Long non-coding RNAs(lncRNAs)play pivotal roles in the regulation of gene expression,particularly in maintaining pluripotency and directing stem cell.By orchestrating stem cell fate decisions and lineage commitment th...Long non-coding RNAs(lncRNAs)play pivotal roles in the regulation of gene expression,particularly in maintaining pluripotency and directing stem cell.By orchestrating stem cell fate decisions and lineage commitment through epigenetic,transcriptional,and post-transcriptional mechanisms,lncRNAs have emerged as key modulators in developmental biology.Their therapeutic potential has garnered increasing interest,especially in the contexts of regenerative medicine,disease modeling,targeted delivery systems,and precision therapeutics.This review presents a comprehensive overview of the mechanisms by which lncRNAs govern stem cell differentiation and examines emerging lncRNA-based therapeutic strategies,emphasizing major challenges and prospective research directions in this rapidly advancing field.展开更多
1.Introduction Infrared Imaging Missiles(IRIMs)are advanced weapons utilizing infrared technology for target detection and tracking.Their sensors capture thermal signatures and convert them into electronic images,enab...1.Introduction Infrared Imaging Missiles(IRIMs)are advanced weapons utilizing infrared technology for target detection and tracking.Their sensors capture thermal signatures and convert them into electronic images,enabling precise target identification and tracking.To a certain extent,the all-weather adaptability of IRIMs enables their effective operation across diverse environmental conditions,providing high targeting accuracy and cost efficiency.展开更多
Dove’s 2017 advertising incident,which sparked widespread debate regarding perceived cultural insensitivity,highlighted a disconnect between the brand’s“Real Beauty”positioning and public reception.In response,thi...Dove’s 2017 advertising incident,which sparked widespread debate regarding perceived cultural insensitivity,highlighted a disconnect between the brand’s“Real Beauty”positioning and public reception.In response,this study proposes a strategic digital recovery framework,including revised campaign content,transparent communication through social media,and data-driven customer segmentation based on diverse skincare needs and cultural backgrounds.A PESTLE analysis underscores the importance of digital transformation and rising social consciousness in brand management.Findings suggest that inclusive messaging,precision targeting,and omnichannel digital engagement are key to restoring brand trust and reputation in the digital landscape.展开更多
Colon-targeted oral drug delivery systems are one of the most promising therapeutic strategies for alleviating and curing inflammatory bowel disease(IBD),but they still face challenges in successfully passing through ...Colon-targeted oral drug delivery systems are one of the most promising therapeutic strategies for alleviating and curing inflammatory bowel disease(IBD),but they still face challenges in successfully passing through the harsh gastrointestinal environment and intestinal mucus barrier.To overcome the gastrointestinal barriers for oral drug delivery mentioned above,a“spore-like”oral nanodrug delivery platform(Cur/COS/SC NPs)has been developed.Firstly,chitooligosaccharides(COS)are encapsulated on the surface of Curcumin nanoparticles(Cur NPs)to form carrier-free nanoparticles(Cur/COS NPs).Subsequently,inspired by the natural high resistance of spore coat(SC),SC is chosen as the“protective umbrella”to encapsulate Cur/COS NPs for precision targeted therapy of IBD.After oral administration,SC can effectively protect NPs through the rugged gastrointestinal environment and exhibit excellent intestinal mucus penetration characteristics.Moreover,the negatively-charged Cur/COS/SC NPs specifically target positivelycharged inflamed colon via electrostatic interactions.It is demonstrated that Cur/COS/SC NPs can promote the expression of tight junction proteins,inhibit aberrant activation of the Toll-like receptor 4/myeloid differentiation primary response gene 88/nuclear factor-κB(TLR4/MyD88/NF-κB)signaling pathway,and downregulate the levels of pro-inflammatory factors,exhibiting excellent anti-inflammatory effects.Notably,it is found that Cur/COS/SC NPs can significantly increase the richness and diversity of gut microbiota,and restore the homeostasis of gut microbiota by inhibiting pathogenic bacteria and promoting probiotics.Hence,Cur/COS/SC NPs provide a safe,efficient,and feasible new strategy for IBD treatment.展开更多
