalized treatment strategies due to their heterogeneity and complexity.Multimodal artificial intelligence(AI)addresses this challenge by integrating diverse data sources-including computed tomography(CT),magnetic resonance imaging(MRI),endoscopic imaging,and genomic profiles-to enable intelligent decision-making for individualized therapy.This approach leverages AI algorithms to fuse imaging,endoscopic,and omics data,facilitating comprehensive characterization of tumor biology,prediction of treatment response,and optimization of therapeutic strategies.By combining CT and MRI for structural assessment,endoscopic data for real-time visual inspection,and genomic information for molecular profiling,multimodal AI enhances the accuracy of patient stratification and treatment personalization.The clinical implementation of this technology demonstrates potential for improving patient outcomes,advancing precision oncology,and supporting individualized care in gastrointestinal cancers.Ultimately,multimodal AI serves as a transformative tool in oncology,bridging data integration with clinical application to effectively tailor therapies.展开更多
Metabolic dysfunction-associated steatotic liver disease(MASLD)is an increasingly prevalent condition associated with hepatic complications and cardiovascular and renal events.Given its significant clinical impact,the...Metabolic dysfunction-associated steatotic liver disease(MASLD)is an increasingly prevalent condition associated with hepatic complications and cardiovascular and renal events.Given its significant clinical impact,the development of new strategies for early diagnosis and treatment is essential to improve patient outcomes.Over the past decade,the integration of artificial intelligence(AI)into gastroenterology has led to transformative advancements in medical practice.AI represents a major step towards personalized medicine,offering the potential to enhance diagnostic accuracy,refine prognostic assessments,and optimize treatment strategies.Its applications are rapidly expanding.This article explores the emerging role of AI in the management of MASLD,emphasizing its ability to improve clinical prediction,enhance the diagnostic performance of imaging modalities,and support histopathological confirmation.Additionally,it examines the development of AI-guided personalized treatments,where lifestyle modifications and close monitoring play a pivotal role in achieving therapeutic success.展开更多
High-throughput transcriptomics has evolved from bulk RNA-seq to single-cell and spatial profiling,yet its clinical translation still depends on effective integration across diverse omics and data modalities.Emerging ...High-throughput transcriptomics has evolved from bulk RNA-seq to single-cell and spatial profiling,yet its clinical translation still depends on effective integration across diverse omics and data modalities.Emerging foundation models and multimodal learning frameworks are enabling scalable and transferable representations of cellular states,while advances in interpretability and real-world data integration are bridging the gap between discovery and clinical application.This paper outlines a concise roadmap for AI-driven,transcriptome-centered multi-omics integration in precision medicine(Figure 1).展开更多
Adult neurogenesis is a highly dynamic process that leads to the production of new neurons from a population of quiescent neural stem cells(NSCs).In response to specific endogenous and/or external stimuli,NSCs enter a...Adult neurogenesis is a highly dynamic process that leads to the production of new neurons from a population of quiescent neural stem cells(NSCs).In response to specific endogenous and/or external stimuli,NSCs enter a state of mitotic activation,initiating proliferation and differentiation pathways.Throughout this process,NSCs give rise to neural progenitors,which undergo multiple replicative and differentiative steps,each governed by precise molecular pathways that coordinate cellular changes and signals from the surrounding neurogenic niche.展开更多
The development of accurate and efficient interatomic potentials using machine learning has emerged as an important approach in materials simulations and discovery.However,the systematic construction of diverse,conver...The development of accurate and efficient interatomic potentials using machine learning has emerged as an important approach in materials simulations and discovery.However,the systematic construction of diverse,converged training sets remains challenging.展开更多
