The study developed the three alloy systems with different precipitates and examined the role of precipitated phase particles in modifying the creep properties of as-cast Mg^(-1)0Bi-0.5Mn-0.5Ag(BMQ1000),Mg-5Bi-5Sn-0.5...The study developed the three alloy systems with different precipitates and examined the role of precipitated phase particles in modifying the creep properties of as-cast Mg^(-1)0Bi-0.5Mn-0.5Ag(BMQ1000),Mg-5Bi-5Sn-0.5Mn-0.5Ag(BTMQ5500)and Mg^(-1)0Sn-0.5Mn-0.5Ag(TMQ1000)alloys at temperatures ranging from 423 to 473 K and stresses of 45-85 MPa.The values of n for the BMQ1000,BTMQ5500,and TMQ1000 alloys were determined as 6.67,5.75,and 5.92,respectively.Moreover,the activation energy for these alloys was found to be 164.71,134.68,and 135.93 k J/mol,respectively.The results suggested that the creep properties followed the order of BTMQ5500>TMQ1000>BMQ1000.A coarse and uneven distribution of the Mg_(3)Bi_(2)precipitated phase in the BMQ1000 alloy leads to a feeble pining effect on dislocation slipping and generates substantial stress concentrations.For TMQ1000 alloy,while the nanoscale Mg_(2)Sn precipitates have a stronger barrier effect on dislocations than the Mg_(3)Bi_(2)in the BMQ1000 alloy,their ability to inhibit dislocation climbing is comparatively weak.Furthermore,it was found that Mg_(2)Sn precipitates andα-Mg exhibited a preferential orientation relationship of(020)Mg_(2)Sn//(-1010)Mg,and the morphology of the precipitated phase transformed in a way that hinders dislocation movement effectively.In addition,elastic interactions between the precipitated phases are identified.The above-mentioned factors are largely responsible for the notable enhancement in creep resistance.Further,it is ascertained that cross-slip and pyramidal(c+a)slip are primary creep mechanisms in the BMQ1000 alloy.In contrast,the dominant mechanisms in TMQ1000 and BTMQ5500 alloys are dislocation climb and pyramidal(c+a)slip.Moreover,stacking faults(SFs)and twinning assist in the creep deformation of the BTMQ5500 alloy.展开更多
Cyclic metallurgical process for separation and recovery of Cr from vanadium precipitated solution by precipitation with PbCO_(3)and leaching with Na_(2)CO_(3)was investigated.The concentration of Cr residue in the so...Cyclic metallurgical process for separation and recovery of Cr from vanadium precipitated solution by precipitation with PbCO_(3)and leaching with Na_(2)CO_(3)was investigated.The concentration of Cr residue in the solution decreases from 2.360 to 0.001 g/L by adding PbCO_(3)into vanadium precipitated solution according to Pb/Cr molar ratio of 2.5,adjusting the pH to 3.0 and stirring for 180 min at 30℃.Then,the precipitates were leached with hot Na_(2)CO_(3)solution to obtain leaching solution containing Na_(2)CrO_(4)and leaching residue containing PbCO_(3).The leaching efficiency of Cr reaches 96.43%by adding the precipitates into 0.5 mol/L Na_(2)CO_(3)solution with the mass ratio of liquid to solid(L/S)of 10:1 mL/g and stirring for 60 min under pH 9.5 at 70℃.After filtration,leaching residue is reused in Cr precipitation and leaching solution is used to circularly leach the Cr precipitates until Na_(2)CrO_(4)approaches the saturation.Finally,the product of Na_(2)CrO_(4)·4H_(2)O is obtained by evaporation and crystallization of leaching solution.展开更多
The excellent thermal stability of magnetic properties of Sm_(2)Co_(17)-based magnets is their most impor-tant feature.However,this stability is reduced when the maximum energy product of Sm_(2)Co_(17)-based magnets i...The excellent thermal stability of magnetic properties of Sm_(2)Co_(17)-based magnets is their most impor-tant feature.However,this stability is reduced when the maximum energy product of Sm_(2)Co_(17)-based magnets is improved,which is mainly determined by the Fe/Cu distribution of the 2:17R cell and 1:5H cell boundary phases.During the demagnetization process,the Cu-rich 1:5H cell boundary phase with a width of 2-15 nm obstructs the motion of the domain walls,yielding coercivity.Herein,we report a micron-scale Cu/Zr-rich and Fe-lean 1:5H-based precipitated phase with a lamellar structure,probably induced by Sm_(2)O_(3) doping.This structure enables the separate regulation of Fe and Cu distribution for Sm_(2)Co_(17)-based magnets with Fe-rich 2:17R cell phases and Cu-rich 1:5H cell boundary phases,consid-erably optimizing the thermal stability of magnetic properties.This discovery can be further developed to produce Sm_(2)Co_(17)-based magnets with high performance and excellent thermal stability of magnetic properties.展开更多
The phase diagram of superaustenitic stainless steel 654SMO was calculated by thermodynamic software and the precipitated phases in the specimens aged at 800-1100°C for 1hwere studied by methods of physicochemica...The phase diagram of superaustenitic stainless steel 654SMO was calculated by thermodynamic software and the precipitated phases in the specimens aged at 800-1100°C for 1hwere studied by methods of physicochemical phase analysis,scanning electron microscopy and transmission electron microscopy.The results showed that the size of precipitated particles increased with increasing the temperature.The amount of second phases reached the maximum value at 900°C,but decreased above 900°C.There were about eight kinds of precipitated phases in 654SMO includingσphase,Cr_2N,μphase,χphase,Laves phase,M_(23)C_6,M_6C and M_3C,in which theσphase and Cr_2N were the dominant precipitated phases.展开更多
