This article provides a comprehensive review of the advancements in the application of artificial intelligence(AI)technology in the modernization of traditional Chinese medicine(TCM)compound prescriptions,and emphasiz...This article provides a comprehensive review of the advancements in the application of artificial intelligence(AI)technology in the modernization of traditional Chinese medicine(TCM)compound prescriptions,and emphasizes recent research developments,including intelligent design,prediction of mechanisms of action,and precise application of TCM compound prescriptions.The integration of multi-omics data,deep learning algorithms,and knowledge graph technologies has established novel technical avenues for the modernization research of TCM.This study systematically analyzes the advantages and challenges associated with AI technologies in the research of TCM compound prescriptions,highlighting issues such as data heterogeneity,limited interpretability of AI models,and the absence of standardized procedures.Furthermore,this article examines the prospective developmental trajectories within this field,highlighting the importance of synergistic collaboration between AI and traditional pharmacology to improve the clinical applicability and effectiveness of TCM.The objective is to offer valuable insights into the modernization of TCM driven by AI and to stimulate further research in this area.展开更多
[Objectives]This study was conducted to screen high-efficiency compound formulations and precise application technologies for the prevention and control of sugarcane brown rust. [Methods] Zineb, dinconazole, mancozeb,...[Objectives]This study was conducted to screen high-efficiency compound formulations and precise application technologies for the prevention and control of sugarcane brown rust. [Methods] Zineb, dinconazole, mancozeb, azoxystrobin, pyraclostrobin, difenoconazole·azoxystrobin, chlorothalonil and carbendazim were selected for field efficacy tests. [Results] Four formulations,(65% zineb WP 1 500 g+75% chlorothalonil WP 1 500 g+potassium dihydrogen phosphate 2 400 g+agricultural synergist 300 ml)/hm^(2),(12.5% dinconazole WP 1 500 g +75% chlorothalonil WP 1 500 g+potassium dihydrogen phosphate 2 400 g+agricultural synergist 300 ml)/hm^(2),(80% mancozeb WP 1 500 g+75% chlorothalonil WP 1 500 g+potassium dihydrogen phosphate 2 400 g+agricultural synergist 300 ml)/hm^(2) and(30% difenoconazole·azoxystrobin SC 900 ml+potassium dihydrogen phosphate 2 400 g+agricultural synergist 300 ml) had good control efficacy on sugarcane brown rust, and showed disease indexes all below 18.79 and control efficacy over 80.53%. The four formulations are ideal high-efficiency compound formulations for the prevention and control of sugarcane brown rust. They can be sprayed manually and by unmanned aerial vehicles on the foliar surface from July to August, once every 7 to 10 d, continuously for 2 times. [Conclusions] This study provides new technical support for accurate and efficient prevention and control of sugarcane rust.展开更多
[Objectives]This study was conducted to screen high-efficiency compound formulations and precise application technologies for the prevention and control of sugarcane brown stripe disease.[Methods]Carbendazim,benomyl,c...[Objectives]This study was conducted to screen high-efficiency compound formulations and precise application technologies for the prevention and control of sugarcane brown stripe disease.[Methods]Carbendazim,benomyl,chlorothalonil,azoxystrobin,pyraclostrobine and difenoconazole·azoxystrobin were selected for field efficacy tests.[Results]Three formulations,(50%carbendazim WP 1500 g+75%chlorothalonil WP 1500 g+potassium dihydrogen phosphate 2400 g+agricultural synergist 300 ml)/hm^(2),(50%benomyl WP 1500 g+75%chlorothalonil WP 1500 g+potassium dihydrogen phosphate 2400 g+agricultural synergist 300 ml)/hm^(2) and(25%pyraclostrobin 600 ml+potassium dihydrogen phosphate 2400 g+agricultural synergist 300 ml)/hm^(2) had good control effects on sugarcane brown stripe disease,and showed disease index below 14.02 and control efficacy above 84.41%.The three formulations are ideal high-efficiency compound formulations for the prevention and control of sugarcane brown stripe disease.They can be sprayed manually and by unmanned aerial vehicles on the foliar surface from July to August,once every 7 to 10 d,continuously for 2 times.[Conclusions]This study provides new technical support for accurate and efficient prevention and control of sugarcane brown stripe disease.展开更多
Thermoelectric conversion technology,capable of directly converting heat into electricity and vice versa,plays a crucial role in both energy supply and temperature control[1].This is particularly crucial in specialize...Thermoelectric conversion technology,capable of directly converting heat into electricity and vice versa,plays a crucial role in both energy supply and temperature control[1].This is particularly crucial in specialized fields,such as deep-space exploration where solar power is ineffective,as well as in miniaturized precision temperature control applications[2].展开更多
