期刊文献+
共找到3,890篇文章
< 1 2 195 >
每页显示 20 50 100
Impedance inversion of pre-stack seismic data in the depth domain 被引量:3
1
作者 Jiang Wei Chen Xue Hua +3 位作者 Zhang Jie Luo Xin Dan Zhi Wei and Xiao Wei 《Applied Geophysics》 SCIE CSCD 2019年第4期427-437,559,560,共13页
The extensive application of pre-stack depth migration has produced huge volumes of seismic data,which allows for the possibility of developing seismic inversions of reservoir properties from seismic data in the depth... The extensive application of pre-stack depth migration has produced huge volumes of seismic data,which allows for the possibility of developing seismic inversions of reservoir properties from seismic data in the depth domain.It is difficult to estimate seismic wavelets directly from seismic data due to the nonstationarity of the data in the depth domain.We conduct a velocity transformation of seismic data to make the seismic data stationary and then apply the ridge regression method to estimate a constant seismic wavelet.The estimated constant seismic wavelet is constructed as a set of space-variant seismic wavelets dominated by velocities at different spatial locations.Incorporating the weighted superposition principle,a synthetic seismogram is generated by directly employing the space-variant seismic wavelets in the depth domain.An inversion workflow based on the model-driven method is developed in the depth domain by incorporating the nonlinear conjugate gradient algorithm,which avoids additional data conversions between the time and depth domains.The impedance inversions of the synthetic and field seismic data in the depth domain show good results,which demonstrates that seismic inversion in the depth domain is feasible.The approach provides an alternative for forward numerical analyses and elastic property inversions of depth-domain seismic data.It is advantageous for further studies concerning the stability,accuracy,and efficiency of seismic inversions in the depth domain. 展开更多
关键词 Depth domain seismic wavelet synthetic seismogram pre-stack impedance inversion
在线阅读 下载PDF
Robust low frequency seismic bandwidth extension with a U-net and synthetic training data
2
作者 P.Zwartjes J.Yoo 《Artificial Intelligence in Geosciences》 2025年第1期33-45,共13页
This work focuses on enhancing low frequency seismic data using a convolutional neural network trained on synthetic data.Traditional seismic data often lack both high and low frequencies,which are essential for detail... This work focuses on enhancing low frequency seismic data using a convolutional neural network trained on synthetic data.Traditional seismic data often lack both high and low frequencies,which are essential for detailed geological interpretation and various geophysical applications.Low frequency data is particularly valuable for reducing wavelet sidelobes and improving full waveform inversion(FWI).Conventional methods for bandwidth extension include seismic deconvolution and sparse inversion,which have limitations in recovering low frequencies.The study explores the potential of the U-net,which has been successful in other geophysical applications such as noise attenuation and seismic resolution enhancement.The novelty in our approach is that we do not rely on computationally expensive finite difference modelling to create training data.Instead,our synthetic training data is created from individual randomly perturbed events with variations in bandwidth,making it more adaptable to different data sets compared to previous deep learning methods.The method was tested on both synthetic and real seismic data,demonstrating effective low frequency reconstruction and sidelobe reduction.With a synthetic full waveform inversion to recover a velocity model and a seismic amplitude inversion to estimate acoustic impedance we demonstrate the validity and benefit of the proposed method.Overall,the study presents a robust approach to seismic bandwidth extension using deep learning,emphasizing the importance of diverse and well-designed but computationally inexpensive synthetic training data. 展开更多
关键词 detailed geological interpretation enhancing low frequency seismic data convolutional neural network seismic deconvolution seismic data synthetic datatraditional sparse inversionwhich reducing wavelet sidelobes
在线阅读 下载PDF
Basic processing of the InSight seismic data from Mars for further seismological research
3
作者 Shuguang Wang Shuoxian Ning +4 位作者 Zhixiang Yao Jiaqi Li Wanbo Xiao Tianfan Yan Feng Xu 《Earthquake Science》 2025年第5期450-460,共11页
The InSight mission has obtained seismic data from Mars,offering new insights into the planet’s internal structure and seismic activity.However,the raw data released to the public contain various sources of noise,suc... The InSight mission has obtained seismic data from Mars,offering new insights into the planet’s internal structure and seismic activity.However,the raw data released to the public contain various sources of noise,such as ticks and glitches,which hamper further seismological studies.This paper presents step-by-step processing of InSight’s Very Broad Band seismic data,focusing on the suppression and removal of non-seismic noise.The processing stages include tick noise removal,glitch signal suppression,multicomponent synchronization,instrument response correction,and rotation of orthogonal components.The processed datasets and associated codes are openly accessible and will support ongoing efforts to explore the geophysical properties of Mars and contribute to the broader field of planetary seismology. 展开更多
关键词 MARS INSIGHT SEISMOLOGY data process seismic noise
在线阅读 下载PDF
Self-supervised multi-stage deep learning network for seismic data denoising
4
作者 Omar M.Saad Matteo Ravasi Tariq Alkhalifah 《Artificial Intelligence in Geosciences》 2025年第1期240-249,共10页
