The change in interannual precipitation variability(P_(IAV)),especially the part driven by El Niño–Southern Oscillation over the Pacific,has sparked worldwide concern.However,it is plagued by substantial uncerta...The change in interannual precipitation variability(P_(IAV)),especially the part driven by El Niño–Southern Oscillation over the Pacific,has sparked worldwide concern.However,it is plagued by substantial uncertainty,such as model uncertainty,internal variability,and scenario uncertainty.Single-model initial-condition large ensembles(SMILEs)and a polynomial fitting method were suggested to separate these uncertainty sources.However,the applicability of a widely used polynomial fitting method in the uncertainty separation of P_(IAV)projection remains unknown.This study compares three sources of uncertainty estimated from five SMILEs and 28 models with one ensemble member in phase 6 of the Coupled Model Intercomparison Project(CMIP6).Results show that the internal uncertainty based on models with one ensemble member calculated using the polynomial fitting method is significantly underestimated compared to SMILEs.However,internal variability in CMIP6 as represented in the pre-industrial control run,aligns closely with SMILEs.At 1.5°C warming above the preindustrial level,internal variability dominates globally,masking the externally forced P_(IAV)signal.At 2.0°C warming,both internal and model uncertainties are significant over regions like Central Africa,the equatorial Indian Ocean,the Maritime Continent,and the Arctic,while internal variability still dominates elsewhere.In some regions,the forced signal becomes distinguishable from internal variability.This study reveals the limitations of the polynomial fitting method in separating P_(IAV)projection uncertainties and emphasizes the importance of SMILEs for accurately quantifying uncertainty sources.It also suggests that improving the intermodel agreement at warming levels of 1.5°C and 2.0°C will not substantially reduce uncertainty in most regions.展开更多
Sikkim Himalaya hosts critical water resources such as glacial,rain,and snow-fed springs and lakes.Climate change is adversely affecting these resources in various ways,and elevation-dependent warming is prominent amo...Sikkim Himalaya hosts critical water resources such as glacial,rain,and snow-fed springs and lakes.Climate change is adversely affecting these resources in various ways,and elevation-dependent warming is prominent among them.This study is a discussion of the elevation-dependent warming(EDW),snowfall shift,and precipitation variability over Sikkim Himalaya using a high-resolution ERA5-land dataset.Furthermore,the findings show that the Sikkim Himalaya region is experiencing a warming trend from south to north.The majority of the Sikkim Himalayan region shows a declining trend in snowfall.A positive advancement in snowfall trend(at a rate of 1 mm per decade)has been noticed above 4500 meters.The S/P ratio indicates a shift in snowfall patterns,moving from lower elevations to much higher regions.This suggests that snowfall has also transitioned from Lachung and Lachen(3600 m)to higher elevated areas.Moreover,the seasonal shifting of snowfall in the recent decade is seen from January-March(JFM)to February-April(FMA).Subsequently,the preceding 21 years are being marked by a significant spatiotemporal change in temperature,precipitation,and snowfall.The potent negative correlation coefficient between temperature and snowfall(–0.9),temperature and S/P ratio(–0.5)suggested the changing nature of snowfall from solid to liquid,which further resulted in increased lower elevation precipitation.The entire Sikkim region is transitioning from a cold-dry to a warm-wet weather pattern.In the climate change scenario,a drop in the S/P ratio with altitude will continue to explain the rise in temperature over mountainous regions.展开更多
Climate va riability is an important factor leading to spatial and temporal changes in structu re and functions of plant communities.Exploring the temporal stability of communities in response to climate variability i...Climate va riability is an important factor leading to spatial and temporal changes in structu re and functions of plant communities.Exploring the temporal stability of communities in response to climate variability is essential for further evaluating the impacts of climate change to ecosystem functions and services.Current research on climate variability mainly focuses on plot-scale experiments(alpha scale),while how it impacts the long-term stability of a metacommunity(gamma scale) still needs further study.We analyzed the effects of climate variability on the temporal stability of plant communities at alpha and gamma scales based on a long-term observation of plant cover from 1938 to 1968 in a mixed-grass prairie in Kansas,western United States.展开更多
The Quasi-Biennial Oscillation(QBO)is a vital mode of stratospheric variability with significant influence on tropical and subtropical climate systems.However,its influence on precipitation variability across Eastern ...The Quasi-Biennial Oscillation(QBO)is a vital mode of stratospheric variability with significant influence on tropical and subtropical climate systems.However,its influence on precipitation variability across Eastern and Southern Africa remains insufficiently understood.This study examines the impact of the QBO on summer precipitation and associated circulation anomalies over Eastern and Southern Africa from 1979 to 2021.Using ERA5 and NOAA reanalysis datasets,we applied composite and correlation analyses to assess precipitation responses to westerly(WQBO)and easterly(EQBO)phases.Results show a dipole-like pattern,with WQBO linked to enhanced precipitation in both Eastern and Southern Africa,while EQBO is associated with reduced precipitation.Circulation analysis reveals that WQBO phases promote upper-level divergence,low-level moisture inflow,and vertical ascent,whereas EQBO phases enhance subsidence and upperlevel convergence.These findings highlight the QBO role in modulating precipitation through stratosphere-troposphere coupling and its interaction with regional circulation patterns.The quasi-periodic nature of QBO offers substantial potential for enhancing seasonal precipitation predictions when integrated with other regional circulations,such as the Botswana High and the Angola Low.展开更多
