期刊文献+
共找到907,555篇文章
< 1 2 250 >
每页显示 20 50 100
Multilingual Text Summarization in Healthcare Using Pre-Trained Transformer-Based Language Models
1
作者 Josua Käser Thomas Nagy +1 位作者 Patrick Stirnemann Thomas Hanne 《Computers, Materials & Continua》 2025年第4期201-217,共17页
We analyze the suitability of existing pre-trained transformer-based language models(PLMs)for abstractive text summarization on German technical healthcare texts.The study focuses on the multilingual capabilities of t... We analyze the suitability of existing pre-trained transformer-based language models(PLMs)for abstractive text summarization on German technical healthcare texts.The study focuses on the multilingual capabilities of these models and their ability to perform the task of abstractive text summarization in the healthcare field.The research hypothesis was that large language models could perform high-quality abstractive text summarization on German technical healthcare texts,even if the model is not specifically trained in that language.Through experiments,the research questions explore the performance of transformer language models in dealing with complex syntax constructs,the difference in performance between models trained in English and German,and the impact of translating the source text to English before conducting the summarization.We conducted an evaluation of four PLMs(GPT-3,a translation-based approach also utilizing GPT-3,a German language Model,and a domain-specific bio-medical model approach).The evaluation considered the informativeness using 3 types of metrics based on Recall-Oriented Understudy for Gisting Evaluation(ROUGE)and the quality of results which is manually evaluated considering 5 aspects.The results show that text summarization models could be used in the German healthcare domain and that domain-independent language models achieved the best results.The study proves that text summarization models can simplify the search for pre-existing German knowledge in various domains. 展开更多
关键词 Text summarization pre-trained transformer-based language models large language models technical healthcare texts natural language processing
在线阅读 下载PDF
Empowering Sentiment Analysis in Resource-Constrained Environments:Leveraging Lightweight Pre-trained Models for Optimal Performance
2
作者 V.Prema V.Elavazhahan 《Journal of Harbin Institute of Technology(New Series)》 2025年第1期76-84,共9页
Sentiment analysis,a cornerstone of natural language processing,has witnessed remarkable advancements driven by deep learning models which demonstrated impressive accuracy in discerning sentiment from text across vari... Sentiment analysis,a cornerstone of natural language processing,has witnessed remarkable advancements driven by deep learning models which demonstrated impressive accuracy in discerning sentiment from text across various domains.However,the deployment of such models in resource-constrained environments presents a unique set of challenges that require innovative solutions.Resource-constrained environments encompass scenarios where computing resources,memory,and energy availability are restricted.To empower sentiment analysis in resource-constrained environments,we address the crucial need by leveraging lightweight pre-trained models.These models,derived from popular architectures such as DistilBERT,MobileBERT,ALBERT,TinyBERT,ELECTRA,and SqueezeBERT,offer a promising solution to the resource limitations imposed by these environments.By distilling the knowledge from larger models into smaller ones and employing various optimization techniques,these lightweight models aim to strike a balance between performance and resource efficiency.This paper endeavors to explore the performance of multiple lightweight pre-trained models in sentiment analysis tasks specific to such environments and provide insights into their viability for practical deployment. 展开更多
关键词 sentiment analysis light weight models resource⁃constrained environment pre⁃trained models
在线阅读 下载PDF
Patch is enough:naturalistic adversarial patch against vision-language pre-training models 被引量:1
3
作者 Dehong Kong Siyuan Liang +2 位作者 Xiaopeng Zhu Yuansheng Zhong Wenqi Ren 《Visual Intelligence》 2024年第1期409-418,共10页
Visual language pre-training(VLP)models have demonstrated significant success in various domains,but they remain vulnerable to adversarial attacks.Addressing these adversarial vulnerabilities is crucial for enhancing ... Visual language pre-training(VLP)models have demonstrated significant success in various domains,but they remain vulnerable to adversarial attacks.Addressing these adversarial vulnerabilities is crucial for enhancing security in multi-modal learning.Traditionally,adversarial methods that target VLP models involve simultaneous perturbation of images and text.However,this approach faces significant challenges.First,adversarial perturbations often fail to translate effectively into real-world scenarios.Second,direct modifications to the text are conspicuously visible.To overcome these limitations,we propose a novel strategy that uses only image patches for attacks,thus preserving the integrity of the original text.Our method leverages prior knowledge from diffusion models to enhance the authenticity and naturalness of the perturbations.Moreover,to optimize patch placement and improve the effectiveness of our attacks,we utilize the cross-attention mechanism,which encapsulates inter-modal interactions by generating attention maps to guide strategic patch placement.Extensive experiments conducted in a white-box setting for image-to-text scenarios reveal that our proposed method significantly outperforms existing techniques,achieving a 100%attack success rate. 展开更多
