期刊文献+
共找到2,800篇文章
< 1 2 140 >
每页显示 20 50 100
Bioinspired Surface Engineering with Dual Covalent Receptors Incorporated via Precise Post-Imprinting Modification to Enhance the Specific Identification of Adenosine 5′-Monophosphate
1
作者 Pan Wang Tao Cheng +4 位作者 Zhuangxin Wei Lu Liu Yue Wang Xiaohua Tian Jianming Pan 《Engineering》 2025年第2期143-154,共12页
Expanding the specific surface area of substrates and carrying out precise surface engineering of imprinted nanocavities are crucial methods for enhancing the identification efficiency of molecularly imprinted polymer... Expanding the specific surface area of substrates and carrying out precise surface engineering of imprinted nanocavities are crucial methods for enhancing the identification efficiency of molecularly imprinted polymers(MIPs).To implement this synergistic strategy,bioinspired surface engineering was used to incorporate dual covalent receptors via precise post-imprinting modifications(PIMs)onto mesoporous silica nanosheets.The prepared sorbents(denoted as‘‘D-PMIPs”)were utilized to improve the specific identification of adenosine 5-monophosphate(AMP).Significantly,the mesoporous silica nanosheets possess a high surface area of approximately 498.73 m^(2)·g^(-1),which facilitates the formation of abundant specific recognition sites in the D-PMIPs.The dual covalent receptors are valuable for estab-lishing the spatial orientation and arrangement of AMP through multiple cooperative interactions.PIMs enable precise site-specific functionalization within the imprinted cavities,leading to the tailor-made formation of complementary binding sites.The maximum number of high-affinity binding sites(Nmax)of the D-PMIPs is 39.99 lmol·g^(-1),which is significantly higher than that of imprinted sorbents with a sin-gle receptor(i.e.,S-BMIPs or S-PMIPs).The kinetic data of the D-PMIPs can be effectively described by a pseudo-second-order model,indicating that the main binding mechanism involves synergistic chemisorption from boronate affinity and the pyrimidine base.This study suggests that using dual cova-lent receptors and PIMs is a reliable approach for creating imprinted sorbents with high selectivity,allow-ing for the controlled engineering of imprinted sites. 展开更多
关键词 precise surface engineering Dual covalent receptor precise post-imprinting modification Specific identification of adenosine 5-monophosphate
在线阅读 下载PDF
Modernization Research of Traditional Chinese Medicine Compound Prescriptions Driven by Artificial Intelligence : From Intelligent Design and Mechanism Prediction to Precise Application
2
作者 Dan LIN 《Medicinal Plant》 2025年第5期75-79,共5页
This article provides a comprehensive review of the advancements in the application of artificial intelligence(AI)technology in the modernization of traditional Chinese medicine(TCM)compound prescriptions,and emphasiz... This article provides a comprehensive review of the advancements in the application of artificial intelligence(AI)technology in the modernization of traditional Chinese medicine(TCM)compound prescriptions,and emphasizes recent research developments,including intelligent design,prediction of mechanisms of action,and precise application of TCM compound prescriptions.The integration of multi-omics data,deep learning algorithms,and knowledge graph technologies has established novel technical avenues for the modernization research of TCM.This study systematically analyzes the advantages and challenges associated with AI technologies in the research of TCM compound prescriptions,highlighting issues such as data heterogeneity,limited interpretability of AI models,and the absence of standardized procedures.Furthermore,this article examines the prospective developmental trajectories within this field,highlighting the importance of synergistic collaboration between AI and traditional pharmacology to improve the clinical applicability and effectiveness of TCM.The objective is to offer valuable insights into the modernization of TCM driven by AI and to stimulate further research in this area. 展开更多
关键词 Artificial intelligence (AI) Traditional Chinese medicine (TCM) COMPOUND prescription Intelligent design MECHANISM PREDICTION precise APPLICATION
在线阅读 下载PDF
Dye-stabilized atomically precise copper clusters for enhanced photocatalytic hydrogen evolution
3
作者 Yan-Ling Li Yue Xu +2 位作者 Chen-Hong Wang Rui Wang Shuang-Quan Zang 《Chinese Chemical Letters》 2025年第10期318-322,共5页
