期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Enhanced baseline determination for formation flying LEOs by relative corrections of phase center and code residual variations 被引量:1
1
作者 Bin YI Defeng GU +2 位作者 Bing JU Kai SHAO Houzhe ZHANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2022年第2期185-194,共10页
Formation flying Low Earth Orbiters(LEOs)are important for implementing new and advanced concepts in Earth observation missions.Precise Baseline Determination(PBD)is a prerequisite for LEOs to complete specified missi... Formation flying Low Earth Orbiters(LEOs)are important for implementing new and advanced concepts in Earth observation missions.Precise Baseline Determination(PBD)is a prerequisite for LEOs to complete specified mission targets.PBD is usually performed based on space-borne GNSS data,the relative corrections of phase center and code residual variations play crucial roles in achieving the best relative orbit accuracy.Herein,the influences of antenna Relative Phase Centre Variations(RPCVs)and Single-Difference(SD)Melbourne-Wu¨bbena(MW)Combination Residuals Variations(SD MWVs)on PBD are studied.The methods were tested using flight data from Gravity Recovery And Climate Experiment(GRACE)and GRACE Follow-On(GRACE-FO).Results showed that the maximum values for RPCVs and SD MWVs were 14 mm and 0.32 cycles,respectively.Then,the RPCVs correction significantly enhanced the baseline accuracy;the K-Band Ranging(KBR)measurement consistency improved by 30.1%and 37.5%for GRACE and GRACE-FO,respectively.The application of SD MWVs further improved the accuracy and reliability of PBD results.For GRACE,the ambiguities fixing success rate increased from 85.1%to 97.9%and a baseline consistency of 0.57 mm was achieved for the KBR measurements.It was found that the correction of both RPCVs and SD MWVs reduced the carrier phase observation minus computation residuals from double-difference ionosphere-free combination.In addition,in-flight data processing demonstrated that RPCVs and SD MWVs estimations for the current period could be used for the previous and subsequent periods. 展开更多
关键词 Ambiguity resolution Formation flying precise baseline determination(PBD) Relative phase centre variations(RPCVs)estimation SD MW combination residuals variations(SD MWVs)estimation
原文传递
Precise orbit determination for low Earth orbit satellites using GNSS:Observations,models,and methods 被引量:3
2
作者 Xinyuan Mao Wenbing Wang Yang Gao 《Astrodynamics》 EI CSCD 2024年第3期349-374,共26页
Spaceborne global navigation satellite system(GNSS)has significantly revolutionized the development of autonomous orbit determination techniques for low Earth orbit satellites for decades.Using a state-of-the-art comb... Spaceborne global navigation satellite system(GNSS)has significantly revolutionized the development of autonomous orbit determination techniques for low Earth orbit satellites for decades.Using a state-of-the-art combination of GNSS observations and satellite dynamics,the absolute orbit determination for a single satellite reached a precision of 1 cm.Relative orbit determination(i.e.,precise baseline determination)for the dual satellites reached a precision of 1 mm.This paper reviews the recent advancements in GNSS products,observation processing,satellite gravitational and non-gravitational force modeling,and precise orbit determination methods.These key aspects have increased the precision of the orbit determination to fulfill the requirements of various scientific objectives.Finally,recommendations are made to further investigate multi-GNSS combinations,satellite high-fidelity geometric models,geometric offset calibration,and comprehensive orbit determination strategies for satellite constellations. 展开更多
关键词 low Earth orbit(LEO) precise orbit determination(POD) precise baseline determination(PBD) global navigation satellite system(GNSS) multi-GNSS satellite constellation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部