Seismic data denoising is a critical process usually applied at various stages of the seismic processing workflow,as our ability to mitigate noise in seismic data affects the quality of our subsequent analyses.However... Seismic data denoising is a critical process usually applied at various stages of the seismic processing workflow,as our ability to mitigate noise in seismic data affects the quality of our subsequent analyses.However,finding an optimal balance between preserving seismic signals and effectively reducing seismic noise presents a substantial challenge.In this study,we introduce a multi-stage deep learning model,trained in a self-supervised manner,designed specifically to suppress seismic noise while minimizing signal leakage.This model operates as a patch-based approach,extracting overlapping patches from the noisy data and converting them into 1D vectors for input.It consists of two identical sub-networks,each configured differently.Inspired by the transformer architecture,each sub-network features an embedded block that comprises two fully connected layers,which are utilized for feature extraction from the input patches.After reshaping,a multi-head attention module enhances the model’s focus on significant features by assigning higher attention weights to them.The key difference between the two sub-networks lies in the number of neurons within their fully connected layers.The first sub-network serves as a strong denoiser with a small number of neurons,effectively attenuating seismic noise;in contrast,the second sub-network functions as a signal-add-back model,using a larger number of neurons to retrieve some of the signal that was not preserved in the output of the first sub-network.The proposed model produces two outputs,each corresponding to one of the sub-networks,and both sub-networks are optimized simultaneously using the noisy data as the label for both outputs.Evaluations conducted on both synthetic and field data demonstrate the model’s effectiveness in suppressing seismic noise with minimal signal leakage,outperforming some benchmark methods. 展开更多
关键词 seismic data denoising Self-supervised Multi-stage deep learning
在线阅读 下载PDF
Optimal fault detection from seismic data using intelligent techniques:A comprehensive review of methods
5
作者 Bhaktishree Nayak Pallavi Nayak 《Journal of Groundwater Science and Engineering》 2025年第2期193-208,共16页
Seismic data plays a pivotal role in fault detection,offering critical insights into subsurface structures and seismic hazards.Understanding fault detection from seismic data is essential for mitigating seismic risks ... Seismic data plays a pivotal role in fault detection,offering critical insights into subsurface structures and seismic hazards.Understanding fault detection from seismic data is essential for mitigating seismic risks and guiding land-use plans.This paper presents a comprehensive review of existing methodologies for fault detection,focusing on the application of Machine Learning(ML)and Deep Learning(DL)techniques to enhance accuracy and efficiency.Various ML and DL approaches are analyzed with respect to fault segmentation,adaptive learning,and fault detection models.These techniques,benchmarked against established seismic datasets,reveal significant improvements over classical methods in terms of accuracy and computational efficiency.Additionally,this review highlights emerging trends,including hybrid model applications and the integration of real-time data processing for seismic fault detection.By providing a detailed comparative analysis of current methodologies,this review aims to guide future research and foster advancements in the effectiveness and reliability of seismic studies.Ultimately,the study seeks to bridge the gap between theoretical investigations and practical implementations in fault detection. 展开更多
关键词 seismic data Fault detection Fault Segmentation Machine learning Deep learning Adaptive learning
在线阅读 下载PDF
Pore pressure prediction based on conventional well logs and seismic data using an advanced machine learning approach
6
作者 Muhsan Ehsan Umar Manzoor +6 位作者 Rujun Chen Muyyassar Hussain Kamal Abdelrahman Ahmed E.Radwan Jar Ullah Muhammad Khizer Iftikhar Farooq Arshad 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第5期2727-2740,共14页
Pore pressure is a decisive measure to assess the reservoir’s geomechanical properties,ensures safe and efficient drilling operations,and optimizes reservoir characterization and production.The conventional approache... Pore pressure is a decisive measure to assess the reservoir’s geomechanical properties,ensures safe and efficient drilling operations,and optimizes reservoir characterization and production.The conventional approaches sometimes fail to comprehend complex and persistent relationships between pore pressure and formation properties in the heterogeneous reservoirs.This study presents a novel machine learning optimized pore pressure prediction method with a limited dataset,particularly in complex formations.The method addresses the conventional approach's limitations by leveraging its capability to learn complex data relationships.It integrates the best Gradient Boosting Regressor(GBR)algorithm to model pore pressure at wells and later utilizes ContinuousWavelet Transformation(CWT)of the seismic dataset for spatial analysis,and finally employs Deep Neural Network for robust and precise pore pressure modeling for the whole volume.In the second stage,for the spatial variations of pore pressure in the thin Khadro Formation sand reservoir across the entire subsurface area,a three-dimensional pore pressure prediction is conducted using CWT.The relationship between the CWT and geomechanical properties is then established through supervised machine learning models on well locations to predict the uncertainties in pore pressure.Among all intelligent regression techniques developed using petrophysical and elastic properties for pore pressure prediction,the GBR has provided exceptional results that have been validated by evaluation metrics based on the R^(2) score i.e.,0.91 between the calibrated and predicted pore pressure.Via the deep neural network,the relationship between CWT resultant traces and predicted pore pressure is established to analyze the spatial variation. 展开更多