The seasonal variability and spatial distribution of precipitation are the main cause of flood and drought events. The study of spatial distribution and temporal trend of precipitation in river basins has been paid mo...The seasonal variability and spatial distribution of precipitation are the main cause of flood and drought events. The study of spatial distribution and temporal trend of precipitation in river basins has been paid more and more attention. However, in China, the precipitation data are measured by weather stations (WS) of China Meteorological Administration and hydrological rain gauges (RG) of national and local hydrology bureau. The WS data usually have long record with fewer stations, while the RG data usually have short record with more stations. The consistency and correlation of these two data sets have not been well understood. In this paper, the precipitation data from 30 weather stations for 1958-2007 and 248 rain gauges for 1995-2004 in the Haihe River basin are examined and compared using linear regression, 5-year moving average, Mann-Kendall trend analysis, Kolmogorov-Smirnov test, Z test and F test methods. The results show that the annual precipitation from both WS and RG records are normally distributed with minor difference in the mean value and variance. It is statistically feasible to extend the precipitation of RG by WS data sets. Using the extended precipitation data, the detailed spatial distribution of the annual and seasonal precipitation amounts as well as their temporal trends are calculated and mapped. The various distribution maps produced in the study show that for the whole basin the precipitation of 1958-2007 has been decreasing except for spring season. The decline trend is significant in summer, and this trend is stronger after the 1980s. The annual and seasonal precipitation amounts and changing trends are different in different regions and seasons. The precipitation is decreasing from south to north, from coastal zone to inland area.展开更多
Regional climate simulations in Asia from May 1997 to August 1998 were performed using the Seoul National University regional climate model (SNURCM) and Iowa State University regional climate model (ALT.MM5/LSM), ...Regional climate simulations in Asia from May 1997 to August 1998 were performed using the Seoul National University regional climate model (SNURCM) and Iowa State University regional climate model (ALT.MM5/LSM), which were developed by coupling the NCAR/Land Surface Model (LSM) and the Mesoscale Model (MM5). However, for physical processes of precipitation, the SNURCM used the Grell scheme for the convective parameterization scheme (CPS) and the simple ice scheme for the explicit moisture scheme (EMS), while the ALT.MM5/LSM used the Betts-Miller scheme for CPS and the mixed phase scheme for EMS.The simulated precipitation patterns and amounts over East Asia for the extreme climatic summer in 1997 (relative drought conditions) and 1998 (relative flood conditions) were especially focused upon. The ALT.MM5/LSM simulated more precipitation than was observed in 1997 due to more moisture and cloud water in the lower levels, despite weak upward motion. In the SNURCM, strong upward motion resulted in more precipitation than that was observed in 1998, with more moisture and cloud water in the middle levels. In the ALT.MM5/LSM, weak upward motion, unchanged moisture in the lower troposphere, and the decrease in latent heat flux at the surface increased convective precipitation only by 3% for the 1998 summer event. In the SNURCM, strong upward motion, the increase in moisture in the lower troposphere, and the increase in latent heat flux at the surface increased convective precipitation by 48% for the summer of 1998. The main differences between both simulations were moisture availability and horizontal momentum transport in the lower troposphere, which were also strongly influenced by large-scale forcing.展开更多
Global warming and climate change is one of the most extensively researched and discussed topical issues affecting the environment.Although there are enough historical evidence to support the theory that climate chang...Global warming and climate change is one of the most extensively researched and discussed topical issues affecting the environment.Although there are enough historical evidence to support the theory that climate change is a natural phenomenon,many research scientists are widely in agreement that the increase in temperature in the 20 th century is anthropologically related.The associated effects are the variability of rainfall and cyclonic patterns that are being observed globally.In Southeast Asia the link between global warming and the seasonal atmospheric flow during the monsoon seasons shows varying degree of fuzziness.This study investigates the impact of climate change on the seasonality of monsoon Asia and its effect on the variability of monsoon rainfall in Southeast Asia.The comparison of decadal variation of precipitation and temperature anomalies before the 1970 s found general increases which were mostly varying.But beyond the 1970 s,global precipitation anomalous showed increases that almost corresponded with increases in global temperature anomalies for the same period.There are frequent changes and a shift westward of the Indian summer monsoon.Although precipitation is observed to be 70%below normal levels,in some areas the topography affects the intensity of rainfall.These shifting phenomenon of other monsoon season in the region are impacting on the variability of rainfall and the onset of monsoons in Southeast Asia and is predicted to delay for 15 days the onset of the monsoon in the future.The variability of monsoon rainfall in the SEA region is observed to be decadal and the frequency and intensity of intermittent flooding of some areas during the monsoon season have serious consequences on the human,financial,infrastructure and food security of the region.展开更多