Acute respiratory distress syndrome(ARDS)is a life-threatening condition that is characterized by high mortality rates and limited therapeutic options.Notably,Zhang et al demonstrated that CD146+mesenchymal stromal ce...Acute respiratory distress syndrome(ARDS)is a life-threatening condition that is characterized by high mortality rates and limited therapeutic options.Notably,Zhang et al demonstrated that CD146+mesenchymal stromal cells(MSCs)exhibited greater therapeutic efficacy than CD146-MSCs.These cells enhance epithelial repair through nuclear factor kappa B/cyclooxygenase-2-associated paracrine signaling and secretion of pro-angiogenic factors.We concur that MSCs hold significant promise for ARDS treatment;however,the heterogeneity of cell products is a translational barrier.Phenotype-aware strategies,such as CD146 enrichment,standardized potency assays,and extracellular vesicle profiling,are essential for improving the consistency of these studies.Further-more,advanced preclinical models,such as lung-on-a-chip systems,may provide more predictive insights into the therapeutic mechanisms.This article underscores the importance of CD146+MSCs in ARDS,emphasizes the need for precision in defining cell products,and discusses how integrating subset selection into translational pipelines could enhance the clinical impact of MSC-based therapies.展开更多
Since there are some problems in the previous cam of deep-fertilization liquid fertilizer applicator,such as poor precision and low-fertilization performance,a method of the contour line of a cam was proposed based on...Since there are some problems in the previous cam of deep-fertilization liquid fertilizer applicator,such as poor precision and low-fertilization performance,a method of the contour line of a cam was proposed based on Matlab GUI development platform.Bernoulli’equation between the liquid fertilizer and the pressure valve of the fertilizer-spraying needle was founded.Moreover,the motion angles of a rise travel and return travel were corrected and the corresponding parameters of the contour line of the cam were obtained.Equations of cam moving from rise travel to return travel were derived according to the simple harmonic motion.In addition,3D model of cam was established by applying the Pro/E software and the rationality of the cam design was verified.The static analysis of the cam was carried out under working conditions and the corresponding dynamics analysis was performed based on D’Alembert’s principle.And then relationships between the binding force and the drag torque were obtained.A bench test indicates that when the pressure of a hydraulic pump is 0.5 MPa and the velocity of a output shaft is 50 r/min,the average consumption of the fertilizer is 19.7 mL for each measurement,which meets the corresponding agronomic requirement,i.e.20 mL.When the rotation angle of the cam is 8.6°and the rise displacement of a plunger is 0.84 mm,the mouth of the fertilizer-spraying needle sprayed liquid fertilizer as soon as it got into the soil and stopped spraying as soon as it got out of the soil.The results show that the designed contour line of the cam meets the requirement,that is,the mouth of the fertilizer-spraying needle should spray liquid fertilizer as soon as it gets into the soil and stop spraying as soon as it gets out of the soil,which meets the agronomic requirements,that is,fertilizer should be sprayed deeply and precisely.And this study lays a theoretical foundation for designing the cam of intermittent type distributor and provides relevant parameters.展开更多
In the dynamic landscape of modern healthcare and precision medicine,the digital revolution is reshaping medical industries at an unprecedented pace,and traditional Chinese medicine(TCM)is no exception[1-4].The paper...In the dynamic landscape of modern healthcare and precision medicine,the digital revolution is reshaping medical industries at an unprecedented pace,and traditional Chinese medicine(TCM)is no exception[1-4].The paper“From digits towards digitization:the past,present,and future of traditional Chinese medicine”by Academician&TCM National Master Qi WANG(王琦).展开更多
基金financially supported by the Liaoning Revitalization Talents Program (No. XLYC1907129)the Excellent Youth Science Foundation of Liaoning Province (No. 2020-YQ-06)the China Postdoctoral Science Foundation (No. 2020M670794)。
文摘Photodynamic therapy(PDT) has been widely investigated for cancer therapy. The intracellular accumulation of reactive oxygen species(ROS)-damaged protein facilitates tumor cell apoptosis. However, there is growing evidence that the ubiquitin-proteasome pathway(UPP) significantly impedes PDT by preventing the enrichment of ROS-damaged proteins in tumor cells. To tackle this challenge, we report a facile dual-drug nanoassembly based on the discovery of an interesting co-assembly of bortezomib(BTZ, a proteasome inhibitor) and pyropheophorbide a(PPa) for proteasome inhibition-mediated PDT sensitization.The precisely engineered nanoassembly with the optimal dose ratio of BTZ and PPa demonstrates multiple advantages, including simple fabrication, high drug co-loading efficiency, flexible dose adjustment,good colloidal stability, long systemic circulation, favorable tumor-specific accumulation, as well as significant enrichment of ROS-damaged proteins in tumor cells. As a result, the cooperative nanoassembly exhibits potent synergistic antitumor activity in vivo. This study provides a novel dual-drug engineering modality for multimodal cancer treatment.