The promotional effects of Zr on the structure, reduction, carburization and catalytic behavior of precipitated iron-based Fischer-Tropsch synthesis (FTS) catalysts were investigated. The catalysts were characterize...The promotional effects of Zr on the structure, reduction, carburization and catalytic behavior of precipitated iron-based Fischer-Tropsch synthesis (FTS) catalysts were investigated. The catalysts were characterized by N2 physisorption, temperature-programmed reduction (TPR), and M6ssbauer effect spectroscopy (MES) techniques. As revealed by N2 physisorption, Zr decreased the BET surface area and pore volume of the catalyst. The results of TPR and MES show that Zr suppresses the reduction and carburization of Fe catalysts because of the interaction between Fe and Zr. The FTS reaction results indicate that Zr decreases the FTS activity of Fe catalysts but improves the catalysts' stability. In addition, Zr promoter restraines the formation of light hydrocarbons (methane and C2-C4) and shifts the production distribution to the heavy hydrocarbons.展开更多
Dear Sir,We hereby report a case of bilateral acute angle closure glaucoma secondary to a systemic decongestant containing pseudoephedrine freely available over the counter.Acute angle closure glaucoma is an ocular em...Dear Sir,We hereby report a case of bilateral acute angle closure glaucoma secondary to a systemic decongestant containing pseudoephedrine freely available over the counter.Acute angle closure glaucoma is an ocular emergency.Delayed recognition and treatment inevitably leads to permanent visual impairment.Acute angle closure occurs as a result of obstruction to aqueous drainage by blockage of the trabecular meshwork by the iris.Typical presenting symptoms include acute onset of ocular pain,headache and blurred vision.On clinical examination,it is characterized by a markedly raised IOP of above 21 mm Hg together with展开更多
The suitability of using precipitated silica(PS) from the burning of rice husk was investigated to improve the geotechnical engineering properties of a black cotton soil. A laboratory experimental program consisting o...The suitability of using precipitated silica(PS) from the burning of rice husk was investigated to improve the geotechnical engineering properties of a black cotton soil. A laboratory experimental program consisting of series of specific gravity, Atterberg limits, compaction, California bearing ratio(CBR), unconfined compression and consolidation tests was conducted on the untreated and PS treated soil samples. The application of PS to the soil significantly changed its properties by reducing its plasticity and making it more workable, improving its soaked strength, and increasing its permeability and the rate at which the soil gets consolidated. An optimal PS content of 50%, which provided the highest soaked strength, is recommended for the improvement of the subgrade characteristics of the BC soil for use as a pavement layer material.展开更多
The formation of precipitated austenite in 9% Ni steel exposed at the temperature of α+γ re- gion and its influence on impact tonghness at cryogenic temperature have been studied. Austenite-rich and ferrite-rich ban...The formation of precipitated austenite in 9% Ni steel exposed at the temperature of α+γ re- gion and its influence on impact tonghness at cryogenic temperature have been studied. Austenite-rich and ferrite-rich bands are formed during soaking because of the re-distribu- tion of elements of C,N and Ni.The former phase is enriched of Ni,Mn,C and N,while the latter one is relatively pure.Part of the austenite formed at intermediate temperatures trans- forms into martensite when the steel is cooled down to room temperature.The complex struc- ture which consists of fine martensite and austenite exhibits a moderate strength and high enough cryogenic toughness.The austenite enriched of C,N and Ni is still stable at the cryogenic temperature.The tearing ridges on the impact fracture surface is densely occupied by the precipitated austenite,elongated along the tearing direction.One of the important cause of the excellent eryogenic properties is that the precipitated austenite absorbs the impurities and thus purifies the matrix of the steel.展开更多
In order to neutralize a drastic pollution of the environment (technogenic catastrophe) it is suggested to use technogenic technologies of chemical compound decontamination. One in such technologies can be the technol...In order to neutralize a drastic pollution of the environment (technogenic catastrophe) it is suggested to use technogenic technologies of chemical compound decontamination. One in such technologies can be the technology using metal oxide solid aerosols which are active in removal of pollutant compounds and obtainable by combustion under ambient air of appropriate metal particles, for example, aluminum, magnesium, titanium and etc. It is shown that the titanium dioxide out of an solid aerosol, obtained by pyrotechnic mixture combustion containing titanium microparticles has optic, chemical and photocatalytic properties close to properties of titanium dioxide produced by a different way. The production of such aerosol in direct place of a technogenic catastrophe can be made for the cleaning of atmosphere near a pollution source.展开更多
Rare earths(REs) are of vital importance for the development of new materials and green energy.Magnesium bicarbonate is one of the most recyclable and environmental-friendly precipitant for REs recovery from leaching ...Rare earths(REs) are of vital importance for the development of new materials and green energy.Magnesium bicarbonate is one of the most recyclable and environmental-friendly precipitant for REs recovery from leaching solutions. Nd_2(CO_3)_3 has difficulties in industrial production. So in this study,the precipitation of neodymium from chloride solution by magnesium bicarbonate are investigated. The effects of feeding method, [HCO_3^-]/[Nd^(3+)] mole ratio, feeding speed and reaction temperature on yield and impurity(magnesia) content are systematically studied. Results show that the impurity(magnesia)content decreases to 0.010 wt% with a yield approaching to 100% obtained under the conditions of[HCO_3^-]/[Nd^(3+)] = 3.00 by parallel flow addition at 50 ℃. The major impurity(magnesia) in rare earth carbonates mainly presents in the form of physical absorption, which can be easily removed by scrubbing. Therefore, it offers a promising green process that uses magnesium bicarbonate to produce neodymium carbonate due to its cycling of carbon dioxide, magnesium salt and waste water.展开更多