关键词 Adversarial Patch Physical Attack Diffusion model NATURALISTIC
在线阅读 下载PDF
Landslide Susceptibility Mapping Using RBFN-Based Ensemble Machine Learning Models 被引量:1
4
作者 Duc-Dam Nguyen Nguyen Viet Tiep +5 位作者 Quynh-Anh Thi Bui Hiep Van Le Indra Prakash Romulus Costache Manish Pandey Binh Thai Pham 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期467-500,共34页
This study was aimed to prepare landslide susceptibility maps for the Pithoragarh district in Uttarakhand,India,using advanced ensemble models that combined Radial Basis Function Networks(RBFN)with three ensemble lear... This study was aimed to prepare landslide susceptibility maps for the Pithoragarh district in Uttarakhand,India,using advanced ensemble models that combined Radial Basis Function Networks(RBFN)with three ensemble learning techniques:DAGGING(DG),MULTIBOOST(MB),and ADABOOST(AB).This combination resulted in three distinct ensemble models:DG-RBFN,MB-RBFN,and AB-RBFN.Additionally,a traditional weighted method,Information Value(IV),and a benchmark machine learning(ML)model,Multilayer Perceptron Neural Network(MLP),were employed for comparison and validation.The models were developed using ten landslide conditioning factors,which included slope,aspect,elevation,curvature,land cover,geomorphology,overburden depth,lithology,distance to rivers and distance to roads.These factors were instrumental in predicting the output variable,which was the probability of landslide occurrence.Statistical analysis of the models’performance indicated that the DG-RBFN model,with an Area Under ROC Curve(AUC)of 0.931,outperformed the other models.The AB-RBFN model achieved an AUC of 0.929,the MB-RBFN model had an AUC of 0.913,and the MLP model recorded an AUC of 0.926.These results suggest that the advanced ensemble ML model DG-RBFN was more accurate than traditional statistical model,single MLP model,and other ensemble models in preparing trustworthy landslide susceptibility maps,thereby enhancing land use planning and decision-making. 展开更多
关键词 Landslide susceptibility map spatial analysis ensemble modelling information values(IV)
在线阅读 下载PDF
DPCIPI: A pre-trained deep learning model for predicting cross-immunity between drifted strains of Influenza A/H3N2
5
作者 Yiming Du Zhuotian Li +8 位作者 Qian He Thomas Wetere Tulu Kei Hang Katie Chan Lin Wang Sen Pei Zhanwei Du Zhen Wang Xiao-Ke Xu Xiao Fan Liu 《Journal of Automation and Intelligence》 2025年第2期115-124,共10页
Predicting cross-immunity between viral strains is vital for public health surveillance and vaccine development.Traditional neural network methods,such as BiLSTM,could be ineffective due to the lack of lab data for mo... Predicting cross-immunity between viral strains is vital for public health surveillance and vaccine development.Traditional neural network methods,such as BiLSTM,could be ineffective due to the lack of lab data for model training and the overshadowing of crucial features within sequence concatenation.The current work proposes a less data-consuming model incorporating a pre-trained gene sequence model and a mutual information inference operator.Our methodology utilizes gene alignment and deduplication algorithms to preprocess gene sequences,enhancing the model’s capacity to discern and focus on distinctions among input gene pairs.The model,i.e.,DNA Pretrained Cross-Immunity Protection Inference model(DPCIPI),outperforms state-of-theart(SOTA)models in predicting hemagglutination inhibition titer from influenza viral gene sequences only.Improvement in binary cross-immunity prediction is 1.58%in F1,2.34%in precision,1.57%in recall,and 1.57%in Accuracy.For multilevel cross-immunity improvements,the improvement is 2.12%in F1,3.50%in precision,2.19%in recall,and 2.19%in Accuracy.Our study showcases the potential of pre-trained gene models to improve predictions of antigenic variation and cross-immunity.With expanding gene data and advancements in pre-trained models,this approach promises significant impacts on vaccine development and public health. 展开更多
关键词 Cross-immunity prediction pre-trained model Deep learning Influenza strains Hemagglutination inhibition
在线阅读 下载PDF
KitWaSor:Pioneering pre-trained model for kitchen waste sorting with an innovative million-level benchmark dataset
6
作者 Leyuan Fang Shuaiyu Ding +3 位作者 Hao Feng Junwu Yu Lin Tang Pedram Ghamisi 《CAAI Transactions on Intelligence Technology》 2025年第1期94-114,共21页
