This work describes the experimental results of pyrometallurgical removing of arsenic from the dust collected in the electrostatic copper precipitators within the gas cleaning system of a Copper Flash Smelting Furnace...This work describes the experimental results of pyrometallurgical removing of arsenic from the dust collected in the electrostatic copper precipitators within the gas cleaning system of a Copper Flash Smelting Furnace. The generation of dust in the copper smelting worldwide ranges from 2 - 15 wt% per ton of a copper concentrate. In Chile, copper smelters produce approximately 110 kt/y of dust with a concentration of arsenic between 1 and 15 wt%. The dust is a complex of metals oxides and sulfurs with copper concentrations greater than 10 wt% and relatively high silver concentrations. Since its high arsenic concentration, it is difficult to recover valuable metals through hydrometallurgical processes or by direct recirculation of the dust in a smelting furnace. Thus, the development of pyrometallurgical processes aimed at reducing the concentration of arsenic in the dust (<0.5 wt%) is the main objective of this study, giving particular attention to the production of a suitable material to be recirculated in operations of copper smelting. The work provides a detailed characterization of the dust including the Quantitative Evaluation of Minerals by Scanning Electron Microscopy (QEMSCAN), Scanning Electron Microscope-Energy Dispersive X-ray Analysis (SEM/EDS), X-Ray Diffraction (XRD), the elemental chemical analysis using Atomic Adsorption (AAS), and X-Ray Fluorescence (X-RF). By considering that arsenic volatilization requires a process of sulfidation-decomposition-oxidation, this work seeks to explore the roasting of mixtures of copper concentrate/dust, sulfur/dust, and pyrrhotite/dust. By the elemental chemical analysis of the mixture after and before the roasting process, the degree of arsenic volatilization was determined. The results indicated the effects of parameters such as roasting temperature, gas flow, gas composition, and the ratio of mixtures (concentrate/dust, sulfur/dust, or pyrrhotite/dust) on the volatilization of arsenic. According to the findings, the concentration of arsenic in the roasted Flash Smelting dust can be reduced to a relatively low level (<0.5 wt%), which allows its recirculation into an smelting process.展开更多
The paper presents two methods for the formulation of free vibration analysis of collecting electrodes of precipitators.The first,called the hybrid finite element method, combines the finit element method used for cal...The paper presents two methods for the formulation of free vibration analysis of collecting electrodes of precipitators.The first,called the hybrid finite element method, combines the finit element method used for calculations of spring deformations with the rigid finite element method used to reflect mass and geometrical features,which is called the hybrid finite element method.As a result,a model with a diagonal mass matrix is obtained.Due to a specific geometry of the electrodes,which are long plates of complicated shapes,the second method proposed is the strip method which is a semi-analytical method.The strip method allows us to formulate the equations of motion with a considerably smaller number of generalized coordinates.Results of numerical calculations obtained by both methods are compared with those obtained using commercial software like ANSYS and ABAQUS.Good compatibility of results is achieved.展开更多
The possibility of both concentration and temperature multiplicities has bcen studied for the case of acontinuous adiabatic mixed suspension mixed product removal(MSMPR)reactive precipitaior.A Process in-volving homog...The possibility of both concentration and temperature multiplicities has bcen studied for the case of acontinuous adiabatic mixed suspension mixed product removal(MSMPR)reactive precipitaior.A Process in-volving homogeneous chemical reaction in first order reaction kinetics with respect to each of the reactive compo-nents and subsequent crystallization described by conventional power law growth and power law magma depen-dent nucleation models is considered.The temperature dependency of each of these kinetics is described by Ar-rhenius relations.Parameter regions are determined in which multiple steady states exist.The linear stability ofthese steady states is analyzed by using the Routh criterion approach.展开更多
Northeast China(NEC),a critical agricultural and ecological zone,has experienced intensified hydrological variability under global warming,with cascading impacts on food security and ecosystem resilience.This study ut...Northeast China(NEC),a critical agricultural and ecological zone,has experienced intensified hydrological variability under global warming,with cascading impacts on food security and ecosystem resilience.This study utilized observational data and two new generation reanalysis products(i.e.,the fifth major global reanalysis produced by ECMWF(ERA5)and the Japanese Reanalysis for Three Quarters of a Century(JRA-3Q))to investigate the shift changes in precipitation in NEC around 2000 and associated water vapor transport.The analysis identified a pivotal interdecadal shift in 1998/99,transitioning from moderate increases(17.5 mm/10 yr during 1980-1998)to accelerated but more variable precipitation growth(85.4 mm/10 yr post-1999).While the mean precipitation during the post-shift period decreased,enhanced anticyclonic circulation amplified moisture divergence over continental NEC,redirecting vapor flux toward coastal regions.Crucially,trajectory analysis demonstrated regime-dependent moisture sourcing:midlatitude westerlies dominated during wet extremes(44% of trajectories in 1998),whereas East Asian monsoon flows prevailed in drought years(36% of trajectories in 2007).The post-1998 period exhibited increased reliance on localized recycling(45%of mid-tropospheric trajectories),reflecting weakened monsoonal inflow.These findings highlight NEC’s growing vulnerability to competing moisture pathways and atmospheric blocking-a dual mechanism that explains rising extremes despite declining mean precipitation.By reconciling dataset discrepancies(ERA5 vs.JRA-3Q trends)and elucidating circulation-precipitation linkages,this work provides actionable insights for climate-resilient agriculture in NEC’s water-stressed ecosystems.展开更多