Introduction The agriculture sector contributes approximately 14%of India’s total gross domestic productivity(source:Indian Ministry of Agriculture,2013-2014).The variability in the monsoonal precipitation has a crit...Introduction The agriculture sector contributes approximately 14%of India’s total gross domestic productivity(source:Indian Ministry of Agriculture,2013-2014).The variability in the monsoonal precipitation has a critical impact on agricultural productivity and thus the economy of the country(Krishna Kumar et al.,2004).展开更多
Severe flooding occurred in southern and northern China during the summer of 2016 when the 2015 super El Nio decayed to a normal condition. However, the mean precipitation during summer(June–July-August) 2016 does ...Severe flooding occurred in southern and northern China during the summer of 2016 when the 2015 super El Nio decayed to a normal condition. However, the mean precipitation during summer(June–July-August) 2016 does not show significant anomalies, suggesting that — over East Asia(EA) — seasonal mean anomalies have limited value in representing hydrological hazards. Scrutinizing season-evolving precipitation anomalies associated with 16 El Nio episodes during 1957–2016 reveals that, over EA, the spatiotemporal patterns among the four categories of El Nio events are quite variable, due to a large range of variability in the intensity and evolution of El Nio events and remarkable subseasonal migration of the rainfall anomalies. The only robust seasonal signal is the dry anomalies over central North China during the El Nio developing summer. Distinguishing strong and weak El Nio impacts is important. Only strong El Nio events can persistently enhance EA subtropical frontal precipitation from the peak season of El Nio to the ensuing summer, by stimulating intense interaction between the anomalous western Pacific anticyclone(WPAC) and underlying dipolar sea surface temperature anomalies in the Indo-Pacific warm pool, thereby maintaining the WPAC and leading to a prolonged El Nio impact on EA. A weak El Nio may also enhance the post-El Nio summer rainfall over EA, but through a different physical process: the WPAC re-emerges as a forced response to the rapid cooling in the eastern Pacific. The results suggest that the skillful prediction of rainfall over continental EA requires the accurate prediction of not only the strength and evolution of El Nio, but also the subseasonal migration of EA rainfall anomalies.展开更多
NCEP-NCAR reanalysis data and a 47-yr daily precipitation dataset from a network of 42 rain gauges are used to analyze the atmospheric heat source (〈Q1〉) anomaly over the Tibetan Plateau (TP) and its influence o...NCEP-NCAR reanalysis data and a 47-yr daily precipitation dataset from a network of 42 rain gauges are used to analyze the atmospheric heat source (〈Q1〉) anomaly over the Tibetan Plateau (TP) and its influence on the summer precipitation anomaly in the Sichuan-Chongqing region. Results show that the vertical advection of 〈Ql〉 over the central TP is a major factor affecting summer precipitation in the Sichuan-Chongqing region. When the vertical ad- vection of〈Q1〉 over the central TP is strengthened, the South Asian high shifts further than normal to the south and east, the western Pacific subtropical high shifts further than normal to the south and west, and the Indian low weak- ens. This benefits the transport of warm moist air from the low latitude oceans to the Sichuan-Chongqing region. Correspondingly, in the high latitudes, two ridges and one trough form, which lead to cool air moving southward. These two air masses converge over the Sicbuan -chongqing region, leading to significant precipitation. In contrast, when the vertical advection of 〈Q1〉 over the central TP is weakened, the South Asian high moves to the north and west, the subtropical high moves eastward and northward, and the Indian low strengthens. This circulation pattern is unfavorable for warm air advection from the south to the Sichuan-Chongqing region, and the cool air further north cannot move southward because of the presence of two troughs and one ridge at high latitude. Thus, ascent over the Sichuan-Chongqing region is weakened, resulting in less precipitation.展开更多
The ring-width chronology of a Juniperus przewalskii tree from the middle of the Qilian Mountain was constructed to estimate the annual precipitation (from previous August to current July) since AD 1480.The reconstruc...The ring-width chronology of a Juniperus przewalskii tree from the middle of the Qilian Mountain was constructed to estimate the annual precipitation (from previous August to current July) since AD 1480.The reconstruction showed four major alternations of drying and wetting over the past 521 years.The rainy 16th century was followed by persistent drought in the 17th century.Moreover,relatively wet conditions persisted from the 18th to the beginning of 20th century until the recurrence of a drought during the 1920s and 1930s.Based on the Empirical Mode Decomposition method,eight Intrinsic Mode Functions (IMFs) were extracted,each representing unique fluctuations of the reconstructed precipitation in the time-frequency domain.The high amplitudes of IMFs on different timescales were often consistent with the high amount of precipitation,and vice versa.The IMF of the lowest frequency indicated that the precipitation has undergone a slow increasing trend over the past 521 years.The 2-3 year and 5-8 year time-scales reflected the characteristics of inter-annual variability in precipitation relevant to regional atmospheric circulation and the El Ni?o-Southern Oscillation (ENSO),respectively.The 10-13 year scale of IMF may be associated with changing solar activity.Specifically,an amalgamation of previous and present data showed that droughts were likely to be a historically persistent feature of the Earth's climate,whereas the probability of intensified rainfall events seemed to increase during the course of the 19th and 20th centuries.These changing characteristics in precipitation indicate an unprecedented alteration of the hydrological cycle,with unknown future amplitude.Our reconstruction complements existing information on past precipitation changes in the Qilian Mountain,and provides additional low-frequency information not previously available.展开更多