Hot deformation processing was designed to study the effects of niobium (Nb) on DIFT. A prestrain of 0.51 at 880 ℃ for different isothermal time was used for adjusting the deformed austenite constitution and Nb exi...Hot deformation processing was designed to study the effects of niobium (Nb) on DIFT. A prestrain of 0.51 at 880 ℃ for different isothermal time was used for adjusting the deformed austenite constitution and Nb existing state, followed by a secondary heavy deformation at 780 ℃ for inducing the ferrite transformation. The volume fraction and grain size of deformation induced ferrite (DIF) obtained at different isothermal time between double hits were investigated. It was found that Nb dissolved in austenite is adverse to DIFT; however, the precipitation of Nb is beneficial to DIFT. As Nb plays the role in the conventional TMCP, Nb retards the recrystallization of deformed austenite and enhances the deformation stored energy in the multipass deformation, and in result, Nb promotes DIFT.展开更多
The vanadium redox flow battery(VRFB)has been receiving great attention in recent years as one of the most viable energy storage technologies for large-scale applications.However,higher concentrations of vanadium spec...The vanadium redox flow battery(VRFB)has been receiving great attention in recent years as one of the most viable energy storage technologies for large-scale applications.However,higher concentrations of vanadium species are required in the H_(2)O-H_(2)SO_(4) electrolyte in order to improve the VRFB energy density.This might lead to unwanted precipitation of vanadium compounds,whose nature has not been accurately characterized yet.For this purpose,this study reports the preparation ofⅤ^((Ⅱ)),ⅤV^((Ⅲ)),Ⅴ^((Ⅳ))andⅤ^((Ⅴ))supersaturated solutions in a 5 M H_(2)SO_(4)-H_(2)O electrolyte by an electrolytic method,from the only vanadium sulfate compound commercially available(VOSO_(4)).The precipitates obtained by ageing of the stirred solutions are representative of the solids that may form in a VRFB operated with such supersaturated solutions.The solid phases are identified using thermogravimetric analysis,X-ray diffraction and SEM.We report that dissolvedⅤ^((Ⅱ)),Ⅴ^((Ⅲ))andⅤ^((Ⅳ))species precipitate as crystals of VSO_(4),V_(2)(SO_(4))3 and VOSO_(4) hydrates and not in their anhydrous form;conversely V^((Ⅴ))precipitates as an amorphous V_(2) O_(5) oxide partially hydrated.The measured hydration degrees(respectively 1.5,9,3 and 0.26 mol of H_(2)O per mol of compound)might significantly affect the overall engineering of VRFB operating with high vanadium concentrations.展开更多
The Cr Fe Co Ni high-entropy alloy(HEA)exhibits excellent mechanical properties at lower temperatures due to its low stacking-fault energy,however,its medium-and high-temperature strengths are still insufficient.In co...The Cr Fe Co Ni high-entropy alloy(HEA)exhibits excellent mechanical properties at lower temperatures due to its low stacking-fault energy,however,its medium-and high-temperature strengths are still insufficient.In consideration of the potential diversified applications,more strengthening approaches except for the previously proposed L12 phase hardening deserve further exploration due to its rapid coarsening tendency at high temperatures.Here,we achieved significant high-temperature strengthening of the cast Cr Fe Co Ni HEA by in-situ precipitation of highly thermostable carbides.Alloys with 0.5 at.%and 1 at.%niobium and carbon were prepared by simple casting processes,i.e.drop cast,solute solution and aging.A highly thermostable microstructure was formed,which comprises very coarse grains accompanied with extensive thermostable carbide precipitates embedded,including submicrometer coherent Nb C particles in grain interiors and intergranular coherent M_(23)C_(6)carbides.This high thermostability of microstructure,which is beneficial for the high-temperature loading,is ascribed to the synergy of lacking growth driving force and Zenner pinning effect by the carbides.Tensile properties tested at 673,873 and1073 K show that the yield strength and ultimate tensile strength are significantly increased by Nb/C doping,along with the elongation escalation at higher temperatures.The strengthening is mainly due to the precipitation hardening of carbide particles.展开更多
In low carbon steels, dissolution and precipitation of the second phases such as carbides and nitrides during annealing cycles can affect the final structure and properties of the materials. The interaction of above p...In low carbon steels, dissolution and precipitation of the second phases such as carbides and nitrides during annealing cycles can affect the final structure and properties of the materials. The interaction of above processes depends on parameters such as reheating temperature, heating rate, annealing temperature, soaking time and finishing temperature in hot rolling stage before cold rolling. The effects of heating rate and annealing temperature on the microstructure and hardness were investigated. Two heating rates for annealing temperatures of 550, 610 and 720℃ were applied on cold-rolled specimens and St-14 low carbon steel, which were immediately quenched after isothermal annealing. The intercept method was used tO measure average grain sizes. However, resulted microstructures are dif- ferent for the two heating rates. While pancaked structures were observed in specimens annealed with low heating rate, in samples annealed with high heating rate, equiaxed microstructures were observed. Vickers micro-hardness values decreased at all temperatures, which were more significant at higher temperatures. At longer annealing time, signs of increase of hardness values were detected. All results and observations consistently suggest that a precipitati- on process has occurred concurrently with restoration processes during annealing. In addition, the energy dispersive spectroscopy analysis resulted from transmission electron microscopic micrographs have proved that the nano particles precipitated in grain boundaries are AlN.展开更多