This study investigates the width of the secondary eyewall(SE)immediately following its formation in tropical cyclones with surface environmental winds aligned and counter-aligned with environmental vertical wind shea...This study investigates the width of the secondary eyewall(SE)immediately following its formation in tropical cyclones with surface environmental winds aligned and counter-aligned with environmental vertical wind shear(VWS),using idealized numerical experiments.Results reveal that the SE develops greater radial extent when surface winds align with VWS compared to counter-aligned conditions.In alignment configurations,shear-enhanced surface winds on the right flank amplify surface enthalpy fluxes,thereby elevating boundary-layer entropy within the downshear outer-core region.Subsequently,more vigorous outer rainbands develop,inducing marked acceleration of tangential winds in the outer core preceding SE formation.The resultant radial expansion of supergradient winds near the boundary-layer top triggers widespread convective activity immediately beyond the inner core.Progressive axisymmetrization of this convective forcing ultimately generates an expansive SE structure.展开更多
Using multi-source reanalysis data,this study examines the relationship between the tropical Pacific-Atlantic SST Dipole Mode(TPA-DM)and summer precipitation in North China(NCSP)on the interannual timescale during the...Using multi-source reanalysis data,this study examines the relationship between the tropical Pacific-Atlantic SST Dipole Mode(TPA-DM)and summer precipitation in North China(NCSP)on the interannual timescale during the period of 1979-2022.The results show that the TPA-DM,the dominant pattern of interannual variability in the tropical Pacific and Atlantic regions,exhibits a significant negative correlation with NCSP.The positive phase of TPA-DM induces subsidence over the Maritime Continent through a zonal circulation pattern,which initiates a Pacific-Japan-like wave train along the East Asian coast.The circulation anomalies lead to moisture deficits and convergence subsidence over North China,leading to below-normal rainfall.Further analysis reveals that cooler SST in the Southern Tropical Atlantic facilitates the persistence of the TPA-DM by stimulating the anomalous Walker circulation associated with wind-evaporation-SST-convection feedback.展开更多
Based on reanalysis data from 1979 to 2021,this study explores the spatial distribution of the Southern Indian Ocean Dipole(SIOD)and its individual and synergistic effects with the El Niño-Southern Oscillation(EN...Based on reanalysis data from 1979 to 2021,this study explores the spatial distribution of the Southern Indian Ocean Dipole(SIOD)and its individual and synergistic effects with the El Niño-Southern Oscillation(ENSO)on summer precipitation in China.The inverse phase spatial distribution of sea surface temperature anomalies(SSTAs)in the southwest and northeast of the southern Indian Ocean is defined as the SIOD.Positive SIOD events(positive SSTAs in the southwest,negative SSTAs in the northeast)are associated with La Niña events(Central Pacific(CP)type),while negative SIOD events(negative SSTAs in the southwest,positive SSTAs in the northeast)are associated with El Niño events(Eastern Pacific(EP)type).Both SIOD and ENSO have certain impacts on summer precipitation in China.Precipitation in the Yangtze River basin decreases,while precipitation in southern China increases during pure positive SIOD(P_PSIOD)events.During pure negative SIOD(P_NSIOD)events,the changes in precipitation are exactly the opposite of those during P_PSIOD events,which may be due to differences in the cross-equatorial flow in the southern Indian Ocean,particularly in low-level Australian cross-equatorial flow.When positive SIOD and CP-type La Niña events occur simultaneously(PSIOD+La_Niña),precipitation increases in the Yangtze-Huaihe River basin,while it decreases in northern China.When negative SIOD and EP-type El Niño events occur simultaneously(NSIOD+El_Niño),precipitation in the Yangtze-Huaihe River basin is significantly lower than during P_NSIOD events.This is caused by differences in water vapor originating from the Pacific Ocean during different events.展开更多
Global land monsoon precipitation(GLMP)is highly sensitive to changes in interhemispheric thermal contrast(ITC).Amplified interhemispheric asymmetries of GLMP due to enhanced ITC driven by high-level anthropogenic emi...Global land monsoon precipitation(GLMP)is highly sensitive to changes in interhemispheric thermal contrast(ITC).Amplified interhemispheric asymmetries of GLMP due to enhanced ITC driven by high-level anthropogenic emissions are expected to simultaneously increase the probability of regional floods and droughts,threatening ecosystems within global terrestrial monsoon regions and the freshwater supply for billions of residents in these areas.In this study,the responses of GLMP to the evolution of ITC toward the carbon neutrality goal are assessed using multimodel outputs from a new model intercomparison project(CovidMIP).The results show that the Northern Hemisphere-Southern Hemisphere(NH-SH)asymmetry of GLMP in boreal summer weakens during the 2040s,as a persistent reduction in well-mixed greenhouse gas(WMGHG)emissions leads to a downward trend in the ITC after 2040.At the same time,the reduction in WMGHG emissions dampens the Eastern Hemisphere-Western Hemisphere(EH-WH)asymmetry of GLMP by inducing La Niña-like cooling and enhancing moisture transport to Inner America.The resulting increases in land monsoon precipitation(LMP)may alleviate drought under the global warming scenario by about 19%-25%and 7%-9%in the WH and SH monsoon regions,respectively.However,a persistent reduction in aerosol emissions in Asia will dominate the increases in LMP in this region until the mid-21st century,and these increases may be approximately 23%-60%of the growth under the global warming scenario.Our results highlight the different rates of response of aerosol and WMGHG concentrations to the carbon neutrality goal,leading to various changes in LMP at global and regional scales.展开更多
This paper reports the use of a colloidal Pd0 catalysis system to metallize the surface of precipitators separated from coal fly-ash, and metals such as Cu, Ni etc. are deposited on the precipitators surface. Alternat...This paper reports the use of a colloidal Pd0 catalysis system to metallize the surface of precipitators separated from coal fly-ash, and metals such as Cu, Ni etc. are deposited on the precipitators surface. Alternatively, according to the characteristic surface of cenospheres, an Ag coating catalysis system is adopted to first deposit Ag on the cenospheres surface, followed, if necessary, by the deposition of other metals such as Cu, Ni, etc. on the Ag coating to produce monolayer and multilayer metal-coated cenospheres. The surface characteristics and the morphologies of the metal coatings are examined in detail with scanning electron microscopy (SEM), energy dispersive spectroscopy (EDX) and X-ray photoelectron spectroscopy (XPS) techniques. It can be shown that the quality of metal coatings derived from the Ag coating catalysis system, is better than that of the colloidal Pd0 catalysis system.展开更多