Metal nanoclusters with well-defined atomic structures offer significant promise in the field of catalysis due to their sub-nanometer size and tunable organic-inorganic hybrid structural features.Herein,we successfull... Metal nanoclusters with well-defined atomic structures offer significant promise in the field of catalysis due to their sub-nanometer size and tunable organic-inorganic hybrid structural features.Herein,we successfully synthesized an 11-core copper(Ⅰ)-alkynyl nanocluster(Cu11),which is stabilized by alkynyl ligands derived from a photosensitive rhodamine dye molecule.Notably,this Cu11cluster exhibited excellent photocatalytic hydrogen evolution activity(8.13 mmol g-1h-1)even in the absence of a mediator and noble metal co-catalyst.Furthermore,when Cu11clusters were loaded onto the surface of TiO_(2)nanosheets,the resultant Cu11@TiO_(2)nanocomposites exhibited a significant enhancement in hydrogen evolution efficiency,which is 60 times higher than that of pure TiO_(2)nanosheets.The incorporation of Cu11clusters within the Cu11@TiO_(2)effectively inhibits the recombination of photogenerated electrons and holes,thereby accelerating the charge separation and migration in the composite material.This work introduces a novel perspective for designing highly active copper cluster-based photocatalysts. 展开更多
关键词 Copper cluster Atomically precise NANOCOMPOSITES Photoactive rhodamine-based ligand Photocatalytic hydrogen evolution
原文传递
Atomically Precise Cu Nanoclusters:Recent Advances,Challenges,and Perspectives in Synthesis and Catalytic Applications
4
作者 Mengyao Chen Chengyu Guo +4 位作者 Lubing Qin Lei Wang Liang Qiao Kebin Chi Zhenghua Tang 《Nano-Micro Letters》 2025年第4期130-165,共36页
Atomically precise metal nanoclusters are an emerging type of nanomaterial which has diverse interfacial metal-ligand coordination motifs that can significantly affect their physicochemical properties and functionalit... Atomically precise metal nanoclusters are an emerging type of nanomaterial which has diverse interfacial metal-ligand coordination motifs that can significantly affect their physicochemical properties and functionalities.Among that,Cu nanoclusters have been gaining continuous increasing research attentions,thanks to the low cost,diversified structures,and superior catalytic performance for various reactions.In this review,we first summarize the recent progress regarding the synthetic methods of atomically precise Cu nanoclusters and the coordination modes between Cu and several typical ligands and then discuss the catalytic applications of these Cu nanoclusters with some explicit examples to explain the atomical-level structure-performance relationship.Finally,the current challenges and future research perspectives with some critical thoughts are elaborated.We hope this review can not only provide a whole picture of the current advances regarding the synthesis and catalytic applications of atomically precise Cu nanoclusters,but also points out some future research visions in this rapidly booming field. 展开更多
关键词 Atomically precise Cu nanoclusters Controllable synthesis Catalytic applications Structure-performance relationship Challenges and perspectives
在线阅读 下载PDF
Construction of a Research Public Platform Based on Hierarchical Management and Precise Services:Experience of West China Hospital
5
作者 Xue-Mei Chen Yan-Jing Zhang +1 位作者 Jin-Kui Pi Si-Si Wu 《Chinese Medical Sciences Journal》 2025年第2期150-156,I0006,共8页
With the development of education and technology,the construction of research public platforms has emerged as a critical initiative for many universities and top-tier public hospitals.The core and most fundamental fun... With the development of education and technology,the construction of research public platforms has emerged as a critical initiative for many universities and top-tier public hospitals.The core and most fundamental function of a basic public platform is to aggregate large instruments and specific resources,providing open services for instrumental analysis and sample testing.Optimized management and high-quality,efficient services are essential for such platforms.This article elucidates the construction of a research public platform in West China Hospital,focusing on the adoption of hierarchical management and precise services.The core of the hierarchical management lies in building a multi-level service platform composed of routine support platforms,advanced technology platforms,and specially qualification platforms,while establishing a talent hierarchy that differentiates between core and routine positions.This structure is designed to accurately meet the diverse needs of users and enhance resource efficiency.By implementing user access control with differentiated permissions for internal and external users and a dynamic credit-based review system,the laboratory can ensure safe and efficient operations.The four service modes—instrument usage,in-lab experiments,sample testing,and collaborative projects—are precisely aligned with various research scenarios.Proactive engagement with grant-funded projects,customized services for research groups,and a multidimensional training system further strengthen the platform's support for major scientific research tasks.Through systematic management and service innovation,this model achieves efficient integration and sustainable development of platform resources,providing a valuable reference for the construction of public platforms in similar medical institutions. 展开更多