Background:Global climate change is projected to increase temperature and alter precipitation pattern,which could affect grassland ecosystem.Long-term observation at a field experiment can be a powerful approach to ex...Background:Global climate change is projected to increase temperature and alter precipitation pattern,which could affect grassland ecosystem.Long-term observation at a field experiment can be a powerful approach to explore the impacts of climate change on biomass productivity in grassland.In attempting to understand how climatic variability regulates biomass productivity,we analyzed long-term records of temperature and precipitation to examine how variation of temperature and precipitation across 19 years affect biomass productivity.Methods:We established the experiment with 64 plots in two blocks and planted 31 species in 30 different mixtures.We harvested aboveground biomass twice a year,sorted biomass by functional groups,and weighed dry biomass.The site was mown after each harvest.We did not apply any fertilizer and water.Using linear regression model,we examined the influences of growing season temperature and precipitation on biomass productivity.Results:The results showed that aboveground biomass productivity in September and annual were significantly increased in post-drought(2003–2015).The relationships of aboveground biomass productivity with growing season precipitation were significantly positive.The results showed that aboveground biomass productivity in June and annual were sensitive to growing season temperature.The relationships of aboveground biomass productivity of the functional group of grasses with early growing season temperature were significantly negative.Early growing season precipitation had a significant positive effect on aboveground biomass productivity of the functional groups of grasses and legumes.Post-drought aboveground biomass productivity of the functional groups of grasses in June and September were declined,whereas legumes significantly increased,which suggests that the role of dominant grasses may shift by legumes with global climate change.Conclusions:Our results highlight that early and late growing temperature and precipitation variability may reduce the aboveground biomass productivity in grassland.Our study implies that the combination of several functional groups is essential for the maintenance of stable productivity in temperate grassland ecosystem.展开更多
Extreme drought events have increased,causing serious losses and damage to the social economy under current warming conditions.However,short-term meteorological data limit our understanding and projection of these ext...Extreme drought events have increased,causing serious losses and damage to the social economy under current warming conditions.However,short-term meteorological data limit our understanding and projection of these extremes.With the accumulation of proxy data,especially tree-ring data,large-scale precipitation field reconstruction has provided opportunities to explore underlying mechanisms further.Using point-by-point regression,we reconstructed the April-September precipitation field in China for the past~530 years on the basis of 590 proxy records,including 470 tree-ring width chronologies and 120 drought/flood indices.Our regression models explained average 50%of the variance in precipitation.In the statistical test on calibration and verification,our models passed the significance level that assured reconstruction quality.The reconstruction data performed well,showing consistency and better quality than previously reported reconstructions.The first three leading modes of variability in the reconstruction revealed the main distribution modes of precipitation over China.Wet/drought and extremely wet/drought years accounted for 12.81%/10.92%(68 years/58 years)and 1.69%/3.20%(9 years/17 years)of the past~530 years in China,respectively.Major extreme drought events can be identified explicitly in our reconstruction.The detailed features of the Chongzhen Great Drought(1637-1643),the Wanli Great Drought(1585-1590),and the Ding-Wu Great Famine(1874-1879),indicated the existence of potentially different underlying mechanisms that need further exploration.Although further improvements can be made for remote uninhabited areas and large deserts,our gridded reconstruction of April-September precipitation in China over the past~530 years can provide a solid database for studies on the attribution of climate change and the mechanism of extreme drought events.展开更多
A simple‘toy’model of productivity and nitrogen and phosphorus cycling was used to evaluate how the increasing temporal variation in precipitation that is predicted(and observed)to occur as a consequence of greenhou...A simple‘toy’model of productivity and nitrogen and phosphorus cycling was used to evaluate how the increasing temporal variation in precipitation that is predicted(and observed)to occur as a consequence of greenhouse-gasinduced climate change will affect crop yields and losses of reactive N that can cause environmental damage and affect human health.The model predicted that as temporal variability in precipitation increased it progressively reduced yields and increased losses of reactive N by disrupting the synchrony between N supply and plant N uptake.Also,increases in the temporal variation of precipitation increased the frequency of floods and droughts.Predictions of this model indicate that climate-change-driven increases in temporal variation in precipitation in rainfed agricultural ecosystems will make it difficult to sustain cropping systems that are both high-yielding and have small environmental and human-health footprints.展开更多
基金funded by the National Natural Science Foundation of China(Grant No.42425504).