基金Supported by the National Natural Science Foundation of China(61402526,61502528)
文摘New precisely cooperative attacks, such as the coordi- nated cross plane session termination (CXPST) attack, need thou- sands upon thousands machines to attack diverse selected links simultaneously with the given rate. However, almost all command and control(C&C) mechanisms only provide publishing one com- mand to the whole once, so-called one-to-all C&C model, and are not productive to support CXPST-alike attacks. In this paper, we present one-to-any C&C model on coordination among the unco- operative controlled nodes. As an instance of one-to-any C&C model, directional command publishing (DCP) mechanism lever- aging on Kademlia is provided with a range-mapping key creating algorithm for commands to compute the publishing range and a statistically stochastic node querying scheme to obtain the com- mands immediately. With theoretical analysis and simulation, it is indicated that one-to-any C&C model fits for precisely coordi- nated operation on uncooperative controlled nodes with least complexity, better accuracy and efficiency. Furthermore, DCP mechanism can support one-to-all command publishing at the same time. As an example of future C&C model, studying on one-to-any C&C model may help to promote the development of more efficient countermeasures.
文摘China launched the NigComSat-1R communications satellite with a Long March 3B/E from the Xichang Satellite Launch Center (XSLC) at 00:41 on December 20.Twenty six minutes after the lift-off,the satellite separated with the rocket and entered precisely into a geostationary transfer orbit with a perigee of 203km,an apogee of 42007km and an inelination of 24.8 degrees.
基金the Program of Shanghai Municipal Commission of Health and Family Planning(No.20194Y0033)。
文摘Irregular craniofacial bone defects caused by craniofacial fractures always result in craniofacial bone and contour asymmetry and should therefore be reconstructed.Polyetheretherketone(PEEK)is an ideal substitute for autologous bone grafts and has been widely used in craniofacial bone defect reconstruction.The precise design of custom-made PEEK implants is particularly important to optimise reconstruction.Herein,the workflow and principles for the design and manufacture of PEEK implants are summarised,and a protocol for the precise design of an irregular craniofacial bone defect PEEK implant is presented.According to the method and principles,the design flow was efficient and could be standardised,and design errors could be avoided as much as possible.
文摘Cancer of unknown primary(CUP)is a recalcitrant disease with poor prognosis because it lacks standard first-line therapy.CUP consists of diverse malignancy groups,making personalized precision therapy essential.The present study aimed to identify an effective therapy for a CUP patient using a patient-derived orthotopic xenograft(PDOX)model.This paper reports the usefulness of the PDOX model to precisely identify effective and ineffective chemotherapy and to compare the efficacy of S.typhimurium A1-R with first-line chemotherapy using the CUP PDOX model.The present study is the first to use a CUP PDOX model,which was able to precisely distinguish the chemotherapeutic course.We found that a carboplatinum(CAR)-based regimen was effective for this CUP patient.We also demonstrated that S.typhimurium A1-R was more effective against the CUP tumor than first-line chemotherapy.Our results indicate that S.typhimurium A1-R has clinical potential for CUP,a resistant disease that requires effective therapy.
基金supported by the National Key R&D Program of China(No.2022YFA1205801)the National Natural Science Foundation of China(Nos.T2225026,82172087,52202344,82071308)the Beijing Institute of Technology Research Fund Program for Young Scholars.
文摘CONSPECTUS:Nanozymes are nanomaterials with intrinsic enzyme-like properties that can overcome the current limitations of natural enzymes,such as high preparation cost,instability,restricted application scenarios,etc.Since the Fe3O4 nanoparticles(NPs)were shown to possess the peroxidase(POD)-like activity in 2007,thousands of nanomaterials were reported to mimic the catalytic properties of various types of enzymes including catalase(CAT),haloperoxidase,superoxide dismutase(SOD),glucose oxidase,glutathione peroxidase,hydrolase,nuclease,nitroreductase,and others.