Intelligent sorting is an important prerequisite for the full quantitative consumption and harmless disposal of kitchen waste.The existing object detection method based on an ImageNet pre-trained model is an effective... Intelligent sorting is an important prerequisite for the full quantitative consumption and harmless disposal of kitchen waste.The existing object detection method based on an ImageNet pre-trained model is an effective way of sorting.Owing to significant domain gaps between natural images and kitchen waste images,it is difficult to reflect the characteristics of diverse scales and dense distribution in kitchen waste based on an ImageNet pre-trained model,leading to poor generalisation.In this article,the authors propose the first pre-trained model for kitchen waste sorting called KitWaSor,which combines both contrastive learning(CL)and masked image modelling(MIM)through self-supervised learning(SSL).First,to address the issue of diverse scales,the authors propose a mixed masking strategy by introducing an incomplete masking branch based on the original random masking branch.It prevents the complete loss of small-scale objects while avoiding excessive leakage of large-scale object pixels.Second,to address the issue of dense distribution,the authors introduce semantic consistency constraints on the basis of the mixed masking strategy.That is,object semantic reasoning is performed through semantic consistency constraints to compensate for the lack of contextual information.To train KitWaSor,the authors construct the first million-level kitchen waste dataset across seasonal and regional distributions,named KWD-Million.Extensive experiments show that KitWaSor achieves state-of-the-art(SOTA)performance on the two most relevant downstream tasks for kitchen waste sorting(i.e.image classification and object detection),demonstrating the effectiveness of the proposed KitWaSor. 展开更多
关键词 contrastive learning kitchen waste masked image modeling pre-trained model self-supervised learning
在线阅读 下载PDF
Predictability Study of Weather and Climate Events Related to Artificial Intelligence Models 被引量:4
7
作者 Mu MU Bo QIN Guokun DAI 《Advances in Atmospheric Sciences》 2025年第1期1-8,共8页
Conducting predictability studies is essential for tracing the source of forecast errors,which not only leads to the improvement of observation and forecasting systems,but also enhances the understanding of weather an... Conducting predictability studies is essential for tracing the source of forecast errors,which not only leads to the improvement of observation and forecasting systems,but also enhances the understanding of weather and climate phenomena.In the past few decades,dynamical numerical models have been the primary tools for predictability studies,achieving significant progress.Nowadays,with the advances in artificial intelligence(AI)techniques and accumulations of vast meteorological data,modeling weather and climate events using modern data-driven approaches is becoming trendy,where FourCastNet,Pangu-Weather,and GraphCast are successful pioneers.In this perspective article,we suggest AI models should not be limited to forecasting but be expanded to predictability studies,leveraging AI's advantages of high efficiency and self-contained optimization modules.To this end,we first remark that AI models should possess high simulation capability with fine spatiotemporal resolution for two kinds of predictability studies.AI models with high simulation capabilities comparable to numerical models can be considered to provide solutions to partial differential equations in a data-driven way.Then,we highlight several specific predictability issues with well-determined nonlinear optimization formulizations,which can be well-studied using AI models,holding significant scientific value.In addition,we advocate for the incorporation of AI models into the synergistic cycle of the cognition–observation–model paradigm.Comprehensive predictability studies have the potential to transform“big data”to“big and better data”and shift the focus from“AI for forecasts”to“AI for science”,ultimately advancing the development of the atmospheric and oceanic sciences. 展开更多
关键词 PREDICTABILITY artificial intelligence models simulation and forecasting nonlinear optimization cognition–observation–model paradigm
在线阅读 下载PDF
An integrated method of data-driven and mechanism models for formation evaluation with logs 被引量:1
8
作者 Meng-Lu Kang Jun Zhou +4 位作者 Juan Zhang Li-Zhi Xiao Guang-Zhi Liao Rong-Bo Shao Gang Luo 《Petroleum Science》 2025年第3期1110-1124,共15页