Numerical simulations of electrostatic precipitators featuring wire and spiked electrode designs were performed to determine particle behavior and separation efficiency. The applied-voltage mechanism that alters the f...Numerical simulations of electrostatic precipitators featuring wire and spiked electrode designs were performed to determine particle behavior and separation efficiency. The applied-voltage mechanism that alters the flow structure of particles through ionic winds and mean electric fields are revealed. Numeri- cal studies throughout the past years have shown these structures for channel and pipe configurations. However, less attention was given to field averaging for the ni,~r-product and electric field. Our study focuses on this averaging and illustrates relevant differences between multidimensional setups concern- ~ng these fields. Turbulence was modeled using the Reynolds-averaged Navier-Stokes equations with a second-order Reynolds-stress-model closure. A high three-dimensionality of the ionic wind-induced turbulence is presented. This leads to an increase in the submicron-particle precipitation rate. The results confirm the dependence of separation efficiency on particle density and permittivity, thereby showing the advantages of spiked wires compared with wire-plate setups used in electrostatic precipitators.展开更多
Electrostatic precipitators clean away the particulate matter of exhaust gases in manifold industrial processes.Parameter studies of particle separation in the size range of several 100 nm to 25μm is of particular in...Electrostatic precipitators clean away the particulate matter of exhaust gases in manifold industrial processes.Parameter studies of particle separation in the size range of several 100 nm to 25μm is of particular interest for the prediction of precipitation efficiencies and emissions.Models typically cover the transport of particles towards walls of the precipitator.However,no model yet covers the possible re-entrainment of particles from layers formed at the walls back into the gas flow.This study presents the implementation of a new time-resolving model for electrostatic precipitation utilizing a re-entrainment model.Experimental data support the results of modelling.The model uses a statistical approach based on properties of the particulate layer forming at the precipitator walls.The model is used for the analysis of the redispersion of particles in a laboratory-scale electrostatic precipitator(Sander,Gawor,&Fritsching,2018).Results show reduced precipitation efficiencies for particles larger than 5μm as particles have higher kinetic impact energies and lower bounding energy at the layer surface.Time dynamics reveal a steady-state behavior of the separation for CaCO3(limestone,trademark"Ulmer WeissR")while Al2O3(trademark"Pural NFR")precipitation is affected by layer buildup at the walls increasing over several minutes.展开更多
Solar radiation modification,a scheme aimed at mitigating rapid global warming triggered by anthropogenic greenhouse gas emissions,has been explored through the G1ext experiment under the Geoengineering Model Intercom...Solar radiation modification,a scheme aimed at mitigating rapid global warming triggered by anthropogenic greenhouse gas emissions,has been explored through the G1ext experiment under the Geoengineering Model Intercomparison Project(GeoMIP) framework,utilizing the Chinese Academy of Sciences Earth System Model version 2(CAS-ESM2.0).This paper briefly describes the basic configuration and experimental design of the CAS-ESM2.0 for G1ext,which involves a sudden reduction in solar irradiance to counterbalance the radiative forcing of an abrupt quadrupling of atmospheric CO_(2) concentration,running for 100 years.Preliminary results show that this model can reproduce well the compensatory effect of a uniform decrease in global solar radiation on the radiative forcing resulting from an abrupt quadrupling of CO_(2) concentration.Like other Earth system models,CAS-ESM2.0 reasonably captures variations in radiative adjustments,surface air temperature,and precipitation patterns,both globally and locally,under the G1ext scenario.The generated datasets have been released on the Earth System Grid Federation data server,providing insight into the potential efficacy and impact of solar geoengineering strategies.展开更多
The effect of adding Cr and Mg on the microstructure and properties of Cu−Ti alloys was examined.Cu−Ti−Cr−Mg alloys were fabricated using vacuum induction melting.The microstructure and phase composition of Cu−Ti−Cr−M...The effect of adding Cr and Mg on the microstructure and properties of Cu−Ti alloys was examined.Cu−Ti−Cr−Mg alloys were fabricated using vacuum induction melting.The microstructure and phase composition of Cu−Ti−Cr−Mg alloys in different aging states were characterized.Additionally,the hardness and electrical conductivity of the materials were investigated.Results show that the precipitation pattern in Cu−Ti−Cr−Mg alloys resembled that of binary Cu−Ti alloys,with Cr and Ti forming the intermetallic compound of Cr_(2)Ti during casting.The introduction of Cr and Mg increased the hardness of the alloy.Increasing the Mg content in the Cu−Ti−Cr−Mg alloy led to grain refinement and fast nucleation of continuous precipitates during the early aging stage.Moreover,the addition of Mg impeded discontinuous precipitate growth by segregating along the precipitate surfaces.Consequently,the Cu−4Ti−0.5Cr−1Mg alloy exhibited limited discontinuous precipitates at the grain boundaries and a gradual decline in hardness during the over-aging period.展开更多
Accurate seasonal precipitation forecasts,especially for extreme events,are crucial to preventing meteorological hazards and their potential impacts on national development,social activity,and security.However,the int...Accurate seasonal precipitation forecasts,especially for extreme events,are crucial to preventing meteorological hazards and their potential impacts on national development,social activity,and security.However,the intensity of summer precipitation is often largely underestimated in many current dynamic models.This study uses a deep learning method called Cycle-Consistent Generative Adversarial Networks(CycleGAN)to improve the seasonal forecasts for June-JulyAugust precipitation in southeastern China by the Nanjing University of Information Science and Technology Climate Forecast System(NUIST-CFS 1.0).The results suggest that the CycleGAN-based model significantly improves the accuracy in predicting the spatiotemporal distribution of summer precipitation compared to the traditional quantile mapping(QM)method.Using the unpaired bias-correction model,we can also obtain advanced forecasts of the frequency,intensity,and duration of extreme precipitation events over the dynamic model predictions.This study expands the potential applications of deep learning models toward improving seasonal precipitation forecasts.展开更多