关键词 research public platform hierarchical management precise services biomedical experiment
暂未订购
Determining the natural vibration period of towering structure using GNSS precise point positioning
6
作者 WANG Zhiming WU Jizhong 《Journal of Southeast University(English Edition)》 2025年第2期199-206,共8页
This study explores the use of the Global Navigation Satellite System(GNSS)precise point positioning(PPP)technology to determine the natural vibration periods of towering structures through simulations and field testi... This study explores the use of the Global Navigation Satellite System(GNSS)precise point positioning(PPP)technology to determine the natural vibration periods of towering structures through simulations and field testing.During the simulation phase,a GNSS receiver captured vi-bration waveforms generated by a single-axis motion simulator based on preset signal parameters,analyzing how different satellite system configurations affect the efficiency of extracting vibration parameters.Subsequently,field tests were conducted on a high-rise steel singletube tower.The results indicate that in the simulation environment,no matter the PPP positioning data under single GPS or multisystem combination,the vibration frequency of singleaxis motion simulator can be accurately extracted after frequency do-main analysis,with multisystem setups providing more precise amplitude parameters.In the field test,the natural vibration periods of the main vibration modes of high-rise steel single-tube tower measured by PPP technology closely match the results of the first two modes derived from finite element analysis.The first mode period calculated by the em-pirical formula is approximately 6%higher than those determined through finite element analysis and PPP.This study demonstrates the potential of PPP for structural vibration analysis,offering significant benefits for assessing dynamic responses and monitoring the health of towering structures. 展开更多
关键词 towering structure natural vibration period precise point positioning frequency domain decomposition
在线阅读 下载PDF
The Influence of Antenna Phase Center Error on Precise Orbit Determination
7
作者 WANG Lu CHANG Xinuo ZHONG Zhaofeng 《Aerospace China》 2025年第1期40-47,共8页
Navigation satellites generally use satellite-ground and inter-satellite observation data for precise orbit determination.In orbit determination,the satellite position is often referenced to the satellite’s centroid,... Navigation satellites generally use satellite-ground and inter-satellite observation data for precise orbit determination.In orbit determination,the satellite position is often referenced to the satellite’s centroid,while the observational measurements are referenced to the satellite’s antenna phase center.The deviation between the satellite’s centroid and the antenna phase center forms the satellite antenna phase center error,which affects the precision of orbit determination.This paper takes a global navigation satellite system(GNSS)MEO satellite as an example and analyzes the actual situation of the satellite antenna phase center deviation and phase center variation based on the ground calibration data of the in-orbit satellite antenna phase center and the satellite’s in-orbit working status.The analysis shows that the antenna phase center variation caused by the satellite’s in-orbit operation is only at the centimeter level,which has a limited impact on orbit determination accuracy.The main source of precise orbit determination error is the satellite antenna phase center deviation,which can be corrected using ground calibration data. 展开更多
关键词 navigation satellite antenna phase center deviation antenna phase center variation precise orbit determination
在线阅读 下载PDF
Research on the application of the parameter freezing precise exponential integrator in vehicle-road coupling vibration
8
作者 Yu ZHANG Chao ZHANG +1 位作者 Shaohua LI Shaopu YANG 《Applied Mathematics and Mechanics(English Edition)》 2025年第2期373-390,共18页