In order to reduce the use of chemical pesticides in crop plant protection and improve the utilization efficiency of pesticides,it is necessary to study advanced application machinery and application techniques.The us...In order to reduce the use of chemical pesticides in crop plant protection and improve the utilization efficiency of pesticides,it is necessary to study advanced application machinery and application techniques.The use of unmanned aerial vehicle(UAV)for pesticide spraying has the characteristics of less application,strong penetrability,wide applicability and flexible operation scheduling,and has gradually become one of the important development directions in the field of aviation plant protection.However,the operation process of the UAV is often affected by meteorological factors and human manipulation,resulting in poor actual operation with inaccurate spray volume and uneven application.Therefore,to improve the stability and uniformity of the application of the plant protection UAV under variable operating conditions,in this paper a real-time control method was proposed for the application flow rate,and a precision variable-rate spray system was designed based on single-chip microcomputer and micro diaphragm pump that can controls the flow rate of the pump in real time with the changes of the operating state.The response s-peed of the variable-rate spray system was tested.The average control response time of the system was 0.18 s,and the average stability time of the pump flow change was 0.75 s.The test results showed that the system has a quick response to the working state and the adjustment of the target flow of the pump can be quickly completed to realize the variable-rate spray function.The research results can provide a reference for the practical application of plant protection UAV variable-rate spray system.展开更多
文摘This article provides a comprehensive review of the advancements in the application of artificial intelligence(AI)technology in the modernization of traditional Chinese medicine(TCM)compound prescriptions,and emphasizes recent research developments,including intelligent design,prediction of mechanisms of action,and precise application of TCM compound prescriptions.The integration of multi-omics data,deep learning algorithms,and knowledge graph technologies has established novel technical avenues for the modernization research of TCM.This study systematically analyzes the advantages and challenges associated with AI technologies in the research of TCM compound prescriptions,highlighting issues such as data heterogeneity,limited interpretability of AI models,and the absence of standardized procedures.Furthermore,this article examines the prospective developmental trajectories within this field,highlighting the importance of synergistic collaboration between AI and traditional pharmacology to improve the clinical applicability and effectiveness of TCM.The objective is to offer valuable insights into the modernization of TCM driven by AI and to stimulate further research in this area.
基金Supported by China Agriculture Research System of MOF and MARA (CARS-170303)Yunling Industrial Technology Leading Talent Training Project(2018LJRC56)+1 种基金Special Fund for the Construction of Modern Agricultural Industry Technology System in Yunnan ProvinceNanhua Research and Development Institution-Enterprise Cooperation Project。
文摘[Objectives]This study was conducted to screen high-efficiency compound formulations and precise application technologies for the prevention and control of sugarcane brown rust. [Methods] Zineb, dinconazole, mancozeb, azoxystrobin, pyraclostrobin, difenoconazole·azoxystrobin, chlorothalonil and carbendazim were selected for field efficacy tests. [Results] Four formulations,(65% zineb WP 1 500 g+75% chlorothalonil WP 1 500 g+potassium dihydrogen phosphate 2 400 g+agricultural synergist 300 ml)/hm^(2),(12.5% dinconazole WP 1 500 g +75% chlorothalonil WP 1 500 g+potassium dihydrogen phosphate 2 400 g+agricultural synergist 300 ml)/hm^(2),(80% mancozeb WP 1 500 g+75% chlorothalonil WP 1 500 g+potassium dihydrogen phosphate 2 400 g+agricultural synergist 300 ml)/hm^(2) and(30% difenoconazole·azoxystrobin SC 900 ml+potassium dihydrogen phosphate 2 400 g+agricultural synergist 300 ml) had good control efficacy on sugarcane brown rust, and showed disease indexes all below 18.79 and control efficacy over 80.53%. The four formulations are ideal high-efficiency compound formulations for the prevention and control of sugarcane brown rust. They can be sprayed manually and by unmanned aerial vehicles on the foliar surface from July to August, once every 7 to 10 d, continuously for 2 times. [Conclusions] This study provides new technical support for accurate and efficient prevention and control of sugarcane rust.