An ideal method has been established for calculating the precipitation of α2 ordered phase in near-α titanium alloys based on the theory on the critical electron concentration for the precipitation of α2 ordered ph...An ideal method has been established for calculating the precipitation of α2 ordered phase in near-α titanium alloys based on the theory on the critical electron concentration for the precipitation of α2 ordered phase in near-α titanium alloys. With complete precipitation of α2 phase in near-α titanium alloys, the alloys can be considered to be composed of two parts: (1) the α2 ordered phase with the stoichiometric atomic ratio of Ti3X; (2) the disorder solid solution with the critical composition in which the α2 ordered phase is just unable to precipitate. By using this method, the volume fractions of α2 ordered phase precipitated in Ti-Al, Ti-Sn, Ti-Al-Sn-Zr alloys with various AI, Sn and/or Zr contents have been calculated. The influences of AI and Sn on the precipitation of α2 ordered phase are discussed. The calculating results show substantial agreement with the experimental ones.展开更多
Cadmium meta- and orthostannate were synthesized by thermal treatment using the coprecipitation method. Tin (IV) chloride, cadmium acetate were used as the initial components, the ammonium carbonate was a precipitant....Cadmium meta- and orthostannate were synthesized by thermal treatment using the coprecipitation method. Tin (IV) chloride, cadmium acetate were used as the initial components, the ammonium carbonate was a precipitant. The coprecipitated compounds and the thermolysis products were analyzed by TGA/DSC methods, the thermal treatment samples were studied by XRD and SEM. The formation of proper products in soft thermal treatment conditions was confirmed. The stannates formation in terms of submicron sized particles was observed by microscopial investigation.展开更多
Precipitation was carried out to obtain manganese carbonate by adding a precipitating agent, sodium carbonate (NaCO<sub>3</sub>). This was followed by calcination of the manganese carbonate (MnCO<sub>...Precipitation was carried out to obtain manganese carbonate by adding a precipitating agent, sodium carbonate (NaCO<sub>3</sub>). This was followed by calcination of the manganese carbonate (MnCO<sub>3</sub>) to obtain manganese dioxide (MnO<sub>2</sub>). For precipitation tests, a pH ranging from 8 to 10, a time of one to two hours, and a temperature of 25°C and 50°C are the parameters that are considered. The calcination of MnCO<sub>3</sub> is carried out under the following conditions: time (1, 2, 3, and 4 hours) and temperature (370°C, 420°C, and 470°C). It should be noted that the temperature range selected for the calcination tests is based on thermodynamic data obtained using the HSC CHEMISTRY software. The results obtained show an effective recovery of manganese at 25°C, in one hour, with a pH of 8.5 with a precipitation yield and manganese content in the precipitate around 98.43% and 24.21%, respectively. During calcination tests, results show an increase in mass loss, for a constant calcination time, as temperature increases. On the other hand, increasing the calcination time at a given temperature causes an increase in mass loss. However, a significant decrease in mass loss is noted at 3 hours of calcination. The highest mass loss is obtained at a temperature of 470°C after 4 hours of calcination.展开更多
A mathematical model coupling flow,solidification,strain-stress,and interface failure was developed.Following identification of crack source type through thermal tensile experiment and validation by strain-stress comp...A mathematical model coupling flow,solidification,strain-stress,and interface failure was developed.Following identification of crack source type through thermal tensile experiment and validation by strain-stress comparison,the model was used to investigate slab cracking tendency near precipitated phases,considering various locations,sizes and shapes of them.The results show that the jet from submerged entry nozzle creates a“double roll”flow pattern during continuous casting,resulting in more uniform temperature distributions at slab corner and wide surface center compared with narrow surface center.Consequently,precipitated phases,particularly those located on the narrow surface,readily induce stress concentration and thus increase cracking tendency.A smaller precipitated phase size can reduce the stress concentration zone,while a more spherical shape can distribute surrounding stress along its surface and lower the internal stress within it,thereby decreasing the risk of slab cracking during continuous casting.The optimal precipitated phase exhibits a spherical or ellipsoidal shape with a major axis of less than 5µm,minimizing its potential to initiate cracks.展开更多