The vehicle-road coupling dynamics problem is a prominent issue in transportation,drawing significant attention in recent years.These dynamic equations are characterized by high-dimensionality,coupling,and time-varyin... The vehicle-road coupling dynamics problem is a prominent issue in transportation,drawing significant attention in recent years.These dynamic equations are characterized by high-dimensionality,coupling,and time-varying dynamics,making the exact solutions challenging to obtain.As a result,numerical integration methods are typically employed.However,conventional methods often suffer from low computational efficiency.To address this,this paper explores the application of the parameter freezing precise exponential integrator to vehicle-road coupling models.The model accounts for road roughness irregularities,incorporating all terms unrelated to the linear part into the algorithm's inhomogeneous vector.The general construction process of the algorithm is detailed.The validity of numerical results is verified through approximate analytical solutions(AASs),and the advantages of this method over traditional numerical integration methods are demonstrated.Multiple parameter freezing precise exponential integrator schemes are constructed based on the Runge-Kutta framework,with the fourth-order four-stage scheme identified as the optimal one.The study indicates that this method can quickly and accurately capture the dynamic system's vibration response,offering a new,efficient approach for numerical studies of high-dimensional vehicle-road coupling systems. 展开更多
关键词 vehicle-road coupled dynamics dynamic response parameter freezing precise exponential integrator Newmark-βintegration
在线阅读 下载PDF
Structure and property evolution of atomically precise palladium clusters
9
作者 Chang-Qing Meng Wan-Yu Cheng +6 位作者 Hao Yan Hui-Xin Xiang Chen-Hao Ruan Yue Zhao Cong-Qiao Xu Jun Li Chuan-Hao Yao 《Rare Metals》 2025年第4期2822-2829,共8页
Atomically precise palladium(Pd)clusters are emerging as versatile nanomaterials with applications in catalysis and biomedicine.This study explores the synthesis,structure evolution,and catalytic properties of Pd clus... Atomically precise palladium(Pd)clusters are emerging as versatile nanomaterials with applications in catalysis and biomedicine.This study explores the synthesis,structure evolution,and catalytic properties of Pd clusters stabilized by cyclohexanethiol(HSC_(6)H_(11))ligands.Using electrospray ionization mass spectrometry(ESI-MS)and single-crystal X-ray diffraction(SXRD),structures of the Pd clusters ranging from Pd4(SC_(6)H_(11))8 to Pd18(SC_(6)H_(11))36 were determined.This analysis revealed a structure evolution from polygonal to elliptical geometries of the PdnS2n frameworks as the cluster size increased.UV-Vis-NIR spectroscopy,combined with quantum chemical calculations,elucidated changes in the electronic structure of the clusters.Catalytic studies on the Sonogashira cross-coupling reactions demonstrated a size-dependent decline in activity attributed to variations in structural arrangements and electronic properties.Mechanistic insights proposed a distinctive Pd(Ⅱ)-Pd(Ⅳ)catalytic cycle.This research underscores how ligands and cluster size influence the structures and properties of Pd clusters,offering valuable insights for the future design and application of Pd clusters in advanced catalysis and beyond. 展开更多
关键词 structure evolution catalytic properties quantum chemical calculations cyclohexanethiol ligands electrospray ionization mass spectrometry esi ms atomically precise palladium clusters sonogashira cross coupling reactions electronic structure
原文传递
Precise Control of the Recollision Dynamics in Nonsequential Double Ionization by Spatially Inhomogeneous Few-Cycle Negatively Chirped Laser Pulses
10
作者 Yingbin Li Fengrun Wu +10 位作者 Fanfei Liu Shuaijie Kang Zhengfa Li Ke Zhang Yifan Liu Kuo Li Chunyang Zhai Jingkun Xu Pu Wang Qiming Zhao Benhai Yu 《Chinese Physics Letters》 2025年第5期26-32,共7页
With a three-dimensional semiclassical ensemble method, we theoretically investigated the nonsequential double ionization of Ar driven by the spatially inhomogeneous few-cycle negatively chirped laser pulses. Our resu... With a three-dimensional semiclassical ensemble method, we theoretically investigated the nonsequential double ionization of Ar driven by the spatially inhomogeneous few-cycle negatively chirped laser pulses. Our results show that the recollision time window can be precisely controlled within an isolated time interval of several hundred attoseconds, which is useful for understanding the subcycle correlated electron dynamics. More interestingly, the correlated electron momentum distribution (CEMD) exhibits a strong dependence on laser intensity. That is, at lower laser intensity, CEMD is located in the first quadrant. As the laser intensity increases,CEMD shifts almost completely to the second and fourth quadrants, and then gradually to the third quadrant.The underlying physics governing the CEMD's dependence on laser intensity is explained. 展开更多