文摘Nature|大型汉族人群队列助力中国台湾精准医疗精准医学的发展依赖于大规模、具有深度表型和基因变异图谱数据的人群队列,然而这在非欧洲人群中数据仍严重不足。中国台湾精准医学计划(Taiwan Precision Medicine Initiative,TPMI)旨在建立一个具有广泛代表性的中国台湾汉族人群队列,以支持大规模基因组与健康医学研究(2025年10月15日在线发表,doi:10.1038/s41586-025-09680-x)。
文摘Gastrointestinal(GI)cancers remain a leading cause of cancer-related morbidity and mortality worldwide.Artificial intelligence(AI),particularly machine learning and deep learning(DL),has shown promise in enhancing cancer detection,diagnosis,and prognostication.A narrative review of literature published from January 2015 to march 2025 was conducted using PubMed,Web of Science,and Scopus.Search terms included"gastrointestinal cancer","artificial intelligence","machine learning","deep learning","radiomics","multimodal detection"and"predictive modeling".Studies were included if they focused on clinically relevant AI applications in GI oncology.AI algorithms for GI cancer detection have achieved high performance across imaging modalities,with endoscopic DL systems reporting accuracies of 85%-97%for polyp detection and segmentation.Radiomics-based models have predicted molecular biomarkers such as programmed cell death ligand 2 expression with area under the curves up to 0.92.Large language models applied to radiology reports demonstrated diagnostic accuracy comparable to junior radiologists(78.9%vs 80.0%),though without incremental value when combined with human interpretation.Multimodal AI approaches integrating imaging,pathology,and clinical data show emerging potential for precision oncology.AI in GI oncology has reached clinically relevant accuracy levels in multiple diagnostic tasks,with multimodal approaches and predictive biomarker modeling offering new opportunities for personalized care.However,broader validation,integration into clinical workflows,and attention to ethical,legal,and social implications remain critical for widespread adoption.
文摘Wu et al recently applied multi-region 16S rRNA sequencing to characterize the gastric cancer microbiome,demonstrating improved taxonomic resolution and detection sensitivity over conventional single-region approaches.While the study represents a valuable methodological step forward,it remains limited by singlecenter design,lack of quantitative calibration,and insufficient control for contamination and inter-laboratory variability.This editorial critically appraises these methodological gaps and emphasizes that future efforts must focus on harmonized,consensus-driven workflows to ensure reproducibility and clinical reliability.The translational potential of multi-region 16S lies in moving from descriptive microbial profiling to actionable clinical integration,particularly for recurrence prediction,treatment-response monitoring,and perioperative complication risk assessment.By addressing these methodological,economic,and ethical challenges,the field can advance toward evidence-based and clinically deployable microbiome-guided precision oncology.
基金supported by the Guangdong Basic and Applied Basic Research Foundation,No.2022A1515111123(to JQ)。
文摘Complex genetic architecture is the major cause of heterogeneity in epilepsy,which poses challenges for accurate diagnosis and precise treatment.A large number of epilepsy candidate genes have been identified from clinical studies,particularly with the widespread use of next-generation sequencing.Validating these candidate genes is emerging as a valuable yet challenging task.Drosophila serves as an ideal animal model for validating candidate genes associated with neurogenetic disorders such as epilepsy,due to its rapid reproduction rate,powerful genetic tools,and efficient use of ethological and electrophysiological assays.Here,we systematically summarize the advantageous techniques of the Drosophila model used to investigate epilepsy genes,including genetic tools for manipulating target gene expression,ethological assays for seizure-like behaviors,electrophysiological techniques,and functional imaging for recording neural activity.We then introduce several typical strategies for identifying epilepsy genes and provide new insights into gene-gene interactions in epilepsy with polygenic causes.We summarize well-established precision medicine strategies for epilepsy and discuss prospective treatment options,including drug therapy and gene therapy for genetic epilepsy based on the Drosophila model.Finally,we also address genetic counseling and assisted reproductive technology as potential approaches for the prevention of genetic epilepsy.