The T_(1)(Al_(2) CuLi)phase is one of the most effective strengthening nanoscale-precipitate in Al-Cu alloys with Li.However,its formation and evolution still need to be further clarified during aging due to the compl...The T_(1)(Al_(2) CuLi)phase is one of the most effective strengthening nanoscale-precipitate in Al-Cu alloys with Li.However,its formation and evolution still need to be further clarified during aging due to the complex precipitation sequences.Here,a detailed investigation has been carried out on the atomic struc-tural evolution of T_(1) precipitate in an aged Al-Cu-Li-Mg-Ag alloy using state-of-the-art Cs-corrected high-angle annular dark field(HAADF)-coupled with integrated differential phase contrast(iDPC)-scanning transmission electron microscopy(STEM)and energy-dispersive X-ray spectroscopy(EDXS)techniques.An intermediate T_(1)’phase between T_(1p) and T_(1) phase,with a crystal structure and orientation rela-tionship consistent with T_(1),but exhibiting different atomic occupancy and chemical composition was found.We observed the atomic structural transformation from T_(1p) to T_(1)’phase(fcc→hcp),involving only 1/12<112>Al shear component.DFT calculation results validated our proposed structural models and the precipitation sequence.Besides,the distributions of minor solute elements(Ag,Mg,and Zn)in the pre-cipitates exhibited significant differences.These findings may contribute to a further understanding of the nucleation mechanism of T_(1) precipitate.展开更多
Gadolinium(Gd)is one of the most effective strengthening elements for magnesium alloys.The development of commercially available Mg-Gd alloys with high Gd content and the optimization of their preparation processes ha...Gadolinium(Gd)is one of the most effective strengthening elements for magnesium alloys.The development of commercially available Mg-Gd alloys with high Gd content and the optimization of their preparation processes have been a major focus in magnesium alloy research.In this study,a Mg-23Gd-2Zn-0.4Zr alloy with ultra-high Gd content is designed,and high-quality fabrication is achieved using laser-directed energy deposition(LDED)technology.Through heat treatment and microstructure control,a balance between tensile strength(425 MPa)and elongation(3.4%)is achieved.The ultra-high strength of the LDED-T6 VZ232K alloy is primarily attributed to precipitation strengthening caused by the ultra-high density(2.4×10^(4)μm^(-2))ofβphase.The high ductility is mainly due to the modification of the fracture mode,facilitated by the introduction of a substantial number of stacking fault structures during solution heat treatment.The extended hardness plateau(exceeding 138 Hv)and high yield strength(exceeding 300 MPa)are associated with the three-directional cross-interlocked structure of theβphase in the over-aged state at 220℃ and 250℃.The analysis of the LDED-VZ232K alloy indicates that reduced heat input during the additive manufacturing(AM)process is critical for the defect-free fabrication of alloys with ultra-high Gd content.展开更多
Precipitation is often used for the preparation of La(OH)_(3)with precipitants of liquid alkali and ammonia.To solve the problems of high cost and wastewater pollution caused by common precipitants,the active MgO synt...Precipitation is often used for the preparation of La(OH)_(3)with precipitants of liquid alkali and ammonia.To solve the problems of high cost and wastewater pollution caused by common precipitants,the active MgO synthesized by pyrolysis was used as the precipitant to prepare La(OH)_(3).The species distribution of LaCl_(3)and LaCl_(3)-MgCl_(2)mixed system solution was calculated,and the kinetic analysis of the precipi-tation process was carried out to confirm the key factors influencing the precipitation of La(OH)_(3).The results show that La(OH)_(3)with D_(50)of 5.57μm,a specific surface area of 25.70 m^(2)/g,a rod-like shape,and MgO content of 0.044 wt%,was successfully prepared by adding active MgO.The precipitation ratio of La reaches 99.92%.The La(OH)_(3)precipitation is controlled by the diffusion process.The activity of MgO has a significant influence on MgO content in the precipitate.The preparation of La(OH)_(3)by active MgO provides a potential way for an eco-friendly preparation method of rare earth.展开更多
Recent studies have shown that synergistic precipitation of continuous precipitates(CPs)and discontinuous precipitates(DPs)is a promising method to simultaneously improve the strength and electrical conductivity of Cu...Recent studies have shown that synergistic precipitation of continuous precipitates(CPs)and discontinuous precipitates(DPs)is a promising method to simultaneously improve the strength and electrical conductivity of Cu-Ni-Si alloy.However,the complex relationship between precipitates and two-stage aging process presents a significant challenge for the optimization of process parameters.In this study,machine learning models were established based on orthogonal experiment to mine the relationship between two-stage aging parameters and properties of Cu-5.3Ni-1.3Si-0.12Nb alloy with preferred formation of DPs.Two-stage aging parameters of 400℃/75 min+400℃/30 min were then obtained by multi-objective optimization combined with an experimental iteration strategy,resulting in a tensile strength of 875 MPa and a conductivity of 41.43%IACS,respectively.Such an excellent comprehensive performance of the alloy is attributed to the combined precipitation of DPs and CPs(with a total volume fraction of 5.4%and a volume ratio of CPs to DPs of 6.7).This study could provide a new approach and insight for improving the comprehensive properties of the Cu-Ni-Si alloys.展开更多
In this work,the aging response and mechanism of dual-phase Mg-Li-Al-Zn alloy at various temperatures are investigated.The results show that the strengthening after quenching is primarily attributed to the immediate p...In this work,the aging response and mechanism of dual-phase Mg-Li-Al-Zn alloy at various temperatures are investigated.The results show that the strengthening after quenching is primarily attributed to the immediate precipitation of the semi-coherent~Mg_(3)Zn phase.The aging softening of the studied alloy is mainly caused by the rapid transformation of the strengthening~Mg_(3)Zn phase to the softening MgLi(Al,Zn)phase,along with the coarsening of theα-Mg matrix and precipitates withinβ-Li matrix.Further analysis indicates that the quick precipitation and transformation of~Mg_(3)Zn is a consequence of the high diffusion rate of solute atoms,resulting from dense vacancy concentration in theβ-Li matrix.This research bridges a critical gap in the study of aging mechanism in the dual-phase Mg-Li-Al-Zn alloy,providing a theoretical basis for the development and application of high-performance and thermal-stable Mg-Li alloys.展开更多