关键词 recollision time window recollision dynamics correlated electron momentum distribution nonsequential double ionization precise control understanding subcycle correlated electron dynamics three dimensional semiclassical ensemble method spatially inhomogeneous few cycle negatively chirped laser pulses
原文传递
Plasma Technology:Unlocking a New Path for Precise Elimination of Cancer Cells
11
作者 Jie Bai 《Proceedings of Anticancer Research》 2025年第1期128-134,共7页
This paper systematically elucidates the application of plasma technology in cancer treatment,including its principles,case studies,comparative advantages over traditional methods,challenges,and countermeasures.Plasma... This paper systematically elucidates the application of plasma technology in cancer treatment,including its principles,case studies,comparative advantages over traditional methods,challenges,and countermeasures.Plasma technology targets and eliminates cancer cells with precision through physical,chemical,and immune-regulatory mechanisms,offering high accuracy and low side effects.International applications include plasma scalpels in the United States,combined chemotherapy and low-temperature plasma therapy in Russia,and plasma-targeted capture technology in China.However,plasma technology faces technical hurdles and clinical application barriers,requiring interdisciplinary collaboration and industry-academia-research cooperation to advance its development. 展开更多
关键词 Plasma technology Cancer treatment PRECISION Side effects CHALLENGES
暂未订购
Clinical value of precise rehabilitation nursing in management of cerebral infarction 被引量:4
12
作者 Ya-Na Xu Xiu-Zhen Wang Xiao-Rong Zhang 《World Journal of Clinical Cases》 SCIE 2024年第1期24-31,共8页
BACKGROUND Cerebral infarction,previously referred to as cerebral infarction or ischemic stroke,refers to the localized brain tissue experiencing ischemic necrosis or softening due to disorders in brain blood supply,i... BACKGROUND Cerebral infarction,previously referred to as cerebral infarction or ischemic stroke,refers to the localized brain tissue experiencing ischemic necrosis or softening due to disorders in brain blood supply,ischemia,and hypoxia.The precision rehabilitation nursing model for chronic disease management is a continuous,fixed,orderly,and efficient nursing model aimed at standardizing the clinical nursing process,reducing the wastage of medical resources,and improving the quality of medical services.AIM To analyze the value of a precise rehabilitation nursing model for chronic disease management in patients with cerebral infarction.METHODS Patients(n=124)admitted to our hospital with cerebral infarction between November 2019 and November 2021 were enrolled as the study subjects.The random number table method was used to divide them into a conventional nursing intervention group(n=61)and a model nursing intervention group(n=63).Changes in the nursing index for the two groups were compared after conventional nursing intervention and precise rehabilitation intervention nursing for chronic disease management.RESULTS Compared with the conventional intervention group,the model intervention group had a shorter time to clinical symptom relief(P<0.05),lower Hamilton Anxiety Scale and Hamilton Depression Scale scores,a lower incidence of total complications(P<0.05),a higher disease knowledge mastery rate,higher safety and quality,and a higher overall nursing satisfaction rate(P<0.05).CONCLUSION The precision rehabilitation nursing model for chronic disease management improves the clinical symptoms of patients with cerebral infarction,reducing the incidence of total complications and improving the clinical outcome of patients,and is worthy of application in clinical practice. 展开更多
关键词 precise rehabilitation nursing model for chronic disease management Cerebral infarction Knowledge of disease Safety and quality
暂未订购
Self-consistent and precise measurement of time-dependent radiative albedo of gold based on specially symmetrical triple-cavity Hohlraum 被引量:1
13
作者 Zhiyu Zhang Yang Zhao +19 位作者 Xiaoying Han Liling Li Bo Qing Lifei Hou Yulong Li YuXue Zhang Huan Zhang Xiangming Liu Bo Deng Gang Xiong Min Lv Tuo Zhu Chengwu Huang Tianming Song Yan Zhao Yingjie Li Lu Zhang Xufei Xie Jiyan Zhang Jiamin Yang 《Matter and Radiation at Extremes》 SCIE EI CSCD 2024年第3期57-64,共8页