文摘Post-kidney transplant rejection is a critical factor influencing transplant success rates and the survival of transplanted organs.With the rapid advancement of artificial intelligence technologies,machine learning(ML)has emerged as a powerful data analysis tool,widely applied in the prediction,diagnosis,and mechanistic study of kidney transplant rejection.This mini-review systematically summarizes the recent applications of ML techniques in post-kidney transplant rejection,covering areas such as the construction of predictive models,identification of biomarkers,analysis of pathological images,assessment of immune cell infiltration,and formulation of personalized treatment strategies.By integrating multi-omics data and clinical information,ML has significantly enhanced the accuracy of early rejection diagnosis and the capability for prognostic evaluation,driving the development of precision medicine in the field of kidney transplantation.Furthermore,this article discusses the challenges faced in existing research and potential future directions,providing a theoretical basis and technical references for related studies.
文摘The rapid growth of biomedical data,particularly multi-omics data including genomes,transcriptomics,proteomics,metabolomics,and epigenomics,medical research and clinical decision-making confront both new opportunities and obstacles.The huge and diversified nature of these datasets cannot always be managed using traditional data analysis methods.As a consequence,deep learning has emerged as a strong tool for analysing numerous omics data due to its ability to handle complex and non-linear relationships.This paper explores the fundamental concepts of deep learning and how they are used in multi-omics medical data mining.We demonstrate how autoencoders,variational autoencoders,multimodal models,attention mechanisms,transformers,and graph neural networks enable pattern analysis and recognition across all omics data.Deep learning has been found to be effective in illness classification,biomarker identification,gene network learning,and therapeutic efficacy prediction.We also consider critical problems like as data quality,model explainability,whether findings can be repeated,and computational power requirements.We now consider future elements of combining omics with clinical and imaging data,explainable AI,federated learning,and real-time diagnostics.Overall,this study emphasises the need of collaborating across disciplines to advance deep learning-based multi-omics research for precision medicine and comprehending complicated disorders.
基金Supported by Xuhui District Health Commission,No.SHXH202214.
文摘Gastrointestinal tumors require personalized treatment strategies due to their heterogeneity and complexity.Multimodal artificial intelligence(AI)addresses this challenge by integrating diverse data sources-including computed tomography(CT),magnetic resonance imaging(MRI),endoscopic imaging,and genomic profiles-to enable intelligent decision-making for individualized therapy.This approach leverages AI algorithms to fuse imaging,endoscopic,and omics data,facilitating comprehensive characterization of tumor biology,prediction of treatment response,and optimization of therapeutic strategies.By combining CT and MRI for structural assessment,endoscopic data for real-time visual inspection,and genomic information for molecular profiling,multimodal AI enhances the accuracy of patient stratification and treatment personalization.The clinical implementation of this technology demonstrates potential for improving patient outcomes,advancing precision oncology,and supporting individualized care in gastrointestinal cancers.Ultimately,multimodal AI serves as a transformative tool in oncology,bridging data integration with clinical application to effectively tailor therapies.
文摘Metabolic dysfunction-associated steatotic liver disease(MASLD)is an increasingly prevalent condition associated with hepatic complications and cardiovascular and renal events.Given its significant clinical impact,the development of new strategies for early diagnosis and treatment is essential to improve patient outcomes.Over the past decade,the integration of artificial intelligence(AI)into gastroenterology has led to transformative advancements in medical practice.AI represents a major step towards personalized medicine,offering the potential to enhance diagnostic accuracy,refine prognostic assessments,and optimize treatment strategies.Its applications are rapidly expanding.This article explores the emerging role of AI in the management of MASLD,emphasizing its ability to improve clinical prediction,enhance the diagnostic performance of imaging modalities,and support histopathological confirmation.Additionally,it examines the development of AI-guided personalized treatments,where lifestyle modifications and close monitoring play a pivotal role in achieving therapeutic success.
文摘High-throughput transcriptomics has evolved from bulk RNA-seq to single-cell and spatial profiling,yet its clinical translation still depends on effective integration across diverse omics and data modalities.Emerging foundation models and multimodal learning frameworks are enabling scalable and transferable representations of cellular states,while advances in interpretability and real-world data integration are bridging the gap between discovery and clinical application.This paper outlines a concise roadmap for AI-driven,transcriptome-centered multi-omics integration in precision medicine(Figure 1).