文摘This work describes the experimental results of pyrometallurgical removing of arsenic from the dust collected in the electrostatic copper precipitators within the gas cleaning system of a Copper Flash Smelting Furnace. The generation of dust in the copper smelting worldwide ranges from 2 - 15 wt% per ton of a copper concentrate. In Chile, copper smelters produce approximately 110 kt/y of dust with a concentration of arsenic between 1 and 15 wt%. The dust is a complex of metals oxides and sulfurs with copper concentrations greater than 10 wt% and relatively high silver concentrations. Since its high arsenic concentration, it is difficult to recover valuable metals through hydrometallurgical processes or by direct recirculation of the dust in a smelting furnace. Thus, the development of pyrometallurgical processes aimed at reducing the concentration of arsenic in the dust (<0.5 wt%) is the main objective of this study, giving particular attention to the production of a suitable material to be recirculated in operations of copper smelting. The work provides a detailed characterization of the dust including the Quantitative Evaluation of Minerals by Scanning Electron Microscopy (QEMSCAN), Scanning Electron Microscope-Energy Dispersive X-ray Analysis (SEM/EDS), X-Ray Diffraction (XRD), the elemental chemical analysis using Atomic Adsorption (AAS), and X-Ray Fluorescence (X-RF). By considering that arsenic volatilization requires a process of sulfidation-decomposition-oxidation, this work seeks to explore the roasting of mixtures of copper concentrate/dust, sulfur/dust, and pyrrhotite/dust. By the elemental chemical analysis of the mixture after and before the roasting process, the degree of arsenic volatilization was determined. The results indicated the effects of parameters such as roasting temperature, gas flow, gas composition, and the ratio of mixtures (concentrate/dust, sulfur/dust, or pyrrhotite/dust) on the volatilization of arsenic. According to the findings, the concentration of arsenic in the roasted Flash Smelting dust can be reduced to a relatively low level (<0.5 wt%), which allows its recirculation into an smelting process.
基金Research is financed from the project NR03-0036-04/2008
文摘The paper presents two methods for the formulation of free vibration analysis of collecting electrodes of precipitators.The first,called the hybrid finite element method, combines the finit element method used for calculations of spring deformations with the rigid finite element method used to reflect mass and geometrical features,which is called the hybrid finite element method.As a result,a model with a diagonal mass matrix is obtained.Due to a specific geometry of the electrodes,which are long plates of complicated shapes,the second method proposed is the strip method which is a semi-analytical method.The strip method allows us to formulate the equations of motion with a considerably smaller number of generalized coordinates.Results of numerical calculations obtained by both methods are compared with those obtained using commercial software like ANSYS and ABAQUS.Good compatibility of results is achieved.
文摘The possibility of both concentration and temperature multiplicities has bcen studied for the case of acontinuous adiabatic mixed suspension mixed product removal(MSMPR)reactive precipitaior.A Process in-volving homogeneous chemical reaction in first order reaction kinetics with respect to each of the reactive compo-nents and subsequent crystallization described by conventional power law growth and power law magma depen-dent nucleation models is considered.The temperature dependency of each of these kinetics is described by Ar-rhenius relations.Parameter regions are determined in which multiple steady states exist.The linear stability ofthese steady states is analyzed by using the Routh criterion approach.
基金supported by the National Natural Science Foundation of China[grant numbers 42275185 and 42205032]the Fundamental Research Funds for the Central Universities[grant number B250201118]。
文摘Northeast China(NEC),a critical agricultural and ecological zone,has experienced intensified hydrological variability under global warming,with cascading impacts on food security and ecosystem resilience.This study utilized observational data and two new generation reanalysis products(i.e.,the fifth major global reanalysis produced by ECMWF(ERA5)and the Japanese Reanalysis for Three Quarters of a Century(JRA-3Q))to investigate the shift changes in precipitation in NEC around 2000 and associated water vapor transport.The analysis identified a pivotal interdecadal shift in 1998/99,transitioning from moderate increases(17.5 mm/10 yr during 1980-1998)to accelerated but more variable precipitation growth(85.4 mm/10 yr post-1999).While the mean precipitation during the post-shift period decreased,enhanced anticyclonic circulation amplified moisture divergence over continental NEC,redirecting vapor flux toward coastal regions.Crucially,trajectory analysis demonstrated regime-dependent moisture sourcing:midlatitude westerlies dominated during wet extremes(44% of trajectories in 1998),whereas East Asian monsoon flows prevailed in drought years(36% of trajectories in 2007).The post-1998 period exhibited increased reliance on localized recycling(45%of mid-tropospheric trajectories),reflecting weakened monsoonal inflow.These findings highlight NEC’s growing vulnerability to competing moisture pathways and atmospheric blocking-a dual mechanism that explains rising extremes despite declining mean precipitation.By reconciling dataset discrepancies(ERA5 vs.JRA-3Q trends)and elucidating circulation-precipitation linkages,this work provides actionable insights for climate-resilient agriculture in NEC’s water-stressed ecosystems.
基金jointly supported by the National Natural Science Foundation of China[grant numbers U2342202,42175005,and 42175016]the Qing Lan Project[grant number R2023Q06]。
文摘This study investigates the width of the secondary eyewall(SE)immediately following its formation in tropical cyclones with surface environmental winds aligned and counter-aligned with environmental vertical wind shear(VWS),using idealized numerical experiments.Results reveal that the SE develops greater radial extent when surface winds align with VWS compared to counter-aligned conditions.In alignment configurations,shear-enhanced surface winds on the right flank amplify surface enthalpy fluxes,thereby elevating boundary-layer entropy within the downshear outer-core region.Subsequently,more vigorous outer rainbands develop,inducing marked acceleration of tangential winds in the outer core preceding SE formation.The resultant radial expansion of supergradient winds near the boundary-layer top triggers widespread convective activity immediately beyond the inner core.Progressive axisymmetrization of this convective forcing ultimately generates an expansive SE structure.