A self-consistent and precise method to determine the time-dependent radiative albedo,i.e.,the ratio of the reemission flux to the incident flux,for an indirect-drive inertial confinement fusion Hohlraum wall material... A self-consistent and precise method to determine the time-dependent radiative albedo,i.e.,the ratio of the reemission flux to the incident flux,for an indirect-drive inertial confinement fusion Hohlraum wall material is proposed.A specially designed symmetrical triple-cavity gold Hohlraum is used to create approximately constant and near-equilibrium uniform radiation with a peak temperature of 160 eV.The incident flux at the secondary cavity waist is obtained from flux balance analysis and from the shock velocity of a standard sample.The results agree well owing to the symmetrical radiation in the secondary cavity.A self-consistent and precise time-dependent radiative albedo is deduced from the reliable reemission flux and the incident flux,and the result from the shock velocity is found to have a smaller uncertainty than that from the multi-angle flux balance analysis,and also to agree well with the result of a simulation using the HYADES opacity. 展开更多
关键词 precise cavity RADIATIVE
在线阅读 下载PDF
Methanol steam reforming for hydrogen production driven by an atomically precise Cu catalyst
14
作者 Weigang Hu Haoqi Liu +7 位作者 Yuankun Zhang Jiawei Ji Guangjun Li Xiao Cai Xu Liu Wen Wu Xu Weiping Ding Yan Zhu 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第7期1079-1084,共6页
Plasmon-induced hot-electron transfer from metal nanostructures is being intensely pursed in current photocatalytic research,however it remains elusive whether molecular-like metal clusters with excitonic behavior can... Plasmon-induced hot-electron transfer from metal nanostructures is being intensely pursed in current photocatalytic research,however it remains elusive whether molecular-like metal clusters with excitonic behavior can be used as light-harvesting materials in solar energy utilization such as photocatalytic methanol steam reforming.In this work,we report an atomically precise Cu_(13)cluster protected by dual ligands of thiolate and phosphine that can be viewed as the assembly of one top Cu atom and three Cu_(4)tetrahedra.The Cu_(13)H_(10)(SR)_(3)(PR’_(3))_(7)(SR=2,4-dichlorobenzenethiol,PR’_(3)=P(4-FC_(6)H_(4))_(3))cluster can give rise to highly efficient light-driven activity for methanol steam reforming toward H_(2)production. 展开更多
关键词 NANOCLUSTER PHOTOCATALYSIS Methanol steam reforming Atomically precise Copper catalyst
在线阅读 下载PDF
Empowerment of Precise Ideological and Political Education in Higher Education with Educational Digitalization 被引量:1
15
作者 Yan Dong Yu Yu Ge Yao 《Journal of Contemporary Educational Research》 2024年第4期23-28,共6页
The study explores how educational digitalization enables the precise development of ideological and political education in colleges and universities.Digital transformation enables colleges and universities to accurat... The study explores how educational digitalization enables the precise development of ideological and political education in colleges and universities.Digital transformation enables colleges and universities to accurately define educational objectives,content strategies,effect evaluation,and process management,and realize the precision and intelligence of ideological and political education.The application of big data technology enhances the data-oriented thinking of teachers and students,promotes the accurate application of data,and improves the efficiency of ideological and political education.The research also prospected a new vision of the digital construction of ideological and political courses and clarified the theoretical and practical path of the implementation and evaluation mode of ideological and political courses under digital empowerment.Education digitalization enables precise ideological and political education,which is a key way to promote the innovative development of ideological and political education in colleges and universities and will strongly support the improvement of the overall quality of higher education and the training of excellent talents. 展开更多
关键词 Education digital empowerment precise ideological and political education Improvement of efficiency
在线阅读 下载PDF
Development and Therapeutic Applications of Precise Gene Editing Technology
16
作者 ZHANG Yi-Meng YANG Xiao +1 位作者 WANG Jian LI Zhen-Hua 《生物化学与生物物理进展》 SCIE CAS CSCD 北大核心 2024年第10期2637-2647,共11页