We propose an integrated method of data-driven and mechanism models for well logging formation evaluation,explicitly focusing on predicting reservoir parameters,such as porosity and water saturation.Accurately interpr... We propose an integrated method of data-driven and mechanism models for well logging formation evaluation,explicitly focusing on predicting reservoir parameters,such as porosity and water saturation.Accurately interpreting these parameters is crucial for effectively exploring and developing oil and gas.However,with the increasing complexity of geological conditions in this industry,there is a growing demand for improved accuracy in reservoir parameter prediction,leading to higher costs associated with manual interpretation.The conventional logging interpretation methods rely on empirical relationships between logging data and reservoir parameters,which suffer from low interpretation efficiency,intense subjectivity,and suitability for ideal conditions.The application of artificial intelligence in the interpretation of logging data provides a new solution to the problems existing in traditional methods.It is expected to improve the accuracy and efficiency of the interpretation.If large and high-quality datasets exist,data-driven models can reveal relationships of arbitrary complexity.Nevertheless,constructing sufficiently large logging datasets with reliable labels remains challenging,making it difficult to apply data-driven models effectively in logging data interpretation.Furthermore,data-driven models often act as“black boxes”without explaining their predictions or ensuring compliance with primary physical constraints.This paper proposes a machine learning method with strong physical constraints by integrating mechanism and data-driven models.Prior knowledge of logging data interpretation is embedded into machine learning regarding network structure,loss function,and optimization algorithm.We employ the Physically Informed Auto-Encoder(PIAE)to predict porosity and water saturation,which can be trained without labeled reservoir parameters using self-supervised learning techniques.This approach effectively achieves automated interpretation and facilitates generalization across diverse datasets. 展开更多
关键词 Well log Reservoir evaluation Label scarcity Mechanism model Data-driven model Physically informed model Self-supervised learning Machine learning
原文传递
Large language models for robotics:Opportunities,challenges,and perspectives 被引量:4
9
作者 Jiaqi Wang Enze Shi +7 位作者 Huawen Hu Chong Ma Yiheng Liu Xuhui Wang Yincheng Yao Xuan Liu Bao Ge Shu Zhang 《Journal of Automation and Intelligence》 2025年第1期52-64,共13页
Large language models(LLMs)have undergone significant expansion and have been increasingly integrated across various domains.Notably,in the realm of robot task planning,LLMs harness their advanced reasoning and langua... Large language models(LLMs)have undergone significant expansion and have been increasingly integrated across various domains.Notably,in the realm of robot task planning,LLMs harness their advanced reasoning and language comprehension capabilities to formulate precise and efficient action plans based on natural language instructions.However,for embodied tasks,where robots interact with complex environments,textonly LLMs often face challenges due to a lack of compatibility with robotic visual perception.This study provides a comprehensive overview of the emerging integration of LLMs and multimodal LLMs into various robotic tasks.Additionally,we propose a framework that utilizes multimodal GPT-4V to enhance embodied task planning through the combination of natural language instructions and robot visual perceptions.Our results,based on diverse datasets,indicate that GPT-4V effectively enhances robot performance in embodied tasks.This extensive survey and evaluation of LLMs and multimodal LLMs across a variety of robotic tasks enriches the understanding of LLM-centric embodied intelligence and provides forward-looking insights towards bridging the gap in Human-Robot-Environment interaction. 展开更多
关键词 Large language models ROBOTICS Generative AI Embodied intelligence
在线阅读 下载PDF
Sensorless battery expansion estimation using electromechanical coupled models and machine learning 被引量:1
10
作者 Xue Cai Caiping Zhang +4 位作者 Jue Chen Zeping Chen Linjing Zhang Dirk Uwe Sauer Weihan Li 《Journal of Energy Chemistry》 2025年第6期142-157,I0004,共17页
Developing sensorless techniques for estimating battery expansion is essential for effective mechanical state monitoring,improving the accuracy of digital twin simulation and abnormality detection.Therefore,this paper... Developing sensorless techniques for estimating battery expansion is essential for effective mechanical state monitoring,improving the accuracy of digital twin simulation and abnormality detection.Therefore,this paper presents a data-driven approach to expansion estimation using electromechanical coupled models with machine learning.The proposed method integrates reduced-order impedance models with data-driven mechanical models,coupling the electrochemical and mechanical states through the state of charge(SOC)and mechanical pressure within a state estimation framework.The coupling relationship was established through experimental insights into pressure-related impedance parameters and the nonlinear mechanical behavior with SOC and pressure.The data-driven model was interpreted by introducing a novel swelling coefficient defined by component stiffnesses to capture the nonlinear mechanical behavior across various mechanical constraints.Sensitivity analysis of the impedance model shows that updating model parameters with pressure can reduce the mean absolute error of simulated voltage by 20 mV and SOC estimation error by 2%.The results demonstrate the model's estimation capabilities,achieving a root mean square error of less than 1 kPa when the maximum expansion force is from 30 kPa to 120 kPa,outperforming calibrated stiffness models and other machine learning techniques.The model's robustness and generalizability are further supported by its effective handling of SOC estimation and pressure measurement errors.This work highlights the importance of the proposed framework in enhancing state estimation and fault diagnosis for lithium-ion batteries. 展开更多