基金jointly supported by the Second Tibetan Plateau Scientific Expedition and Research Program[grant number-ber 2019QZKK0103]the National Natural Science Foundation of China[grant number 42293294]the China Meteorological Admin-istration Climate Change Special Program[grant number QBZ202303]。
文摘Using multi-source reanalysis data,this study examines the relationship between the tropical Pacific-Atlantic SST Dipole Mode(TPA-DM)and summer precipitation in North China(NCSP)on the interannual timescale during the period of 1979-2022.The results show that the TPA-DM,the dominant pattern of interannual variability in the tropical Pacific and Atlantic regions,exhibits a significant negative correlation with NCSP.The positive phase of TPA-DM induces subsidence over the Maritime Continent through a zonal circulation pattern,which initiates a Pacific-Japan-like wave train along the East Asian coast.The circulation anomalies lead to moisture deficits and convergence subsidence over North China,leading to below-normal rainfall.Further analysis reveals that cooler SST in the Southern Tropical Atlantic facilitates the persistence of the TPA-DM by stimulating the anomalous Walker circulation associated with wind-evaporation-SST-convection feedback.
基金supported by the National Natural Science Foundation of China[grant numbers 41975087,U2242212,and 41975085]supported by the National Natural Science Foundation of China[grant number U2242212]。
文摘Based on reanalysis data from 1979 to 2021,this study explores the spatial distribution of the Southern Indian Ocean Dipole(SIOD)and its individual and synergistic effects with the El Niño-Southern Oscillation(ENSO)on summer precipitation in China.The inverse phase spatial distribution of sea surface temperature anomalies(SSTAs)in the southwest and northeast of the southern Indian Ocean is defined as the SIOD.Positive SIOD events(positive SSTAs in the southwest,negative SSTAs in the northeast)are associated with La Niña events(Central Pacific(CP)type),while negative SIOD events(negative SSTAs in the southwest,positive SSTAs in the northeast)are associated with El Niño events(Eastern Pacific(EP)type).Both SIOD and ENSO have certain impacts on summer precipitation in China.Precipitation in the Yangtze River basin decreases,while precipitation in southern China increases during pure positive SIOD(P_PSIOD)events.During pure negative SIOD(P_NSIOD)events,the changes in precipitation are exactly the opposite of those during P_PSIOD events,which may be due to differences in the cross-equatorial flow in the southern Indian Ocean,particularly in low-level Australian cross-equatorial flow.When positive SIOD and CP-type La Niña events occur simultaneously(PSIOD+La_Niña),precipitation increases in the Yangtze-Huaihe River basin,while it decreases in northern China.When negative SIOD and EP-type El Niño events occur simultaneously(NSIOD+El_Niño),precipitation in the Yangtze-Huaihe River basin is significantly lower than during P_NSIOD events.This is caused by differences in water vapor originating from the Pacific Ocean during different events.
基金funded by the National Natural Science Foundation of China(Grant No.42275039)the Meteorological Joint Fund by NSF and CMA(Grant No.U2342224)+1 种基金the National Key R&D Program of China(Grant No.2022YFC3701202)the S&T Development Fund of CAMS(Grant No.2024KJ019)。
文摘Global land monsoon precipitation(GLMP)is highly sensitive to changes in interhemispheric thermal contrast(ITC).Amplified interhemispheric asymmetries of GLMP due to enhanced ITC driven by high-level anthropogenic emissions are expected to simultaneously increase the probability of regional floods and droughts,threatening ecosystems within global terrestrial monsoon regions and the freshwater supply for billions of residents in these areas.In this study,the responses of GLMP to the evolution of ITC toward the carbon neutrality goal are assessed using multimodel outputs from a new model intercomparison project(CovidMIP).The results show that the Northern Hemisphere-Southern Hemisphere(NH-SH)asymmetry of GLMP in boreal summer weakens during the 2040s,as a persistent reduction in well-mixed greenhouse gas(WMGHG)emissions leads to a downward trend in the ITC after 2040.At the same time,the reduction in WMGHG emissions dampens the Eastern Hemisphere-Western Hemisphere(EH-WH)asymmetry of GLMP by inducing La Niña-like cooling and enhancing moisture transport to Inner America.The resulting increases in land monsoon precipitation(LMP)may alleviate drought under the global warming scenario by about 19%-25%and 7%-9%in the WH and SH monsoon regions,respectively.However,a persistent reduction in aerosol emissions in Asia will dominate the increases in LMP in this region until the mid-21st century,and these increases may be approximately 23%-60%of the growth under the global warming scenario.Our results highlight the different rates of response of aerosol and WMGHG concentrations to the carbon neutrality goal,leading to various changes in LMP at global and regional scales.
文摘This paper reports the use of a colloidal Pd0 catalysis system to metallize the surface of precipitators separated from coal fly-ash, and metals such as Cu, Ni etc. are deposited on the precipitators surface. Alternatively, according to the characteristic surface of cenospheres, an Ag coating catalysis system is adopted to first deposit Ag on the cenospheres surface, followed, if necessary, by the deposition of other metals such as Cu, Ni, etc. on the Ag coating to produce monolayer and multilayer metal-coated cenospheres. The surface characteristics and the morphologies of the metal coatings are examined in detail with scanning electron microscopy (SEM), energy dispersive spectroscopy (EDX) and X-ray photoelectron spectroscopy (XPS) techniques. It can be shown that the quality of metal coatings derived from the Ag coating catalysis system, is better than that of the colloidal Pd0 catalysis system.