The advent of gene editing represents one of the most transformative breakthroughs in life science,making genome manipulation more accessible than ever before.While traditional CRISPR/Cas-based gene editing,which invo... The advent of gene editing represents one of the most transformative breakthroughs in life science,making genome manipulation more accessible than ever before.While traditional CRISPR/Cas-based gene editing,which involves double-strand DNA breaks(DSBs),excels at gene disruption,it is less effective for accurate gene modification.The limitation arises because DSBs are primarily repaired via non-homologous end joining(NHEJ),which tends to introduce indels at the break site.While homology directed repair(HDR)can achieve precise editing when a donor DNA template is provided,the reliance on DSBs often results in unintended genome damage.HDR is restricted to specific cell cycle phases,limiting its application.Currently,gene editing has evolved to unprecedented levels of precision without relying on DSB and HDR.The development of innovative systems,such as base editing,prime editing,and CRISPR-associated transposases(CASTs),now allow for precise editing ranging from single nucleotides to large DNA fragments.Base editors(BEs)enable the direct conversion of one nucleotide to another,and prime editors(PEs)further expand gene editing capabilities by allowing for the insertion,deletion,or alteration of small DNA fragments.The CAST system,a recent innovation,allows for the precise insertion of large DNA fragments at specific genomic locations.In recent years,the optimization of these precise gene editing tools has led to significant improvements in editing efficiency,specificity,and versatility,with advancements such as the creation of base editors for nucleotide transversions,enhanced prime editing systems for more efficient and precise modifications,and refined CAST systems for targeted large DNA insertions,expanding the range of applications for these tools.Concurrently,these advances are complemented by significant improvements in in vivo delivery methods,which have paved the way for therapeutic application of precise gene editing tools.Effective delivery systems are critical for the success of gene therapies,and recent developments in both viral and non-viral vectors have improved the efficiency and safety of gene editing.For instance,adeno-associated viruses(AAVs)are widely used due to their high transfection efficiency and low immunogenicity,though challenges such as limited cargo capacity and potential for immune responses remain.Non-viral delivery systems,including lipid nanoparticles(LNPs),offer an alternative with lower immunogenicity and higher payload capacity,although their transfection efficiency can be lower.The therapeutic potential of these precise gene editing technologies is vast,particularly in treating genetic disorders.Preclinical studies have demonstrated the effectiveness of base editing in correcting genetic mutations responsible for diseases such as cardiomyopathy,liver disease,and hereditary hearing loss.These technologies promise to treat symptoms and potentially cure the underlying genetic causes of these conditions.Meanwhile,challenges remain,such as optimizing the safety and specificity of gene editing tools,improving delivery systems,and overcoming off-target effects,all of which are critical for their successful application in clinical settings.In summary,the continuous evolution of precise gene editing technologies,combined with advancements in delivery systems,is driving the field toward new therapeutic applications that can potentially transform the treatment of genetic disorders by targeting their root causes. 展开更多
关键词 precise gene editing CRISPR/Cas system base editing prime editing gene therapy
原文传递
Fish-on-Chips:unveiling neural processing of chemicals in small animals through precise fluidic control
17
作者 Samuel K.H.Sy Ho Ko 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第11期2351-2353,共3页
Precise chemical cue presentation alongside advanced brainwide imaging techniques is important to the study of chemosensory processing in animals.Nevertheless,the dynamic nature of chemical-carrying media,such as wate... Precise chemical cue presentation alongside advanced brainwide imaging techniques is important to the study of chemosensory processing in animals.Nevertheless,the dynamic nature of chemical-carrying media,such as water or air,poses a significant challenge for delivering highly-controlled chemical flow to an animal subject.Moreover,contact-based cue manipulation and delivery easily shift the position of the animal subject,which is often undesirable for high-quality brain imaging.Additionally,more advanced interfacing tools that align with the diverse range of body part sizes of an animal,ranging from micrometer-scale neurons to meter-long limbs,are much needed.This is particularly crucial when dealing with dimensions that are beyond the reach of conventional experimental tools. 展开更多
关键词 dealing precise SIZES
在线阅读 下载PDF
Performance of GNSS positioning in PPP mode using MADOCA precise products
18
作者 Brian Bramanto Rachel Theresia +1 位作者 Irwan Gumilar Sidik T.Wibowo 《Geodesy and Geodynamics》 EI CSCD 2024年第6期642-651,共10页