Transcranial magnetic stimulation(TMS)is a popular modulatory technique for the noninvasive diagnosis and therapy of neurological and psychiatric diseases.Unfortunately,current modulation strategies are only modestly ...Transcranial magnetic stimulation(TMS)is a popular modulatory technique for the noninvasive diagnosis and therapy of neurological and psychiatric diseases.Unfortunately,current modulation strategies are only modestly effective.The literature provides strong evidence that the modulatory effects of TMS vary depending on device components and stimulation protocols.These differential effects are important when designing precise modulatory strategies for clinical or research applications.Developments in TMS have been accompanied by advances in combining TMS with neuroimaging techniques,including electroencephalography,functional nearinfrared spectroscopy,functional magnetic resonance imaging,and positron emission tomography.Such studies appear particularly promising as they may not only allow us to probe affected brain areas during TMS but also seem to predict underlying research directions that may enable us to precisely target and remodel impaired cortices or circuits.However,few precise modulation strategies are available,and the long-term safety and efficacy of these strategies need to be confirmed.Here,we review the literature on possible technologies for precise modulation to highlight progress along with limitations with the goal of suggesting future directions for this field.展开更多
Rabies is a fatal central nervous system(CNS)infection caused by the rabies virus(RABV),with a clinical fatality rate approaching 100%[1].Once symptoms appear,effective treatments are virtually nonexistent,posing a se...Rabies is a fatal central nervous system(CNS)infection caused by the rabies virus(RABV),with a clinical fatality rate approaching 100%[1].Once symptoms appear,effective treatments are virtually nonexistent,posing a serious global health threat.Although various prevention measures,such as prophylactic vaccination and post-exposure prophylaxis(PEP)[2],have helped reduce incidence rates,especially in developed countries,several limitations remain.PEP is highly time-sensitive and largely ineffective once the virus invades the CNS.Moreover,rabies immunoglobulin is costly and scarce,limiting its use in resource-limited settings[3].展开更多
Tight focusing with very small f-numbers is necessary to achieve the highest at-focus irradiances.However,tight focusing imposes strong demands on precise target positioning in-focus to achieve the highest on-target i...Tight focusing with very small f-numbers is necessary to achieve the highest at-focus irradiances.However,tight focusing imposes strong demands on precise target positioning in-focus to achieve the highest on-target irradiance We describe several near-infrared,visible,ultraviolet and soft and hard X-ray diagnostics employed in a~10^(22)W/cm^(2)laser±plasma experiment.We used nearly 10 J total energy femtosecond laser pulses focused into an approximately1.3-μm focal spot on 5±20μm thick stainless-steel targets.We discuss the applicability of these diagnostics to determine the best in-focus target position with approximately 5μm accuracy(i.e.,around half of the short Rayleigh length)and show that several diagnostics(in particular,3ωreflection and on-axis hard X-rays)can ensure this accuracy.We demonstrated target positioning within several micrometers from the focus,ensuring over 80%of the ideal peak laser intensity on-target.Our approach is relatively fast(it requires 10±20 laser shots)and does not rely on the coincidence of low-power and high-power focal planes.展开更多
The paper describes a portable high precision three-dimensional trace measuring system for underwater target with high speed. The mathematical model for location, the main error sources, the calibration method for the...The paper describes a portable high precision three-dimensional trace measuring system for underwater target with high speed. The mathematical model for location, the main error sources, the calibration method for the underwater array and the way to correct its state are discussed. Problems about the distance ambiguity and multi-path interference are also analyzed. Part of experimental results on lake and at sea are given as well.展开更多
基金Supported by the National Natural Science Foundation of China,No.32200755 and No.32200621the Natural Science Foundation of Gansu Province,No.23JRRA696。
文摘Long non-coding RNAs(lncRNAs)play pivotal roles in the regulation of gene expression,particularly in maintaining pluripotency and directing stem cell.By orchestrating stem cell fate decisions and lineage commitment through epigenetic,transcriptional,and post-transcriptional mechanisms,lncRNAs have emerged as key modulators in developmental biology.Their therapeutic potential has garnered increasing interest,especially in the contexts of regenerative medicine,disease modeling,targeted delivery systems,and precision therapeutics.This review presents a comprehensive overview of the mechanisms by which lncRNAs govern stem cell differentiation and examines emerging lncRNA-based therapeutic strategies,emphasizing major challenges and prospective research directions in this rapidly advancing field.