文摘Numerical simulations of electrostatic precipitators featuring wire and spiked electrode designs were performed to determine particle behavior and separation efficiency. The applied-voltage mechanism that alters the flow structure of particles through ionic winds and mean electric fields are revealed. Numeri- cal studies throughout the past years have shown these structures for channel and pipe configurations. However, less attention was given to field averaging for the ni,~r-product and electric field. Our study focuses on this averaging and illustrates relevant differences between multidimensional setups concern- ~ng these fields. Turbulence was modeled using the Reynolds-averaged Navier-Stokes equations with a second-order Reynolds-stress-model closure. A high three-dimensionality of the ionic wind-induced turbulence is presented. This leads to an increase in the submicron-particle precipitation rate. The results confirm the dependence of separation efficiency on particle density and permittivity, thereby showing the advantages of spiked wires compared with wire-plate setups used in electrostatic precipitators.
文摘Electrostatic precipitators clean away the particulate matter of exhaust gases in manifold industrial processes.Parameter studies of particle separation in the size range of several 100 nm to 25μm is of particular interest for the prediction of precipitation efficiencies and emissions.Models typically cover the transport of particles towards walls of the precipitator.However,no model yet covers the possible re-entrainment of particles from layers formed at the walls back into the gas flow.This study presents the implementation of a new time-resolving model for electrostatic precipitation utilizing a re-entrainment model.Experimental data support the results of modelling.The model uses a statistical approach based on properties of the particulate layer forming at the precipitator walls.The model is used for the analysis of the redispersion of particles in a laboratory-scale electrostatic precipitator(Sander,Gawor,&Fritsching,2018).Results show reduced precipitation efficiencies for particles larger than 5μm as particles have higher kinetic impact energies and lower bounding energy at the layer surface.Time dynamics reveal a steady-state behavior of the separation for CaCO3(limestone,trademark"Ulmer WeissR")while Al2O3(trademark"Pural NFR")precipitation is affected by layer buildup at the walls increasing over several minutes.
基金supported by the National Natural Science Foundation of China(Grant No.41875126)the National Key Scientific and Technological Infrastructure project “Earth System Numerical Simulation Facility”(EarthLab)。
文摘Solar radiation modification,a scheme aimed at mitigating rapid global warming triggered by anthropogenic greenhouse gas emissions,has been explored through the G1ext experiment under the Geoengineering Model Intercomparison Project(GeoMIP) framework,utilizing the Chinese Academy of Sciences Earth System Model version 2(CAS-ESM2.0).This paper briefly describes the basic configuration and experimental design of the CAS-ESM2.0 for G1ext,which involves a sudden reduction in solar irradiance to counterbalance the radiative forcing of an abrupt quadrupling of atmospheric CO_(2) concentration,running for 100 years.Preliminary results show that this model can reproduce well the compensatory effect of a uniform decrease in global solar radiation on the radiative forcing resulting from an abrupt quadrupling of CO_(2) concentration.Like other Earth system models,CAS-ESM2.0 reasonably captures variations in radiative adjustments,surface air temperature,and precipitation patterns,both globally and locally,under the G1ext scenario.The generated datasets have been released on the Earth System Grid Federation data server,providing insight into the potential efficacy and impact of solar geoengineering strategies.
基金supported by the National Natural Science Foundation of China(No.52201226)Fundamental Research Program of Shanxi Province,China(No.202103021223036)+1 种基金the Key Scientific Research Project in Shanxi Province,China(No.202102050201007)the special fund for Science and Technology Innovation Teams of Shanxi Province,China(No.202204051001004)。
文摘The effect of adding Cr and Mg on the microstructure and properties of Cu−Ti alloys was examined.Cu−Ti−Cr−Mg alloys were fabricated using vacuum induction melting.The microstructure and phase composition of Cu−Ti−Cr−Mg alloys in different aging states were characterized.Additionally,the hardness and electrical conductivity of the materials were investigated.Results show that the precipitation pattern in Cu−Ti−Cr−Mg alloys resembled that of binary Cu−Ti alloys,with Cr and Ti forming the intermetallic compound of Cr_(2)Ti during casting.The introduction of Cr and Mg increased the hardness of the alloy.Increasing the Mg content in the Cu−Ti−Cr−Mg alloy led to grain refinement and fast nucleation of continuous precipitates during the early aging stage.Moreover,the addition of Mg impeded discontinuous precipitate growth by segregating along the precipitate surfaces.Consequently,the Cu−4Ti−0.5Cr−1Mg alloy exhibited limited discontinuous precipitates at the grain boundaries and a gradual decline in hardness during the over-aging period.
基金supported by the National Key Research and Development Program of China(Grant No.2020YFA0608000)the National Natural Science Foundation of China(Grant No.42030605)+1 种基金CAAI-MindSpore Academic Fund Research Projects(CAAIXSJLJJ2023MindSpore11)the program of China Scholarships Council(No.CXXM2101180001)。
文摘Accurate seasonal precipitation forecasts,especially for extreme events,are crucial to preventing meteorological hazards and their potential impacts on national development,social activity,and security.However,the intensity of summer precipitation is often largely underestimated in many current dynamic models.This study uses a deep learning method called Cycle-Consistent Generative Adversarial Networks(CycleGAN)to improve the seasonal forecasts for June-JulyAugust precipitation in southeastern China by the Nanjing University of Information Science and Technology Climate Forecast System(NUIST-CFS 1.0).The results suggest that the CycleGAN-based model significantly improves the accuracy in predicting the spatiotemporal distribution of summer precipitation compared to the traditional quantile mapping(QM)method.Using the unpaired bias-correction model,we can also obtain advanced forecasts of the frequency,intensity,and duration of extreme precipitation events over the dynamic model predictions.This study expands the potential applications of deep learning models toward improving seasonal precipitation forecasts.
基金supported by the Pre-research fund(No.412130024).