关键词 Sensorless estimation Electromechanical coupling Impedance model Data-driven model Mechanical pressure
在线阅读 下载PDF
GeoNER:Geological Named Entity Recognition with Enriched Domain Pre-Training Model and Adversarial Training
11
作者 MA Kai HU Xinxin +4 位作者 TIAN Miao TAN Yongjian ZHENG Shuai TAO Liufeng QIU Qinjun 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2024年第5期1404-1417,共14页
As important geological data,a geological report contains rich expert and geological knowledge,but the challenge facing current research into geological knowledge extraction and mining is how to render accurate unders... As important geological data,a geological report contains rich expert and geological knowledge,but the challenge facing current research into geological knowledge extraction and mining is how to render accurate understanding of geological reports guided by domain knowledge.While generic named entity recognition models/tools can be utilized for the processing of geoscience reports/documents,their effectiveness is hampered by a dearth of domain-specific knowledge,which in turn leads to a pronounced decline in recognition accuracy.This study summarizes six types of typical geological entities,with reference to the ontological system of geological domains and builds a high quality corpus for the task of geological named entity recognition(GNER).In addition,Geo Wo BERT-adv BGP(Geological Word-base BERTadversarial training Bi-directional Long Short-Term Memory Global Pointer)is proposed to address the issues of ambiguity,diversity and nested entities for the geological entities.The model first uses the fine-tuned word granularitybased pre-training model Geo Wo BERT(Geological Word-base BERT)and combines the text features that are extracted using the Bi LSTM(Bi-directional Long Short-Term Memory),followed by an adversarial training algorithm to improve the robustness of the model and enhance its resistance to interference,the decoding finally being performed using a global association pointer algorithm.The experimental results show that the proposed model for the constructed dataset achieves high performance and is capable of mining the rich geological information. 展开更多
关键词 geological named entity recognition geological report adversarial training confrontation training global pointer pre-training model
在线阅读 下载PDF
Dynamic intelligent prediction approach for landslide displacement based on biological growth models and CNN-LSTM 被引量:2
12
作者 WANG Ziqian FANG Xiangwei +3 位作者 ZHANG Wengang WANG Luqi WANG Kai CHEN Chao 《Journal of Mountain Science》 2025年第1期71-88,共18页
Influenced by complex external factors,the displacement-time curve of reservoir landslides demonstrates both short-term and long-term diversity and dynamic complexity.It is difficult for existing methods,including Reg... Influenced by complex external factors,the displacement-time curve of reservoir landslides demonstrates both short-term and long-term diversity and dynamic complexity.It is difficult for existing methods,including Regression models and Neural network models,to perform multi-characteristic coupled displacement prediction because they fail to consider landslide creep characteristics.This paper integrates the creep characteristics of landslides with non-linear intelligent algorithms and proposes a dynamic intelligent landslide displacement prediction method based on a combination of the Biological Growth model(BG),Convolutional Neural Network(CNN),and Long ShortTerm Memory Network(LSTM).This prediction approach improves three different biological growth models,thereby effectively extracting landslide creep characteristic parameters.Simultaneously,it integrates external factors(rainfall and reservoir water level)to construct an internal and external comprehensive dataset for data augmentation,which is input into the improved CNN-LSTM model.Thereafter,harnessing the robust feature extraction capabilities and spatial translation invariance of CNN,the model autonomously captures short-term local fluctuation characteristics of landslide displacement,and combines LSTM's efficient handling of long-term nonlinear temporal data to improve prediction performance.An evaluation of the Liangshuijing landslide in the Three Gorges Reservoir Area indicates that BG-CNN-LSTM exhibits high prediction accuracy,excellent generalization capabilities when dealing with various types of landslides.The research provides an innovative approach to achieving the whole-process,realtime,high-precision displacement predictions for multicharacteristic coupled landslides. 展开更多
关键词 Reservoir landslides Displacement prediction CNN LSTM Biological growth model
原文传递