文摘The change in interannual precipitation variability(P_(IAV)),especially the part driven by El Niño–Southern Oscillation over the Pacific,has sparked worldwide concern.However,it is plagued by substantial uncertainty,such as model uncertainty,internal variability,and scenario uncertainty.Single-model initial-condition large ensembles(SMILEs)and a polynomial fitting method were suggested to separate these uncertainty sources.However,the applicability of a widely used polynomial fitting method in the uncertainty separation of P_(IAV)projection remains unknown.This study compares three sources of uncertainty estimated from five SMILEs and 28 models with one ensemble member in phase 6 of the Coupled Model Intercomparison Project(CMIP6).Results show that the internal uncertainty based on models with one ensemble member calculated using the polynomial fitting method is significantly underestimated compared to SMILEs.However,internal variability in CMIP6 as represented in the pre-industrial control run,aligns closely with SMILEs.At 1.5°C warming above the preindustrial level,internal variability dominates globally,masking the externally forced P_(IAV)signal.At 2.0°C warming,both internal and model uncertainties are significant over regions like Central Africa,the equatorial Indian Ocean,the Maritime Continent,and the Arctic,while internal variability still dominates elsewhere.In some regions,the forced signal becomes distinguishable from internal variability.This study reveals the limitations of the polynomial fitting method in separating P_(IAV)projection uncertainties and emphasizes the importance of SMILEs for accurately quantifying uncertainty sources.It also suggests that improving the intermodel agreement at warming levels of 1.5°C and 2.0°C will not substantially reduce uncertainty in most regions.
文摘Sikkim Himalaya hosts critical water resources such as glacial,rain,and snow-fed springs and lakes.Climate change is adversely affecting these resources in various ways,and elevation-dependent warming is prominent among them.This study is a discussion of the elevation-dependent warming(EDW),snowfall shift,and precipitation variability over Sikkim Himalaya using a high-resolution ERA5-land dataset.Furthermore,the findings show that the Sikkim Himalaya region is experiencing a warming trend from south to north.The majority of the Sikkim Himalayan region shows a declining trend in snowfall.A positive advancement in snowfall trend(at a rate of 1 mm per decade)has been noticed above 4500 meters.The S/P ratio indicates a shift in snowfall patterns,moving from lower elevations to much higher regions.This suggests that snowfall has also transitioned from Lachung and Lachen(3600 m)to higher elevated areas.Moreover,the seasonal shifting of snowfall in the recent decade is seen from January-March(JFM)to February-April(FMA).Subsequently,the preceding 21 years are being marked by a significant spatiotemporal change in temperature,precipitation,and snowfall.The potent negative correlation coefficient between temperature and snowfall(–0.9),temperature and S/P ratio(–0.5)suggested the changing nature of snowfall from solid to liquid,which further resulted in increased lower elevation precipitation.The entire Sikkim region is transitioning from a cold-dry to a warm-wet weather pattern.In the climate change scenario,a drop in the S/P ratio with altitude will continue to explain the rise in temperature over mountainous regions.
基金funded by the National Natural Science Foundation of China(32025025,U1910207,32201302)the China Postdoctoral Science Foundation(2021M700229)
文摘Climate va riability is an important factor leading to spatial and temporal changes in structu re and functions of plant communities.Exploring the temporal stability of communities in response to climate variability is essential for further evaluating the impacts of climate change to ecosystem functions and services.Current research on climate variability mainly focuses on plot-scale experiments(alpha scale),while how it impacts the long-term stability of a metacommunity(gamma scale) still needs further study.We analyzed the effects of climate variability on the temporal stability of plant communities at alpha and gamma scales based on a long-term observation of plant cover from 1938 to 1968 in a mixed-grass prairie in Kansas,western United States.
文摘The Quasi-Biennial Oscillation(QBO)is a vital mode of stratospheric variability with significant influence on tropical and subtropical climate systems.However,its influence on precipitation variability across Eastern and Southern Africa remains insufficiently understood.This study examines the impact of the QBO on summer precipitation and associated circulation anomalies over Eastern and Southern Africa from 1979 to 2021.Using ERA5 and NOAA reanalysis datasets,we applied composite and correlation analyses to assess precipitation responses to westerly(WQBO)and easterly(EQBO)phases.Results show a dipole-like pattern,with WQBO linked to enhanced precipitation in both Eastern and Southern Africa,while EQBO is associated with reduced precipitation.Circulation analysis reveals that WQBO phases promote upper-level divergence,low-level moisture inflow,and vertical ascent,whereas EQBO phases enhance subsidence and upperlevel convergence.These findings highlight the QBO role in modulating precipitation through stratosphere-troposphere coupling and its interaction with regional circulation patterns.The quasi-periodic nature of QBO offers substantial potential for enhancing seasonal precipitation predictions when integrated with other regional circulations,such as the Botswana High and the Angola Low.