The Global Navigation Satellite System (GNSS) is widely utilized for accurate positioning.One commonly applied method to obtain precise coordinate estimates is by implementing the relative positioning in network mode.... The Global Navigation Satellite System (GNSS) is widely utilized for accurate positioning.One commonly applied method to obtain precise coordinate estimates is by implementing the relative positioning in network mode.However,this approach can be complex and challenging.Fortunately,The Japan Aerospace Exploration Agency (JAXA) offers freely available satellite orbit and clock correction products called Multi-GNSS Advanced Demonstration Tool for Orbit and Clock Analysis (MADOCA),which can enhance positioning accuracy through the precise point positioning (PPP) method.This study focuses on evaluating PPP static mode positioning using MADOCA products and comparing the results with the highly precise relative positioning method.By analyzing a network of 20 GNSS stations in Indonesia,we found that the PPP method using MADOCA products provided favorable positioning estimates.The median discrepancies and the corresponding median absolute deviation (MAD) for easting,northing,and up components were estimated as 9±18 mm,10±9 mm,and 3±40 mm,respectively.These results indicate that PPP with MADOCA products can be a reliable alternative for establishing Indonesia's horizontal control networks,particularly for orders 0,1,2,and 3,and for a broad spectrum of geoscience monitoring activities.However,considerations such as epoch transformations and seismic activities should be taken into account for accurate positioning applications that comply with the definition of the national reference framework. 展开更多
关键词 Global Navigation Satellite System(GNSS) precise point positioning(PPP) MADOCA Positioning evaluation
原文传递
Caliper-based precise positioning of the target(CALIPPOT)for transcranial magnetic stimulation without neuronavigation system
19
作者 Yunsong Hu Rong Zeng +5 位作者 Juan Yue Qiu Ge Hongxiao Wang Zijian Feng Jue Wang Yufeng Zang 《General Psychiatry》 CSCD 2024年第2期311-314,共4页
To the editor:Transcranial magnetic stimulation(TMS)is a non-invasive brain modulation technique.One important usage of TMS is the transient interruption of cognitive brain function(also named virtual lesion)for inves... To the editor:Transcranial magnetic stimulation(TMS)is a non-invasive brain modulation technique.One important usage of TMS is the transient interruption of cognitive brain function(also named virtual lesion)for investigating precisely where and when a specific cortical region contributes to a specific cognitive function.1 A more important usage of TMS is the treatment of brain disorders by repetitive TMS(rTMS). 展开更多
关键词 STIMULATION technique. precise
暂未订购
The convergence mechanism of Low Earth Orbit enhanced GNSS(LeGNSS)Precise Point Positioning(PPP)
20
作者 Yanning Zheng Haibo Ge Bofeng Li 《Geo-Spatial Information Science》 CSCD 2024年第6期2211-2226,共16页
The recruitment of the Low Earth Orbit(LEO)constellation is recognized as an effective way to augment Global Navigation Satellite System(GNSS)Precise Point Positioning(PPP)in the near future.Its potential to accelerat... The recruitment of the Low Earth Orbit(LEO)constellation is recognized as an effective way to augment Global Navigation Satellite System(GNSS)Precise Point Positioning(PPP)in the near future.Its potential to accelerate PPP convergence has been proved with simulated data.However,the mechanism of how the geometric change of LEO accelerates the convergence of GNSS PPP has not been studied from a theoretical perspective,which hampers the understanding and exploitation of the enhancement of LEO.In this article,the convergence mechanism of LEO enhanced GNSS PPP is investigated in terms of theoretical analysis and simulated verification.To show the characteristics of the ambiguities during convergence,eigenvalue decomposition is used to divide the ambiguities into orthogonal components,named geometric-related component,clock-error-related component,and independent component.The results show that the precision of geometric-related components of ambiguities,which correlates with position parameters,is low at a single epoch,while the precision can be greatly improved with the fast geometric change of LEO.On the other hand,the precision of clock-error-related components of ambiguities,which correlates with clock errors,cannot be improved by fast geometric change of LEO constellation due to its irrelevance to geometry,which causes the precision of each ambiguity to be low.Further investigations show that single-differenced ambiguities could overcome this drawback and are beneficial to ambiguity resolution. 展开更多
关键词 Low Earth Orbit enhanced GNSS(LeGNSS) precise Point Positioning(PPP) convergence time CORRELATION
原文传递
上一页 1 2 140 下一页 到第
使用帮助 返回顶部