Behavioral Animal Models and Neural-Circuit Framework of Depressive Disorder 被引量:1
13
作者 Xiangyun Tian Scott J.Russo Long Li 《Neuroscience Bulletin》 2025年第2期272-288,共17页
Depressive disorder is a chronic,recurring,and potentially life-endangering neuropsychiatric disease.According to a report by the World Health Organization,the global population suffering from depression is experienci... Depressive disorder is a chronic,recurring,and potentially life-endangering neuropsychiatric disease.According to a report by the World Health Organization,the global population suffering from depression is experiencing a significant annual increase.Despite its prevalence and considerable impact on people,little is known about its pathogenesis.One major reason is the scarcity of reliable animal models due to the absence of consensus on the pathology and etiology of depression.Furthermore,the neural circuit mechanism of depression induced by various factors is particularly complex.Considering the variability in depressive behavior patterns and neurobiological mechanisms among different animal models of depression,a comparison between the neural circuits of depression induced by various factors is essential for its treatment.In this review,we mainly summarize the most widely used behavioral animal models and neural circuits under different triggers of depression,aiming to provide a theoretical basis for depression prevention. 展开更多
关键词 DEPRESSION Animal models STRESS Neural circuits
原文传递
Comparative analysis of empirical and deep learning models for ionospheric sporadic E layer prediction
14
作者 BingKun Yu PengHao Tian +6 位作者 XiangHui Xue Christopher JScott HaiLun Ye JianFei Wu Wen Yi TingDi Chen XianKang Dou 《Earth and Planetary Physics》 EI CAS 2025年第1期10-19,共10页
Sporadic E(Es)layers in the ionosphere are characterized by intense plasma irregularities in the E region at altitudes of 90-130 km.Because they can significantly influence radio communications and navigation systems,... Sporadic E(Es)layers in the ionosphere are characterized by intense plasma irregularities in the E region at altitudes of 90-130 km.Because they can significantly influence radio communications and navigation systems,accurate forecasting of Es layers is crucial for ensuring the precision and dependability of navigation satellite systems.In this study,we present Es predictions made by an empirical model and by a deep learning model,and analyze their differences comprehensively by comparing the model predictions to satellite RO measurements and ground-based ionosonde observations.The deep learning model exhibited significantly better performance,as indicated by its high coefficient of correlation(r=0.87)with RO observations and predictions,than did the empirical model(r=0.53).This study highlights the importance of integrating artificial intelligence technology into ionosphere modelling generally,and into predicting Es layer occurrences and characteristics,in particular. 展开更多
关键词 ionospheric sporadic E layer radio occultation ionosondes numerical model deep learning model artificial intelligence
在线阅读 下载PDF
Tool learning with large language models:a survey 被引量:1
15
作者 Changle QU Sunhao DAI +5 位作者 Xiaochi WEI Hengyi CAI Shuaiqiang WANG Dawei YIN Jun XU Ji-rong WEN 《Frontiers of Computer Science》 2025年第8期63-83,共21页
Recently,tool learning with large language models(LLMs)has emerged as a promising paradigm for augmenting the capabilities of LLMs to tackle highly complex problems.Despite growing attention and rapid advancements in ... Recently,tool learning with large language models(LLMs)has emerged as a promising paradigm for augmenting the capabilities of LLMs to tackle highly complex problems.Despite growing attention and rapid advancements in this field,the existing literature remains fragmented and lacks systematic organization,posing barriers to entry for newcomers.This gap motivates us to conduct a comprehensive survey of existing works on tool learning with LLMs.In this survey,we focus on reviewing existing literature from the two primary aspects(1)why tool learning is beneficial and(2)how tool learning is implemented,enabling a comprehensive understanding of tool learning with LLMs.We first explore the“why”by reviewing both the benefits of tool integration and the inherent benefits of the tool learning paradigm from six specific aspects.In terms of“how”,we systematically review the literature according to a taxonomy of four key stages in the tool learning workflow:task planning,tool selection,tool calling,and response generation.Additionally,we provide a detailed summary of existing benchmarks and evaluation methods,categorizing them according to their relevance to different stages.Finally,we discuss current challenges and outline potential future directions,aiming to inspire both researchers and industrial developers to further explore this emerging and promising area. 展开更多
关键词 tool learning large language models AGENT
原文传递
The protective effects of melatonin against electromagnetic waves of cell phones in animal models:A systematic review 被引量:1
16
作者 Mohammad Amiri Habibolah Khazaie Masoud Mohammadi 《Animal Models and Experimental Medicine》 2025年第4期629-637,共9页