基金co-supported by the China Postdoctoral Science Foundation(No.2024M754304)the Hunan Provincial Natural Science Foundation of China(No.2025JJ60072)。
文摘1.Introduction Infrared Imaging Missiles(IRIMs)are advanced weapons utilizing infrared technology for target detection and tracking.Their sensors capture thermal signatures and convert them into electronic images,enabling precise target identification and tracking.To a certain extent,the all-weather adaptability of IRIMs enables their effective operation across diverse environmental conditions,providing high targeting accuracy and cost efficiency.
文摘Dove’s 2017 advertising incident,which sparked widespread debate regarding perceived cultural insensitivity,highlighted a disconnect between the brand’s“Real Beauty”positioning and public reception.In response,this study proposes a strategic digital recovery framework,including revised campaign content,transparent communication through social media,and data-driven customer segmentation based on diverse skincare needs and cultural backgrounds.A PESTLE analysis underscores the importance of digital transformation and rising social consciousness in brand management.Findings suggest that inclusive messaging,precision targeting,and omnichannel digital engagement are key to restoring brand trust and reputation in the digital landscape.
基金supported by the National Natural Science Foundation of China(Nos.82272847,82304417,82303529,82171333)China Postdoctoral Science Foundation(Nos.2023TQ0307,2023M743231,2023M730971)+2 种基金Science and Technology Project of Henan Province(No.242102311204)Postdoctoral Fellowship Program of CPSF(No.GZB20230675)Modern Analysis and Computer Center of Zhengzhou University.
文摘Colon-targeted oral drug delivery systems are one of the most promising therapeutic strategies for alleviating and curing inflammatory bowel disease(IBD),but they still face challenges in successfully passing through the harsh gastrointestinal environment and intestinal mucus barrier.To overcome the gastrointestinal barriers for oral drug delivery mentioned above,a“spore-like”oral nanodrug delivery platform(Cur/COS/SC NPs)has been developed.Firstly,chitooligosaccharides(COS)are encapsulated on the surface of Curcumin nanoparticles(Cur NPs)to form carrier-free nanoparticles(Cur/COS NPs).Subsequently,inspired by the natural high resistance of spore coat(SC),SC is chosen as the“protective umbrella”to encapsulate Cur/COS NPs for precision targeted therapy of IBD.After oral administration,SC can effectively protect NPs through the rugged gastrointestinal environment and exhibit excellent intestinal mucus penetration characteristics.Moreover,the negatively-charged Cur/COS/SC NPs specifically target positivelycharged inflamed colon via electrostatic interactions.It is demonstrated that Cur/COS/SC NPs can promote the expression of tight junction proteins,inhibit aberrant activation of the Toll-like receptor 4/myeloid differentiation primary response gene 88/nuclear factor-κB(TLR4/MyD88/NF-κB)signaling pathway,and downregulate the levels of pro-inflammatory factors,exhibiting excellent anti-inflammatory effects.Notably,it is found that Cur/COS/SC NPs can significantly increase the richness and diversity of gut microbiota,and restore the homeostasis of gut microbiota by inhibiting pathogenic bacteria and promoting probiotics.Hence,Cur/COS/SC NPs provide a safe,efficient,and feasible new strategy for IBD treatment.