文摘Adult neurogenesis is a highly dynamic process that leads to the production of new neurons from a population of quiescent neural stem cells(NSCs).In response to specific endogenous and/or external stimuli,NSCs enter a state of mitotic activation,initiating proliferation and differentiation pathways.Throughout this process,NSCs give rise to neural progenitors,which undergo multiple replicative and differentiative steps,each governed by precise molecular pathways that coordinate cellular changes and signals from the surrounding neurogenic niche.
基金supported by the National Natural Science Foundation of China(11874307).
文摘The development of accurate and efficient interatomic potentials using machine learning has emerged as an important approach in materials simulations and discovery.However,the systematic construction of diverse,converged training sets remains challenging.
基金the Scientific and Technological Research Council of Türkiye(TÜBİTAK)Under the International Postdoctoral Research Fellowship Program(2219),No.1059B192400980the National Postdoctoral Research Fellowship Program(2218),No.122C158.
文摘Acute respiratory distress syndrome(ARDS)is a life-threatening condition that is characterized by high mortality rates and limited therapeutic options.Notably,Zhang et al demonstrated that CD146+mesenchymal stromal cells(MSCs)exhibited greater therapeutic efficacy than CD146-MSCs.These cells enhance epithelial repair through nuclear factor kappa B/cyclooxygenase-2-associated paracrine signaling and secretion of pro-angiogenic factors.We concur that MSCs hold significant promise for ARDS treatment;however,the heterogeneity of cell products is a translational barrier.Phenotype-aware strategies,such as CD146 enrichment,standardized potency assays,and extracellular vesicle profiling,are essential for improving the consistency of these studies.Further-more,advanced preclinical models,such as lung-on-a-chip systems,may provide more predictive insights into the therapeutic mechanisms.This article underscores the importance of CD146+MSCs in ARDS,emphasizes the need for precision in defining cell products,and discusses how integrating subset selection into translational pipelines could enhance the clinical impact of MSC-based therapies.
基金This research was supported by the National Natural Science Foundation of China(Grant No.51675093)“Young Talents”Project of Northeast Agricultural University(Grant No.18QC19).
文摘Since there are some problems in the previous cam of deep-fertilization liquid fertilizer applicator,such as poor precision and low-fertilization performance,a method of the contour line of a cam was proposed based on Matlab GUI development platform.Bernoulli’equation between the liquid fertilizer and the pressure valve of the fertilizer-spraying needle was founded.Moreover,the motion angles of a rise travel and return travel were corrected and the corresponding parameters of the contour line of the cam were obtained.Equations of cam moving from rise travel to return travel were derived according to the simple harmonic motion.In addition,3D model of cam was established by applying the Pro/E software and the rationality of the cam design was verified.The static analysis of the cam was carried out under working conditions and the corresponding dynamics analysis was performed based on D’Alembert’s principle.And then relationships between the binding force and the drag torque were obtained.A bench test indicates that when the pressure of a hydraulic pump is 0.5 MPa and the velocity of a output shaft is 50 r/min,the average consumption of the fertilizer is 19.7 mL for each measurement,which meets the corresponding agronomic requirement,i.e.20 mL.When the rotation angle of the cam is 8.6°and the rise displacement of a plunger is 0.84 mm,the mouth of the fertilizer-spraying needle sprayed liquid fertilizer as soon as it got into the soil and stopped spraying as soon as it got out of the soil.The results show that the designed contour line of the cam meets the requirement,that is,the mouth of the fertilizer-spraying needle should spray liquid fertilizer as soon as it gets into the soil and stop spraying as soon as it gets out of the soil,which meets the agronomic requirements,that is,fertilizer should be sprayed deeply and precisely.And this study lays a theoretical foundation for designing the cam of intermittent type distributor and provides relevant parameters.
文摘In the dynamic landscape of modern healthcare and precision medicine,the digital revolution is reshaping medical industries at an unprecedented pace,and traditional Chinese medicine(TCM)is no exception[1-4].The paper“From digits towards digitization:the past,present,and future of traditional Chinese medicine”by Academician&TCM National Master Qi WANG(王琦).