In the context of heightened environmental consciousness and the growing demand for light olefins,this study explores the promising future prospects for their sustainable production from renewable resources.Light olef...In the context of heightened environmental consciousness and the growing demand for light olefins,this study explores the promising future prospects for their sustainable production from renewable resources.Light olefins(especially propylene)are a pivotal constituent of the petrochemical industry,and their demand is poised for steady growth driven by various sectors(e.g.,electric mobility,consumer goods and packaging industries),which should not rely solely on traditional petroleum-led routes.Therefore,sustainable pathways,such as the methanol-to-olefin(MTO)process catalyzed by zeolites,are gaining attention.Intending to couple the future olefin demands with the concept of a"methanol economy",this study investigates the synthesis of hierarchical Ca/ZSM-5 zeolites using a cost-effective approach involving Precipitated Calcium Carbonate(PCC)as a hard template,leading to superior catalytic performance.Comprehensive characterization techniques are employed to elucidate the cata-lyst's properties,highlighting the dual importance of mesoporosity and calcium species in optimizing its per-formance.Operando spectroscopy provides in-depth insights into its enhanced anti-coking characteristics.This research contributes to expanding the catalyst toolkit for zeolite-catalyzed MTO processes,focusing on propylene production,thereby addressing the increasing demand for light olefins while promoting sustainability and circular economy principles.展开更多
The effects of different aging processes on the precipitated phase,mechanical properties,molten salt corrosion resistance and post-weld microstructure of 347H stainless steel were studied.The results show that a large...The effects of different aging processes on the precipitated phase,mechanical properties,molten salt corrosion resistance and post-weld microstructure of 347H stainless steel were studied.The results show that a large number of precipitated phases appear in the crystal after aging at 700℃for 400 h.After aging for 3000 h,the number of precipitated phases increases and most of them are gathered at the grain boundaries.There are two forms of precipitates,one is the coarse precipitate rich in Cr,and the other is the smaller precipitates mainly consisting of NbC.After aging at 700℃for 30 min,the yield strength and tensile strength of the samples at room temperature and 593℃increase,but the elongation decreases.The corrosion results in nitrate at 565℃show that the corrosion products of the aged samples are the same as that of the original samples,which are Fe_(2)O_(3),Fe_(3)O_(4),MgCr_(2)O_(4),MgFe_(2)O_(4),FeCr_(2)O_(4) and NaFeO_(2).The proportion of Fe_(3)O_(4) that is dense and well bonded to the subtrate in the original sample is higher than that in the aged sample,so the corrosion resistance is better.At 700℃,the aging time has no obvious effect on the microstructure after welding.展开更多
基金National Natural Science Foundation of China(Grant Nos.51901153)Shanxi Scholarship Council of China(Grant No.2019032)Natural Science Foundation of Shanxi(Grant No.202103021224049)。
文摘The study developed the three alloy systems with different precipitates and examined the role of precipitated phase particles in modifying the creep properties of as-cast Mg^(-1)0Bi-0.5Mn-0.5Ag(BMQ1000),Mg-5Bi-5Sn-0.5Mn-0.5Ag(BTMQ5500)and Mg^(-1)0Sn-0.5Mn-0.5Ag(TMQ1000)alloys at temperatures ranging from 423 to 473 K and stresses of 45-85 MPa.The values of n for the BMQ1000,BTMQ5500,and TMQ1000 alloys were determined as 6.67,5.75,and 5.92,respectively.Moreover,the activation energy for these alloys was found to be 164.71,134.68,and 135.93 k J/mol,respectively.The results suggested that the creep properties followed the order of BTMQ5500>TMQ1000>BMQ1000.A coarse and uneven distribution of the Mg_(3)Bi_(2)precipitated phase in the BMQ1000 alloy leads to a feeble pining effect on dislocation slipping and generates substantial stress concentrations.For TMQ1000 alloy,while the nanoscale Mg_(2)Sn precipitates have a stronger barrier effect on dislocations than the Mg_(3)Bi_(2)in the BMQ1000 alloy,their ability to inhibit dislocation climbing is comparatively weak.Furthermore,it was found that Mg_(2)Sn precipitates andα-Mg exhibited a preferential orientation relationship of(020)Mg_(2)Sn//(-1010)Mg,and the morphology of the precipitated phase transformed in a way that hinders dislocation movement effectively.In addition,elastic interactions between the precipitated phases are identified.The above-mentioned factors are largely responsible for the notable enhancement in creep resistance.Further,it is ascertained that cross-slip and pyramidal(c+a)slip are primary creep mechanisms in the BMQ1000 alloy.In contrast,the dominant mechanisms in TMQ1000 and BTMQ5500 alloys are dislocation climb and pyramidal(c+a)slip.Moreover,stacking faults(SFs)and twinning assist in the creep deformation of the BTMQ5500 alloy.
基金The authors are grateful for the financial supports from the National Natural Science Foundation of China(No.51974369)NSFC-STINT(No.52111530192)+1 种基金Postgraduate Research Innovation Project of Central South University,China(No.2019zzts244)the Open Sharing Fund for the Large-scale Instruments and Equipments of Central South University,China(No.CSUZC202029).
文摘Cyclic metallurgical process for separation and recovery of Cr from vanadium precipitated solution by precipitation with PbCO_(3)and leaching with Na_(2)CO_(3)was investigated.The concentration of Cr residue in the solution decreases from 2.360 to 0.001 g/L by adding PbCO_(3)into vanadium precipitated solution according to Pb/Cr molar ratio of 2.5,adjusting the pH to 3.0 and stirring for 180 min at 30℃.Then,the precipitates were leached with hot Na_(2)CO_(3)solution to obtain leaching solution containing Na_(2)CrO_(4)and leaching residue containing PbCO_(3).The leaching efficiency of Cr reaches 96.43%by adding the precipitates into 0.5 mol/L Na_(2)CO_(3)solution with the mass ratio of liquid to solid(L/S)of 10:1 mL/g and stirring for 60 min under pH 9.5 at 70℃.After filtration,leaching residue is reused in Cr precipitation and leaching solution is used to circularly leach the Cr precipitates until Na_(2)CrO_(4)approaches the saturation.Finally,the product of Na_(2)CrO_(4)·4H_(2)O is obtained by evaporation and crystallization of leaching solution.
基金supported by the National Key R&D Program of China (No.2021YFB3501600)the Key R&D Program of Zhejiang Province (Nos.2021C01191 and 2021C01190).