基金National Basic Research Program of China, No.2010CB428406 The Key Knowledge Innovation Project of the CAS, No.KZCX2-YW-126 Key Project of National Natural Science Foundation of China, No.40730632
文摘The seasonal variability and spatial distribution of precipitation are the main cause of flood and drought events. The study of spatial distribution and temporal trend of precipitation in river basins has been paid more and more attention. However, in China, the precipitation data are measured by weather stations (WS) of China Meteorological Administration and hydrological rain gauges (RG) of national and local hydrology bureau. The WS data usually have long record with fewer stations, while the RG data usually have short record with more stations. The consistency and correlation of these two data sets have not been well understood. In this paper, the precipitation data from 30 weather stations for 1958-2007 and 248 rain gauges for 1995-2004 in the Haihe River basin are examined and compared using linear regression, 5-year moving average, Mann-Kendall trend analysis, Kolmogorov-Smirnov test, Z test and F test methods. The results show that the annual precipitation from both WS and RG records are normally distributed with minor difference in the mean value and variance. It is statistically feasible to extend the precipitation of RG by WS data sets. Using the extended precipitation data, the detailed spatial distribution of the annual and seasonal precipitation amounts as well as their temporal trends are calculated and mapped. The various distribution maps produced in the study show that for the whole basin the precipitation of 1958-2007 has been decreasing except for spring season. The decline trend is significant in summer, and this trend is stronger after the 1980s. The annual and seasonal precipitation amounts and changing trends are different in different regions and seasons. The precipitation is decreasing from south to north, from coastal zone to inland area.
文摘Regional climate simulations in Asia from May 1997 to August 1998 were performed using the Seoul National University regional climate model (SNURCM) and Iowa State University regional climate model (ALT.MM5/LSM), which were developed by coupling the NCAR/Land Surface Model (LSM) and the Mesoscale Model (MM5). However, for physical processes of precipitation, the SNURCM used the Grell scheme for the convective parameterization scheme (CPS) and the simple ice scheme for the explicit moisture scheme (EMS), while the ALT.MM5/LSM used the Betts-Miller scheme for CPS and the mixed phase scheme for EMS.The simulated precipitation patterns and amounts over East Asia for the extreme climatic summer in 1997 (relative drought conditions) and 1998 (relative flood conditions) were especially focused upon. The ALT.MM5/LSM simulated more precipitation than was observed in 1997 due to more moisture and cloud water in the lower levels, despite weak upward motion. In the SNURCM, strong upward motion resulted in more precipitation than that was observed in 1998, with more moisture and cloud water in the middle levels. In the ALT.MM5/LSM, weak upward motion, unchanged moisture in the lower troposphere, and the decrease in latent heat flux at the surface increased convective precipitation only by 3% for the 1998 summer event. In the SNURCM, strong upward motion, the increase in moisture in the lower troposphere, and the increase in latent heat flux at the surface increased convective precipitation by 48% for the summer of 1998. The main differences between both simulations were moisture availability and horizontal momentum transport in the lower troposphere, which were also strongly influenced by large-scale forcing.
文摘Global warming and climate change is one of the most extensively researched and discussed topical issues affecting the environment.Although there are enough historical evidence to support the theory that climate change is a natural phenomenon,many research scientists are widely in agreement that the increase in temperature in the 20 th century is anthropologically related.The associated effects are the variability of rainfall and cyclonic patterns that are being observed globally.In Southeast Asia the link between global warming and the seasonal atmospheric flow during the monsoon seasons shows varying degree of fuzziness.This study investigates the impact of climate change on the seasonality of monsoon Asia and its effect on the variability of monsoon rainfall in Southeast Asia.The comparison of decadal variation of precipitation and temperature anomalies before the 1970 s found general increases which were mostly varying.But beyond the 1970 s,global precipitation anomalous showed increases that almost corresponded with increases in global temperature anomalies for the same period.There are frequent changes and a shift westward of the Indian summer monsoon.Although precipitation is observed to be 70%below normal levels,in some areas the topography affects the intensity of rainfall.These shifting phenomenon of other monsoon season in the region are impacting on the variability of rainfall and the onset of monsoons in Southeast Asia and is predicted to delay for 15 days the onset of the monsoon in the future.The variability of monsoon rainfall in the SEA region is observed to be decadal and the frequency and intensity of intermittent flooding of some areas during the monsoon season have serious consequences on the human,financial,infrastructure and food security of the region.
文摘Introduction The agriculture sector contributes approximately 14%of India’s total gross domestic productivity(source:Indian Ministry of Agriculture,2013-2014).The variability in the monsoonal precipitation has a critical impact on agricultural productivity and thus the economy of the country(Krishna Kumar et al.,2004).