Background:Due to the widespread use of cell phone devices today,numerous re-search studies have focused on the adverse effects of electromagnetic radiation on human neuropsychological and reproductive systems.In most... Background:Due to the widespread use of cell phone devices today,numerous re-search studies have focused on the adverse effects of electromagnetic radiation on human neuropsychological and reproductive systems.In most studies,oxidative stress has been identified as the primary pathophysiological mechanism underlying the harmful effects of electromagnetic waves.This paper aims to provide a holistic review of the protective effects of melatonin against cell phone-induced electromag-netic waves on various organs.Methods:This study is a systematic review of articles chosen by searching Google Scholar,PubMed,Embase,Scopus,Web of Science,and Science Direct using the key-words‘melatonin’,‘cell phone radiation’,and‘animal model’.The search focused on articles written in English,which were reviewed and evaluated.The PRISMA process was used to review the articles chosen for the study,and the JBI checklist was used to check the quality of the reviewed articles.Results:In the final review of 11 valid quality-checked articles,the effects of me-latonin in the intervention group,the effects of electromagnetic waves in the case group,and the amount of melatonin in the chosen organ,i.e.brain,skin,eyes,testis and the kidney were thoroughly examined.The review showed that electromagnetic waves increase cellular anti-oxidative activity in different tissues such as the brain,the skin,the eyes,the testis,and the kidneys.Melatonin can considerably augment the anti-oxidative system of cells and protect tissues;these measurements were sig-nificantly increased in control groups.Electromagnetic waves can induce tissue atro-phy and cell death in various organs including the brain and the skin and this effect was highly decreased by melatonin.Conclusion:Our review confirms that melatonin effectively protects the organs of an-imal models against electromagnetic waves.In light of this conclusion and the current world-wide use of melatonin,future studies should advance to the stages of human clinical trials.We also recommend that more research in the field of melatonin physi-ology is conducted in order to protect exposed cells from dying and that melatonin should be considered as a pharmaceutical option for treating the complications result-ing from electromagnetic waves in humans. 展开更多
关键词 animal model cell phone radiation MELATONIN
暂未订购
Evaluating research quality with Large Language Models:An analysis of ChatGPT’s effectiveness with different settings and inputs 被引量:1
17
作者 Mike Thelwall 《Journal of Data and Information Science》 2025年第1期7-25,共19页
Purpose:Evaluating the quality of academic journal articles is a time consuming but critical task for national research evaluation exercises,appointments and promotion.It is therefore important to investigate whether ... Purpose:Evaluating the quality of academic journal articles is a time consuming but critical task for national research evaluation exercises,appointments and promotion.It is therefore important to investigate whether Large Language Models(LLMs)can play a role in this process.Design/methodology/approach:This article assesses which ChatGPT inputs(full text without tables,figures,and references;title and abstract;title only)produce better quality score estimates,and the extent to which scores are affected by ChatGPT models and system prompts.Findings:The optimal input is the article title and abstract,with average ChatGPT scores based on these(30 iterations on a dataset of 51 papers)correlating at 0.67 with human scores,the highest ever reported.ChatGPT 4o is slightly better than 3.5-turbo(0.66),and 4o-mini(0.66).Research limitations:The data is a convenience sample of the work of a single author,it only includes one field,and the scores are self-evaluations.Practical implications:The results suggest that article full texts might confuse LLM research quality evaluations,even though complex system instructions for the task are more effective than simple ones.Thus,whilst abstracts contain insufficient information for a thorough assessment of rigour,they may contain strong pointers about originality and significance.Finally,linear regression can be used to convert the model scores into the human scale scores,which is 31%more accurate than guessing.Originality/value:This is the first systematic comparison of the impact of different prompts,parameters and inputs for ChatGPT research quality evaluations. 展开更多
关键词 ChatGPT Large Language models LLMs SCIENTOMETRICS Research Assessment
在线阅读 下载PDF
On large language models safety,security,and privacy:A survey 被引量:1
18
作者 Ran Zhang Hong-Wei Li +2 位作者 Xin-Yuan Qian Wen-Bo Jiang Han-Xiao Chen 《Journal of Electronic Science and Technology》 2025年第1期1-21,共21页