文摘The excellent thermal stability of magnetic properties of Sm_(2)Co_(17)-based magnets is their most impor-tant feature.However,this stability is reduced when the maximum energy product of Sm_(2)Co_(17)-based magnets is improved,which is mainly determined by the Fe/Cu distribution of the 2:17R cell and 1:5H cell boundary phases.During the demagnetization process,the Cu-rich 1:5H cell boundary phase with a width of 2-15 nm obstructs the motion of the domain walls,yielding coercivity.Herein,we report a micron-scale Cu/Zr-rich and Fe-lean 1:5H-based precipitated phase with a lamellar structure,probably induced by Sm_(2)O_(3) doping.This structure enables the separate regulation of Fe and Cu distribution for Sm_(2)Co_(17)-based magnets with Fe-rich 2:17R cell phases and Cu-rich 1:5H cell boundary phases,consid-erably optimizing the thermal stability of magnetic properties.This discovery can be further developed to produce Sm_(2)Co_(17)-based magnets with high performance and excellent thermal stability of magnetic properties.
文摘The phase diagram of superaustenitic stainless steel 654SMO was calculated by thermodynamic software and the precipitated phases in the specimens aged at 800-1100°C for 1hwere studied by methods of physicochemical phase analysis,scanning electron microscopy and transmission electron microscopy.The results showed that the size of precipitated particles increased with increasing the temperature.The amount of second phases reached the maximum value at 900°C,but decreased above 900°C.There were about eight kinds of precipitated phases in 654SMO includingσphase,Cr_2N,μphase,χphase,Laves phase,M_(23)C_6,M_6C and M_3C,in which theσphase and Cr_2N were the dominant precipitated phases.
文摘The promotional effects of Zr on the structure, reduction, carburization and catalytic behavior of precipitated iron-based Fischer-Tropsch synthesis (FTS) catalysts were investigated. The catalysts were characterized by N2 physisorption, temperature-programmed reduction (TPR), and M6ssbauer effect spectroscopy (MES) techniques. As revealed by N2 physisorption, Zr decreased the BET surface area and pore volume of the catalyst. The results of TPR and MES show that Zr suppresses the reduction and carburization of Fe catalysts because of the interaction between Fe and Zr. The FTS reaction results indicate that Zr decreases the FTS activity of Fe catalysts but improves the catalysts' stability. In addition, Zr promoter restraines the formation of light hydrocarbons (methane and C2-C4) and shifts the production distribution to the heavy hydrocarbons.
文摘Dear Sir,We hereby report a case of bilateral acute angle closure glaucoma secondary to a systemic decongestant containing pseudoephedrine freely available over the counter.Acute angle closure glaucoma is an ocular emergency.Delayed recognition and treatment inevitably leads to permanent visual impairment.Acute angle closure occurs as a result of obstruction to aqueous drainage by blockage of the trabecular meshwork by the iris.Typical presenting symptoms include acute onset of ocular pain,headache and blurred vision.On clinical examination,it is characterized by a markedly raised IOP of above 21 mm Hg together with
文摘The suitability of using precipitated silica(PS) from the burning of rice husk was investigated to improve the geotechnical engineering properties of a black cotton soil. A laboratory experimental program consisting of series of specific gravity, Atterberg limits, compaction, California bearing ratio(CBR), unconfined compression and consolidation tests was conducted on the untreated and PS treated soil samples. The application of PS to the soil significantly changed its properties by reducing its plasticity and making it more workable, improving its soaked strength, and increasing its permeability and the rate at which the soil gets consolidated. An optimal PS content of 50%, which provided the highest soaked strength, is recommended for the improvement of the subgrade characteristics of the BC soil for use as a pavement layer material.
文摘The formation of precipitated austenite in 9% Ni steel exposed at the temperature of α+γ re- gion and its influence on impact tonghness at cryogenic temperature have been studied. Austenite-rich and ferrite-rich bands are formed during soaking because of the re-distribu- tion of elements of C,N and Ni.The former phase is enriched of Ni,Mn,C and N,while the latter one is relatively pure.Part of the austenite formed at intermediate temperatures trans- forms into martensite when the steel is cooled down to room temperature.The complex struc- ture which consists of fine martensite and austenite exhibits a moderate strength and high enough cryogenic toughness.The austenite enriched of C,N and Ni is still stable at the cryogenic temperature.The tearing ridges on the impact fracture surface is densely occupied by the precipitated austenite,elongated along the tearing direction.One of the important cause of the excellent eryogenic properties is that the precipitated austenite absorbs the impurities and thus purifies the matrix of the steel.
文摘In order to neutralize a drastic pollution of the environment (technogenic catastrophe) it is suggested to use technogenic technologies of chemical compound decontamination. One in such technologies can be the technology using metal oxide solid aerosols which are active in removal of pollutant compounds and obtainable by combustion under ambient air of appropriate metal particles, for example, aluminum, magnesium, titanium and etc. It is shown that the titanium dioxide out of an solid aerosol, obtained by pyrotechnic mixture combustion containing titanium microparticles has optic, chemical and photocatalytic properties close to properties of titanium dioxide produced by a different way. The production of such aerosol in direct place of a technogenic catastrophe can be made for the cleaning of atmosphere near a pollution source.
基金supported by National Science and Technology Support Program of China(2015BAB16B03)the National Natural Science Foundation of China(51504034,51674037)
文摘Rare earths(REs) are of vital importance for the development of new materials and green energy.Magnesium bicarbonate is one of the most recyclable and environmental-friendly precipitant for REs recovery from leaching solutions. Nd_2(CO_3)_3 has difficulties in industrial production. So in this study,the precipitation of neodymium from chloride solution by magnesium bicarbonate are investigated. The effects of feeding method, [HCO_3^-]/[Nd^(3+)] mole ratio, feeding speed and reaction temperature on yield and impurity(magnesia) content are systematically studied. Results show that the impurity(magnesia)content decreases to 0.010 wt% with a yield approaching to 100% obtained under the conditions of[HCO_3^-]/[Nd^(3+)] = 3.00 by parallel flow addition at 50 ℃. The major impurity(magnesia) in rare earth carbonates mainly presents in the form of physical absorption, which can be easily removed by scrubbing. Therefore, it offers a promising green process that uses magnesium bicarbonate to produce neodymium carbonate due to its cycling of carbon dioxide, magnesium salt and waste water.