基金supported by the National Natural Science Foundation of China (Grant No. 41420104002)the National Research Foundation of Korea through a Global Research Laboratory grant of the Korean Ministry of Education, Science and Technology (Grant No. 2011-0021927)+1 种基金the Atmosphere–Ocean Research Center (AORC)funded by Nanjing University of Information Science and Technology (NUIST)
文摘Severe flooding occurred in southern and northern China during the summer of 2016 when the 2015 super El Nio decayed to a normal condition. However, the mean precipitation during summer(June–July-August) 2016 does not show significant anomalies, suggesting that — over East Asia(EA) — seasonal mean anomalies have limited value in representing hydrological hazards. Scrutinizing season-evolving precipitation anomalies associated with 16 El Nio episodes during 1957–2016 reveals that, over EA, the spatiotemporal patterns among the four categories of El Nio events are quite variable, due to a large range of variability in the intensity and evolution of El Nio events and remarkable subseasonal migration of the rainfall anomalies. The only robust seasonal signal is the dry anomalies over central North China during the El Nio developing summer. Distinguishing strong and weak El Nio impacts is important. Only strong El Nio events can persistently enhance EA subtropical frontal precipitation from the peak season of El Nio to the ensuing summer, by stimulating intense interaction between the anomalous western Pacific anticyclone(WPAC) and underlying dipolar sea surface temperature anomalies in the Indo-Pacific warm pool, thereby maintaining the WPAC and leading to a prolonged El Nio impact on EA. A weak El Nio may also enhance the post-El Nio summer rainfall over EA, but through a different physical process: the WPAC re-emerges as a forced response to the rapid cooling in the eastern Pacific. The results suggest that the skillful prediction of rainfall over continental EA requires the accurate prediction of not only the strength and evolution of El Nio, but also the subseasonal migration of EA rainfall anomalies.
基金Supported by the National Natural Science Foundation of China(41505078,41275080,91537214,41275079,41305077,and 41405069)Scientific Research Fund of CUIT(KYTZ201639)
文摘NCEP-NCAR reanalysis data and a 47-yr daily precipitation dataset from a network of 42 rain gauges are used to analyze the atmospheric heat source (〈Q1〉) anomaly over the Tibetan Plateau (TP) and its influence on the summer precipitation anomaly in the Sichuan-Chongqing region. Results show that the vertical advection of 〈Ql〉 over the central TP is a major factor affecting summer precipitation in the Sichuan-Chongqing region. When the vertical ad- vection of〈Q1〉 over the central TP is strengthened, the South Asian high shifts further than normal to the south and east, the western Pacific subtropical high shifts further than normal to the south and west, and the Indian low weak- ens. This benefits the transport of warm moist air from the low latitude oceans to the Sichuan-Chongqing region. Correspondingly, in the high latitudes, two ridges and one trough form, which lead to cool air moving southward. These two air masses converge over the Sicbuan -chongqing region, leading to significant precipitation. In contrast, when the vertical advection of 〈Q1〉 over the central TP is weakened, the South Asian high moves to the north and west, the subtropical high moves eastward and northward, and the Indian low strengthens. This circulation pattern is unfavorable for warm air advection from the south to the Sichuan-Chongqing region, and the cool air further north cannot move southward because of the presence of two troughs and one ridge at high latitude. Thus, ascent over the Sichuan-Chongqing region is weakened, resulting in less precipitation.
基金supported by the National Natural Science Foundation of China (Grant Nos. 41001058, 41001009, 40971119 and 40890052)the China Postdoctoral Science Foundation (Grant Nos. 201003194)
文摘The ring-width chronology of a Juniperus przewalskii tree from the middle of the Qilian Mountain was constructed to estimate the annual precipitation (from previous August to current July) since AD 1480.The reconstruction showed four major alternations of drying and wetting over the past 521 years.The rainy 16th century was followed by persistent drought in the 17th century.Moreover,relatively wet conditions persisted from the 18th to the beginning of 20th century until the recurrence of a drought during the 1920s and 1930s.Based on the Empirical Mode Decomposition method,eight Intrinsic Mode Functions (IMFs) were extracted,each representing unique fluctuations of the reconstructed precipitation in the time-frequency domain.The high amplitudes of IMFs on different timescales were often consistent with the high amount of precipitation,and vice versa.The IMF of the lowest frequency indicated that the precipitation has undergone a slow increasing trend over the past 521 years.The 2-3 year and 5-8 year time-scales reflected the characteristics of inter-annual variability in precipitation relevant to regional atmospheric circulation and the El Ni?o-Southern Oscillation (ENSO),respectively.The 10-13 year scale of IMF may be associated with changing solar activity.Specifically,an amalgamation of previous and present data showed that droughts were likely to be a historically persistent feature of the Earth's climate,whereas the probability of intensified rainfall events seemed to increase during the course of the 19th and 20th centuries.These changing characteristics in precipitation indicate an unprecedented alteration of the hydrological cycle,with unknown future amplitude.Our reconstruction complements existing information on past precipitation changes in the Qilian Mountain,and provides additional low-frequency information not previously available.