基金Supported by China Agriculture Research System of MOF and MARA(CARS-170303)Yunling Industrial Technology Leading Talent Training Project(2018LJRC56)+1 种基金Special Fund for the Construction of Modern Agricultural Industry Technology System in Yunnan ProvinceNanhua Research and Development Institution-Enterprise Cooperation Project of Nanhua City。
文摘[Objectives]This study was conducted to screen high-efficiency compound formulations and precise application technologies for the prevention and control of sugarcane brown stripe disease.[Methods]Carbendazim,benomyl,chlorothalonil,azoxystrobin,pyraclostrobine and difenoconazole·azoxystrobin were selected for field efficacy tests.[Results]Three formulations,(50%carbendazim WP 1500 g+75%chlorothalonil WP 1500 g+potassium dihydrogen phosphate 2400 g+agricultural synergist 300 ml)/hm^(2),(50%benomyl WP 1500 g+75%chlorothalonil WP 1500 g+potassium dihydrogen phosphate 2400 g+agricultural synergist 300 ml)/hm^(2) and(25%pyraclostrobin 600 ml+potassium dihydrogen phosphate 2400 g+agricultural synergist 300 ml)/hm^(2) had good control effects on sugarcane brown stripe disease,and showed disease index below 14.02 and control efficacy above 84.41%.The three formulations are ideal high-efficiency compound formulations for the prevention and control of sugarcane brown stripe disease.They can be sprayed manually and by unmanned aerial vehicles on the foliar surface from July to August,once every 7 to 10 d,continuously for 2 times.[Conclusions]This study provides new technical support for accurate and efficient prevention and control of sugarcane brown stripe disease.
基金supported by the National Key Research and Development Program of China(2024YFA1210400)the National Science Fund for Distinguished Young Scholars(52525101)+3 种基金the National Natural Science Foundation of China(52450001 and 22409014)the International Cooperation and Exchange of the National Natural Science Foundation of China(52411540237)the Tencent Xplorer Prize.Bingchao Qin acknowledges support from the China National Postdoctoral Program for Innovative Talents(BX20230456)China Postdoctoral Science Foundation(2024M754057).
文摘Thermoelectric conversion technology,capable of directly converting heat into electricity and vice versa,plays a crucial role in both energy supply and temperature control[1].This is particularly crucial in specialized fields,such as deep-space exploration where solar power is ineffective,as well as in miniaturized precision temperature control applications[2].
基金The authors acknowledge that the research was financially supported by the graduate student innovation project of Heilongjiang Bayi Agriculture University(YJSCX2017-Z03)the Youth Innovative Talent Program of Heilongjiang Bayi Agriculture University(ZRCQC201802).
文摘In order to reduce the use of chemical pesticides in crop plant protection and improve the utilization efficiency of pesticides,it is necessary to study advanced application machinery and application techniques.The use of unmanned aerial vehicle(UAV)for pesticide spraying has the characteristics of less application,strong penetrability,wide applicability and flexible operation scheduling,and has gradually become one of the important development directions in the field of aviation plant protection.However,the operation process of the UAV is often affected by meteorological factors and human manipulation,resulting in poor actual operation with inaccurate spray volume and uneven application.Therefore,to improve the stability and uniformity of the application of the plant protection UAV under variable operating conditions,in this paper a real-time control method was proposed for the application flow rate,and a precision variable-rate spray system was designed based on single-chip microcomputer and micro diaphragm pump that can controls the flow rate of the pump in real time with the changes of the operating state.The response s-peed of the variable-rate spray system was tested.The average control response time of the system was 0.18 s,and the average stability time of the pump flow change was 0.75 s.The test results showed that the system has a quick response to the working state and the adjustment of the target flow of the pump can be quickly completed to realize the variable-rate spray function.The research results can provide a reference for the practical application of plant protection UAV variable-rate spray system.