基金Item Sponsored by National Key Technologies Research and Development Program of China(G1998061502)
文摘Hot deformation processing was designed to study the effects of niobium (Nb) on DIFT. A prestrain of 0.51 at 880 ℃ for different isothermal time was used for adjusting the deformed austenite constitution and Nb existing state, followed by a secondary heavy deformation at 780 ℃ for inducing the ferrite transformation. The volume fraction and grain size of deformation induced ferrite (DIF) obtained at different isothermal time between double hits were investigated. It was found that Nb dissolved in austenite is adverse to DIFT; however, the precipitation of Nb is beneficial to DIFT. As Nb plays the role in the conventional TMCP, Nb retards the recrystallization of deformed austenite and enhances the deformation stored energy in the multipass deformation, and in result, Nb promotes DIFT.
基金financial support from the French National Research Agency(project ANR-17-CE05-0023)。
文摘The vanadium redox flow battery(VRFB)has been receiving great attention in recent years as one of the most viable energy storage technologies for large-scale applications.However,higher concentrations of vanadium species are required in the H_(2)O-H_(2)SO_(4) electrolyte in order to improve the VRFB energy density.This might lead to unwanted precipitation of vanadium compounds,whose nature has not been accurately characterized yet.For this purpose,this study reports the preparation ofⅤ^((Ⅱ)),ⅤV^((Ⅲ)),Ⅴ^((Ⅳ))andⅤ^((Ⅴ))supersaturated solutions in a 5 M H_(2)SO_(4)-H_(2)O electrolyte by an electrolytic method,from the only vanadium sulfate compound commercially available(VOSO_(4)).The precipitates obtained by ageing of the stirred solutions are representative of the solids that may form in a VRFB operated with such supersaturated solutions.The solid phases are identified using thermogravimetric analysis,X-ray diffraction and SEM.We report that dissolvedⅤ^((Ⅱ)),Ⅴ^((Ⅲ))andⅤ^((Ⅳ))species precipitate as crystals of VSO_(4),V_(2)(SO_(4))3 and VOSO_(4) hydrates and not in their anhydrous form;conversely V^((Ⅴ))precipitates as an amorphous V_(2) O_(5) oxide partially hydrated.The measured hydration degrees(respectively 1.5,9,3 and 0.26 mol of H_(2)O per mol of compound)might significantly affect the overall engineering of VRFB operating with high vanadium concentrations.
基金financially supported by the National Nature Science Foundation of China(Nos.51971099 and 11805171)。
文摘The Cr Fe Co Ni high-entropy alloy(HEA)exhibits excellent mechanical properties at lower temperatures due to its low stacking-fault energy,however,its medium-and high-temperature strengths are still insufficient.In consideration of the potential diversified applications,more strengthening approaches except for the previously proposed L12 phase hardening deserve further exploration due to its rapid coarsening tendency at high temperatures.Here,we achieved significant high-temperature strengthening of the cast Cr Fe Co Ni HEA by in-situ precipitation of highly thermostable carbides.Alloys with 0.5 at.%and 1 at.%niobium and carbon were prepared by simple casting processes,i.e.drop cast,solute solution and aging.A highly thermostable microstructure was formed,which comprises very coarse grains accompanied with extensive thermostable carbide precipitates embedded,including submicrometer coherent Nb C particles in grain interiors and intergranular coherent M_(23)C_(6)carbides.This high thermostability of microstructure,which is beneficial for the high-temperature loading,is ascribed to the synergy of lacking growth driving force and Zenner pinning effect by the carbides.Tensile properties tested at 673,873 and1073 K show that the yield strength and ultimate tensile strength are significantly increased by Nb/C doping,along with the elongation escalation at higher temperatures.The strengthening is mainly due to the precipitation hardening of carbide particles.
文摘In low carbon steels, dissolution and precipitation of the second phases such as carbides and nitrides during annealing cycles can affect the final structure and properties of the materials. The interaction of above processes depends on parameters such as reheating temperature, heating rate, annealing temperature, soaking time and finishing temperature in hot rolling stage before cold rolling. The effects of heating rate and annealing temperature on the microstructure and hardness were investigated. Two heating rates for annealing temperatures of 550, 610 and 720℃ were applied on cold-rolled specimens and St-14 low carbon steel, which were immediately quenched after isothermal annealing. The intercept method was used tO measure average grain sizes. However, resulted microstructures are dif- ferent for the two heating rates. While pancaked structures were observed in specimens annealed with low heating rate, in samples annealed with high heating rate, equiaxed microstructures were observed. Vickers micro-hardness values decreased at all temperatures, which were more significant at higher temperatures. At longer annealing time, signs of increase of hardness values were detected. All results and observations consistently suggest that a precipitati- on process has occurred concurrently with restoration processes during annealing. In addition, the energy dispersive spectroscopy analysis resulted from transmission electron microscopic micrographs have proved that the nano particles precipitated in grain boundaries are AlN.