文摘The T_(1)(Al_(2) CuLi)phase is one of the most effective strengthening nanoscale-precipitate in Al-Cu alloys with Li.However,its formation and evolution still need to be further clarified during aging due to the complex precipitation sequences.Here,a detailed investigation has been carried out on the atomic struc-tural evolution of T_(1) precipitate in an aged Al-Cu-Li-Mg-Ag alloy using state-of-the-art Cs-corrected high-angle annular dark field(HAADF)-coupled with integrated differential phase contrast(iDPC)-scanning transmission electron microscopy(STEM)and energy-dispersive X-ray spectroscopy(EDXS)techniques.An intermediate T_(1)’phase between T_(1p) and T_(1) phase,with a crystal structure and orientation rela-tionship consistent with T_(1),but exhibiting different atomic occupancy and chemical composition was found.We observed the atomic structural transformation from T_(1p) to T_(1)’phase(fcc→hcp),involving only 1/12<112>Al shear component.DFT calculation results validated our proposed structural models and the precipitation sequence.Besides,the distributions of minor solute elements(Ag,Mg,and Zn)in the pre-cipitates exhibited significant differences.These findings may contribute to a further understanding of the nucleation mechanism of T_(1) precipitate.
基金financially supported by the National Key Research and Development Pragram of China(Grant No.2023YFB4603300)。
文摘Gadolinium(Gd)is one of the most effective strengthening elements for magnesium alloys.The development of commercially available Mg-Gd alloys with high Gd content and the optimization of their preparation processes have been a major focus in magnesium alloy research.In this study,a Mg-23Gd-2Zn-0.4Zr alloy with ultra-high Gd content is designed,and high-quality fabrication is achieved using laser-directed energy deposition(LDED)technology.Through heat treatment and microstructure control,a balance between tensile strength(425 MPa)and elongation(3.4%)is achieved.The ultra-high strength of the LDED-T6 VZ232K alloy is primarily attributed to precipitation strengthening caused by the ultra-high density(2.4×10^(4)μm^(-2))ofβphase.The high ductility is mainly due to the modification of the fracture mode,facilitated by the introduction of a substantial number of stacking fault structures during solution heat treatment.The extended hardness plateau(exceeding 138 Hv)and high yield strength(exceeding 300 MPa)are associated with the three-directional cross-interlocked structure of theβphase in the over-aged state at 220℃ and 250℃.The analysis of the LDED-VZ232K alloy indicates that reduced heat input during the additive manufacturing(AM)process is critical for the defect-free fabrication of alloys with ultra-high Gd content.
基金the National Key Research and Development Program of China(2022YFB3504503)the National Natural Science Foundation of China(52274355)the Gansu Province Science and Technology Major Special Project,China(22ZD6GD061).
文摘Precipitation is often used for the preparation of La(OH)_(3)with precipitants of liquid alkali and ammonia.To solve the problems of high cost and wastewater pollution caused by common precipitants,the active MgO synthesized by pyrolysis was used as the precipitant to prepare La(OH)_(3).The species distribution of LaCl_(3)and LaCl_(3)-MgCl_(2)mixed system solution was calculated,and the kinetic analysis of the precipi-tation process was carried out to confirm the key factors influencing the precipitation of La(OH)_(3).The results show that La(OH)_(3)with D_(50)of 5.57μm,a specific surface area of 25.70 m^(2)/g,a rod-like shape,and MgO content of 0.044 wt%,was successfully prepared by adding active MgO.The precipitation ratio of La reaches 99.92%.The La(OH)_(3)precipitation is controlled by the diffusion process.The activity of MgO has a significant influence on MgO content in the precipitate.The preparation of La(OH)_(3)by active MgO provides a potential way for an eco-friendly preparation method of rare earth.
基金financially supported by the National Key Research and Development Program of China(No.2023YFB3812601)the National Natural Science Foundation of China(Nos.51925401,92066205 and 92266301)the Young Elite Scientists Sponsorship Program by CAST(No.2022QNRC001).
文摘Recent studies have shown that synergistic precipitation of continuous precipitates(CPs)and discontinuous precipitates(DPs)is a promising method to simultaneously improve the strength and electrical conductivity of Cu-Ni-Si alloy.However,the complex relationship between precipitates and two-stage aging process presents a significant challenge for the optimization of process parameters.In this study,machine learning models were established based on orthogonal experiment to mine the relationship between two-stage aging parameters and properties of Cu-5.3Ni-1.3Si-0.12Nb alloy with preferred formation of DPs.Two-stage aging parameters of 400℃/75 min+400℃/30 min were then obtained by multi-objective optimization combined with an experimental iteration strategy,resulting in a tensile strength of 875 MPa and a conductivity of 41.43%IACS,respectively.Such an excellent comprehensive performance of the alloy is attributed to the combined precipitation of DPs and CPs(with a total volume fraction of 5.4%and a volume ratio of CPs to DPs of 6.7).This study could provide a new approach and insight for improving the comprehensive properties of the Cu-Ni-Si alloys.
基金supported by the Foundation Strengthening Plan Technical Field Fund(No.2021-JJ-0112)Major Scientific and Technological Innovation Project of Luoyang(No.2201029A)+1 种基金National Science and Technology Innovation Special Zone(No.02-14-01)National Natural Science Foundation of China(No.U2037601).
文摘In this work,the aging response and mechanism of dual-phase Mg-Li-Al-Zn alloy at various temperatures are investigated.The results show that the strengthening after quenching is primarily attributed to the immediate precipitation of the semi-coherent~Mg_(3)Zn phase.The aging softening of the studied alloy is mainly caused by the rapid transformation of the strengthening~Mg_(3)Zn phase to the softening MgLi(Al,Zn)phase,along with the coarsening of theα-Mg matrix and precipitates withinβ-Li matrix.Further analysis indicates that the quick precipitation and transformation of~Mg_(3)Zn is a consequence of the high diffusion rate of solute atoms,resulting from dense vacancy concentration in theβ-Li matrix.This research bridges a critical gap in the study of aging mechanism in the dual-phase Mg-Li-Al-Zn alloy,providing a theoretical basis for the development and application of high-performance and thermal-stable Mg-Li alloys.