The integration of artificial intelligence(AI)technology,particularly large language models(LLMs),has become essential across various sectors due to their advanced language comprehension and generation capabilities.De... The integration of artificial intelligence(AI)technology,particularly large language models(LLMs),has become essential across various sectors due to their advanced language comprehension and generation capabilities.Despite their transformative impact in fields such as machine translation and intelligent dialogue systems,LLMs face significant challenges.These challenges include safety,security,and privacy concerns that undermine their trustworthiness and effectiveness,such as hallucinations,backdoor attacks,and privacy leakage.Previous works often conflated safety issues with security concerns.In contrast,our study provides clearer and more reasonable definitions for safety,security,and privacy within the context of LLMs.Building on these definitions,we provide a comprehensive overview of the vulnerabilities and defense mechanisms related to safety,security,and privacy in LLMs.Additionally,we explore the unique research challenges posed by LLMs and suggest potential avenues for future research,aiming to enhance the robustness and reliability of LLMs in the face of emerging threats. 展开更多
关键词 Large language models Privacy issues Safety issues Security issues
在线阅读 下载PDF
Mechanism of post cardiac arrest syndrome based on animal models of cardiac arrest
19
作者 Halidan ABUDU WANG Yiping +10 位作者 HE Kang LIU Ziquan GUO Liqiong DONG Jinrui Ailijiang KADEER XU Guowu LIU Yanqing MENG Xiangyan CAI Jinxia LI Yongmao FAN Haojun 《中南大学学报(医学版)》 北大核心 2025年第5期731-746,共16页
Cardiac arrest(CA)is a critical condition in the field of cardiovascular medicine.Despite successful resuscitation,patients continue to have a high mortality rate,largely due to post CA syndrome(PCAS).However,the inju... Cardiac arrest(CA)is a critical condition in the field of cardiovascular medicine.Despite successful resuscitation,patients continue to have a high mortality rate,largely due to post CA syndrome(PCAS).However,the injury and pathophysiological mechanisms underlying PCAS remain unclear.Experimental animal models are valuable tools for exploring the etiology,pathogenesis,and potential interventions for CA and PCAS.Current CA animal models include electrical induction of ventricular fibrillation(VF),myocardial infarction,high potassium,asphyxia,and hemorrhagic shock.Although these models do not fully replicate the complexity of clinical CA,the mechanistic insights they provide remain highly relevant,including post-CA brain injury(PCABI),post-CA myocardial dysfunction(PAMD),systemic ischaemia/reperfusion injury(IRI),and the persistent precipitating pathology.Summarizing the methods of establishing CA models,the challenges encountered in the modeling process,and the mechanisms of PCAS can provide a foundation for developing standardized CA modeling protocols. 展开更多
关键词 cardiac arrest animal model post cardiac arrest syndrome PATHOPHYSIOLOGY modeling method
暂未订购
Aquaporin-4-IgG-seropositive neuromyelitis optica spectrum disorders:progress of experimental models based on disease pathogenesis
20
作者 Li Xu Huiming Xu Changyong Tang 《Neural Regeneration Research》 SCIE CAS 2025年第2期354-365,共12页
Neuromyelitis optica spectrum disorders are neuroinflammatory demyelinating disorders that lead to permanent visual loss and motor dysfunction.To date,no effective treatment exists as the exact causative mechanism rem... Neuromyelitis optica spectrum disorders are neuroinflammatory demyelinating disorders that lead to permanent visual loss and motor dysfunction.To date,no effective treatment exists as the exact causative mechanism remains unknown.Therefore,experimental models of neuromyelitis optica spectrum disorders are essential for exploring its pathogenesis and in screening for therapeutic targets.Since most patients with neuromyelitis optica spectrum disorders are seropositive for IgG autoantibodies against aquaporin-4,which is highly expressed on the membrane of astrocyte endfeet,most current experimental models are based on aquaporin-4-IgG that initially targets astrocytes.These experimental models have successfully simulated many pathological features of neuromyelitis optica spectrum disorders,such as aquaporin-4 loss,astrocytopathy,granulocyte and macrophage infiltration,complement activation,demyelination,and neuronal loss;however,they do not fully capture the pathological process of human neuromyelitis optica spectrum disorders.In this review,we summarize the currently known pathogenic mechanisms and the development of associated experimental models in vitro,ex vivo,and in vivo for neuromyelitis optica spectrum disorders,suggest potential pathogenic mechanisms for further investigation,and provide guidance on experimental model choices.In addition,this review summarizes the latest information on pathologies and therapies for neuromyelitis optica spectrum disorders based on experimental models of aquaporin-4-IgG-seropositive neuromyelitis optica spectrum disorders,offering further therapeutic targets and a theoretical basis for clinical trials. 展开更多
关键词 AQUAPORIN-4 experimental model neuromyelitis optica spectrum disorder PATHOGENESIS
暂未订购
上一页 1 2 250 下一页 到第
使用帮助 返回顶部