文摘An ideal method has been established for calculating the precipitation of α2 ordered phase in near-α titanium alloys based on the theory on the critical electron concentration for the precipitation of α2 ordered phase in near-α titanium alloys. With complete precipitation of α2 phase in near-α titanium alloys, the alloys can be considered to be composed of two parts: (1) the α2 ordered phase with the stoichiometric atomic ratio of Ti3X; (2) the disorder solid solution with the critical composition in which the α2 ordered phase is just unable to precipitate. By using this method, the volume fractions of α2 ordered phase precipitated in Ti-Al, Ti-Sn, Ti-Al-Sn-Zr alloys with various AI, Sn and/or Zr contents have been calculated. The influences of AI and Sn on the precipitation of α2 ordered phase are discussed. The calculating results show substantial agreement with the experimental ones.
文摘Cadmium meta- and orthostannate were synthesized by thermal treatment using the coprecipitation method. Tin (IV) chloride, cadmium acetate were used as the initial components, the ammonium carbonate was a precipitant. The coprecipitated compounds and the thermolysis products were analyzed by TGA/DSC methods, the thermal treatment samples were studied by XRD and SEM. The formation of proper products in soft thermal treatment conditions was confirmed. The stannates formation in terms of submicron sized particles was observed by microscopial investigation.
文摘Precipitation was carried out to obtain manganese carbonate by adding a precipitating agent, sodium carbonate (NaCO<sub>3</sub>). This was followed by calcination of the manganese carbonate (MnCO<sub>3</sub>) to obtain manganese dioxide (MnO<sub>2</sub>). For precipitation tests, a pH ranging from 8 to 10, a time of one to two hours, and a temperature of 25°C and 50°C are the parameters that are considered. The calcination of MnCO<sub>3</sub> is carried out under the following conditions: time (1, 2, 3, and 4 hours) and temperature (370°C, 420°C, and 470°C). It should be noted that the temperature range selected for the calcination tests is based on thermodynamic data obtained using the HSC CHEMISTRY software. The results obtained show an effective recovery of manganese at 25°C, in one hour, with a pH of 8.5 with a precipitation yield and manganese content in the precipitate around 98.43% and 24.21%, respectively. During calcination tests, results show an increase in mass loss, for a constant calcination time, as temperature increases. On the other hand, increasing the calcination time at a given temperature causes an increase in mass loss. However, a significant decrease in mass loss is noted at 3 hours of calcination. The highest mass loss is obtained at a temperature of 470°C after 4 hours of calcination.
基金supported by National Natural Science Foundation of China(Nos.52325406 and 52374330)Fundamental Research Funds for the Central Universities(No.N2225046).
文摘A mathematical model coupling flow,solidification,strain-stress,and interface failure was developed.Following identification of crack source type through thermal tensile experiment and validation by strain-stress comparison,the model was used to investigate slab cracking tendency near precipitated phases,considering various locations,sizes and shapes of them.The results show that the jet from submerged entry nozzle creates a“double roll”flow pattern during continuous casting,resulting in more uniform temperature distributions at slab corner and wide surface center compared with narrow surface center.Consequently,precipitated phases,particularly those located on the narrow surface,readily induce stress concentration and thus increase cracking tendency.A smaller precipitated phase size can reduce the stress concentration zone,while a more spherical shape can distribute surrounding stress along its surface and lower the internal stress within it,thereby decreasing the risk of slab cracking during continuous casting.The optimal precipitated phase exhibits a spherical or ellipsoidal shape with a major axis of less than 5µm,minimizing its potential to initiate cracks.
文摘In the context of heightened environmental consciousness and the growing demand for light olefins,this study explores the promising future prospects for their sustainable production from renewable resources.Light olefins(especially propylene)are a pivotal constituent of the petrochemical industry,and their demand is poised for steady growth driven by various sectors(e.g.,electric mobility,consumer goods and packaging industries),which should not rely solely on traditional petroleum-led routes.Therefore,sustainable pathways,such as the methanol-to-olefin(MTO)process catalyzed by zeolites,are gaining attention.Intending to couple the future olefin demands with the concept of a"methanol economy",this study investigates the synthesis of hierarchical Ca/ZSM-5 zeolites using a cost-effective approach involving Precipitated Calcium Carbonate(PCC)as a hard template,leading to superior catalytic performance.Comprehensive characterization techniques are employed to elucidate the cata-lyst's properties,highlighting the dual importance of mesoporosity and calcium species in optimizing its per-formance.Operando spectroscopy provides in-depth insights into its enhanced anti-coking characteristics.This research contributes to expanding the catalyst toolkit for zeolite-catalyzed MTO processes,focusing on propylene production,thereby addressing the increasing demand for light olefins while promoting sustainability and circular economy principles.
基金Science and Technology Program Project of Gansu Province(21ZD3GB001)。
文摘The effects of different aging processes on the precipitated phase,mechanical properties,molten salt corrosion resistance and post-weld microstructure of 347H stainless steel were studied.The results show that a large number of precipitated phases appear in the crystal after aging at 700℃for 400 h.After aging for 3000 h,the number of precipitated phases increases and most of them are gathered at the grain boundaries.There are two forms of precipitates,one is the coarse precipitate rich in Cr,and the other is the smaller precipitates mainly consisting of NbC.After aging at 700℃for 30 min,the yield strength and tensile strength of the samples at room temperature and 593℃increase,but the elongation decreases.The corrosion results in nitrate at 565℃show that the corrosion products of the aged samples are the same as that of the original samples,which are Fe_(2)O_(3),Fe_(3)O_(4),MgCr_(2)O_(4),MgFe_(2)O_(4),FeCr_(2)O_(4) and NaFeO_(2).The proportion of Fe_(3)O_(4) that is dense and well bonded to the subtrate in the original sample is higher than that in the aged sample,so the corrosion resistance is better.At 700℃,the aging time has no obvious effect on the microstructure after welding.