基金the Chinese Academy of Sciences,Science and Technology Service Network Initiative(KFJ-STS-ZDTP-078)the National Natural Science Foun-dation of China(31620103905)+1 种基金the Science Frontier Program of the Chinese Academy of Sciences(QYZDJ SSW-SMC019)the National Key R&D Program of China(2017YFA0105203)。
文摘Transcranial magnetic stimulation(TMS)is a popular modulatory technique for the noninvasive diagnosis and therapy of neurological and psychiatric diseases.Unfortunately,current modulation strategies are only modestly effective.The literature provides strong evidence that the modulatory effects of TMS vary depending on device components and stimulation protocols.These differential effects are important when designing precise modulatory strategies for clinical or research applications.Developments in TMS have been accompanied by advances in combining TMS with neuroimaging techniques,including electroencephalography,functional nearinfrared spectroscopy,functional magnetic resonance imaging,and positron emission tomography.Such studies appear particularly promising as they may not only allow us to probe affected brain areas during TMS but also seem to predict underlying research directions that may enable us to precisely target and remodel impaired cortices or circuits.However,few precise modulation strategies are available,and the long-term safety and efficacy of these strategies need to be confirmed.Here,we review the literature on possible technologies for precise modulation to highlight progress along with limitations with the goal of suggesting future directions for this field.
文摘Rabies is a fatal central nervous system(CNS)infection caused by the rabies virus(RABV),with a clinical fatality rate approaching 100%[1].Once symptoms appear,effective treatments are virtually nonexistent,posing a serious global health threat.Although various prevention measures,such as prophylactic vaccination and post-exposure prophylaxis(PEP)[2],have helped reduce incidence rates,especially in developed countries,several limitations remain.PEP is highly time-sensitive and largely ineffective once the virus invades the CNS.Moreover,rabies immunoglobulin is costly and scarce,limiting its use in resource-limited settings[3].
基金financial support from ELI-Beamlinesproject Advanced Research using High Intensity Laser Produced Photons and Particles(ADONIS)(Project No.CZ.02.1.01/0.0/0.0/16_019/0000789)from the European Regional Development Fund+5 种基金QST-IRIthe QST President’s Strategic Grant(Creative Research)JSPS KAKENHI JP17F17811,JP19KK0355,JP19H00669 and JP22H01239the Czech Ministry of EducationYouth and Sports(CMEYS)for the financial support of the project number LM2023068partly supported by JSPS KAKENHI Grant No.JP23H01151。
文摘Tight focusing with very small f-numbers is necessary to achieve the highest at-focus irradiances.However,tight focusing imposes strong demands on precise target positioning in-focus to achieve the highest on-target irradiance We describe several near-infrared,visible,ultraviolet and soft and hard X-ray diagnostics employed in a~10^(22)W/cm^(2)laser±plasma experiment.We used nearly 10 J total energy femtosecond laser pulses focused into an approximately1.3-μm focal spot on 5±20μm thick stainless-steel targets.We discuss the applicability of these diagnostics to determine the best in-focus target position with approximately 5μm accuracy(i.e.,around half of the short Rayleigh length)and show that several diagnostics(in particular,3ωreflection and on-axis hard X-rays)can ensure this accuracy.We demonstrated target positioning within several micrometers from the focus,ensuring over 80%of the ideal peak laser intensity on-target.Our approach is relatively fast(it requires 10±20 laser shots)and does not rely on the coincidence of low-power and high-power focal planes.
文摘The paper describes a portable high precision three-dimensional trace measuring system for underwater target with high speed. The mathematical model for location, the main error sources, the calibration method for the underwater array and the way to correct its state are discussed. Problems about the distance ambiguity and multi-path interference are also analyzed. Part of experimental results on lake and at sea are given as well.