基金The BIODEPTH project was funded by the European Commission within the Framework IV Environment and Climate program(ENV-CT95-0008)and coordinated by Prof.Dr.Carl Beierkuhnlein,Department of Biogeography,University of Bayreuth,Germany.
文摘Background:Global climate change is projected to increase temperature and alter precipitation pattern,which could affect grassland ecosystem.Long-term observation at a field experiment can be a powerful approach to explore the impacts of climate change on biomass productivity in grassland.In attempting to understand how climatic variability regulates biomass productivity,we analyzed long-term records of temperature and precipitation to examine how variation of temperature and precipitation across 19 years affect biomass productivity.Methods:We established the experiment with 64 plots in two blocks and planted 31 species in 30 different mixtures.We harvested aboveground biomass twice a year,sorted biomass by functional groups,and weighed dry biomass.The site was mown after each harvest.We did not apply any fertilizer and water.Using linear regression model,we examined the influences of growing season temperature and precipitation on biomass productivity.Results:The results showed that aboveground biomass productivity in September and annual were significantly increased in post-drought(2003–2015).The relationships of aboveground biomass productivity with growing season precipitation were significantly positive.The results showed that aboveground biomass productivity in June and annual were sensitive to growing season temperature.The relationships of aboveground biomass productivity of the functional group of grasses with early growing season temperature were significantly negative.Early growing season precipitation had a significant positive effect on aboveground biomass productivity of the functional groups of grasses and legumes.Post-drought aboveground biomass productivity of the functional groups of grasses in June and September were declined,whereas legumes significantly increased,which suggests that the role of dominant grasses may shift by legumes with global climate change.Conclusions:Our results highlight that early and late growing temperature and precipitation variability may reduce the aboveground biomass productivity in grassland.Our study implies that the combination of several functional groups is essential for the maintenance of stable productivity in temperate grassland ecosystem.
基金National Key Research and Development Program of China(2018YFA0605601)Strategic Priority Research Program of the Chinese Academy of Sciences(XDA20070101)National Natural Science Foundation of China(41572353,41401228,41690113)。
文摘Extreme drought events have increased,causing serious losses and damage to the social economy under current warming conditions.However,short-term meteorological data limit our understanding and projection of these extremes.With the accumulation of proxy data,especially tree-ring data,large-scale precipitation field reconstruction has provided opportunities to explore underlying mechanisms further.Using point-by-point regression,we reconstructed the April-September precipitation field in China for the past~530 years on the basis of 590 proxy records,including 470 tree-ring width chronologies and 120 drought/flood indices.Our regression models explained average 50%of the variance in precipitation.In the statistical test on calibration and verification,our models passed the significance level that assured reconstruction quality.The reconstruction data performed well,showing consistency and better quality than previously reported reconstructions.The first three leading modes of variability in the reconstruction revealed the main distribution modes of precipitation over China.Wet/drought and extremely wet/drought years accounted for 12.81%/10.92%(68 years/58 years)and 1.69%/3.20%(9 years/17 years)of the past~530 years in China,respectively.Major extreme drought events can be identified explicitly in our reconstruction.The detailed features of the Chongzhen Great Drought(1637-1643),the Wanli Great Drought(1585-1590),and the Ding-Wu Great Famine(1874-1879),indicated the existence of potentially different underlying mechanisms that need further exploration.Although further improvements can be made for remote uninhabited areas and large deserts,our gridded reconstruction of April-September precipitation in China over the past~530 years can provide a solid database for studies on the attribution of climate change and the mechanism of extreme drought events.
基金supported by a US National Science Foundation grant(2027290)awarded to Stanford University。
文摘A simple‘toy’model of productivity and nitrogen and phosphorus cycling was used to evaluate how the increasing temporal variation in precipitation that is predicted(and observed)to occur as a consequence of greenhouse-gasinduced climate change will affect crop yields and losses of reactive N that can cause environmental damage and affect human health.The model predicted that as temporal variability in precipitation increased it progressively reduced yields and increased losses of reactive N by disrupting the synchrony between N supply and plant N uptake.Also,increases in the temporal variation of precipitation increased the frequency of floods and droughts.Predictions of this model indicate that climate-change-driven increases in temporal variation in precipitation in rainfed agricultural ecosystems will make it difficult to sustain cropping systems that are both high-yielding and have small environmental and human-health footprints.
基金This work was supported by the National Key Research and Development Program of China(2022YFF0801501 and 2016YFA0600500)the National Natural Science Foundation of China(41902184,42072205,and 42077414)the Innovation Group Project of Southern Marine Science and Engineering Guangdong Laboratory(311022010).