关键词 Pore pressure Conventional well logs seismic data Machine learning Complex formations
在线阅读 下载PDF
Assessing the data quality and seismic monitoring capabilities of the Belt and Road GNSS network
7
作者 Yu Li Yinxing Shao +2 位作者 Tan Wang Yuebing Wang Hongbo Shi 《Earthquake Science》 2025年第1期56-66,共11页
The Belt and Road global navigation satellite system(B&R GNSS)network is the first large-scale deployment of Chinese GNSS equipment in a seismic system.Prior to this,there have been few systematic assessments of t... The Belt and Road global navigation satellite system(B&R GNSS)network is the first large-scale deployment of Chinese GNSS equipment in a seismic system.Prior to this,there have been few systematic assessments of the data quality of Chinese GNSS equipment.In this study,data from four representative GNSS sites in different regions of China were analyzed using the G-Nut/Anubis software package.Four main indicators(data integrity rate,data validity ratio,multi-path error,and cycle slip ratio)used to systematically analyze data quality,while evaluating the seismic monitoring capabilities of the network based on earthquake magnitudes estimated from high-frequency GNSS data are evaluated by estimating magnitude based on highfrequency GNSS data.The results indicate that the quality of the data produced by the three types of Chinese receivers used in the network meets the needs of earthquake monitoring and the new seismic industry standards,which provide a reference for the selection of equipment for future new projects.After the B&R GNSS network was established,the seismic monitoring capability for earthquakes with magnitudes greater than M_(W)6.5 in most parts of the Sichuan-Yunnan region improved by approximately 20%.In key areas such as the Sichuan-Yunnan Rhomboid Block,the monitoring capability increased by more than 25%,which has greatly improved the effectiveness of regional comprehensive earthquake management. 展开更多
关键词 Belt and Road multi-system GNSS data quality seismic monitoring capability
在线阅读 下载PDF
Multi-scale intelligent fusion and dynamic validation for high-resolution seismic data processing in drilling
8
作者 YUAN Sanyi XU Yanwu +2 位作者 XIE Renjun CHEN Shuai YUAN Junliang 《Petroleum Exploration and Development》 2025年第3期680-691,共12页
During drilling operations,the low resolution of seismic data often limits the accurate characterization of small-scale geological bodies near the borehole and ahead of the drill bit.This study investigates high-resol... During drilling operations,the low resolution of seismic data often limits the accurate characterization of small-scale geological bodies near the borehole and ahead of the drill bit.This study investigates high-resolution seismic data processing technologies and methods tailored for drilling scenarios.The high-resolution processing of seismic data is divided into three stages:pre-drilling processing,post-drilling correction,and while-drilling updating.By integrating seismic data from different stages,spatial ranges,and frequencies,together with information from drilled wells and while-drilling data,and applying artificial intelligence modeling techniques,a progressive high-resolution processing technology of seismic data based on multi-source information fusion is developed,which performs simple and efficient seismic information updates during drilling.Case studies show that,with the gradual integration of multi-source information,the resolution and accuracy of seismic data are significantly improved,and thin-bed weak reflections are more clearly imaged.The updated seismic information while-drilling demonstrates high value in predicting geological bodies ahead of the drill bit.Validation using logging,mud logging,and drilling engineering data ensures the fidelity of the processing results of high-resolution seismic data.This provides clearer and more accurate stratigraphic information for drilling operations,enhancing both drilling safety and efficiency. 展开更多
关键词 high-resolution seismic data processing while-drilling update while-drilling logging multi-source information fusion thin-bed weak reflection artificial intelligence modeling
在线阅读 下载PDF
A novel method for predicting formation pore pressure ahead of the drill bit by embedding petrophysical theory into machine learning based on seismic and logging-while-drilling data
9
作者 Xu-Yue Chen Cheng-Kai Weng +3 位作者 Lin Tao Jin Yang De-Li Gao Jun Li 《Petroleum Science》 2025年第7期2868-2883,共16页
Formation pore pressure is the foundation of well plan,and it is related to the safety and efficiency of drilling operations in oil and gas development.However,the traditional method for predicting formation pore pres... Formation pore pressure is the foundation of well plan,and it is related to the safety and efficiency of drilling operations in oil and gas development.However,the traditional method for predicting formation pore pressure involves applying post-drilling measurement data from nearby wells to the target well,which may not accurately reflect the formation pore pressure of the target well.In this paper,a novel method for predicting formation pore pressure ahead of the drill bit by embedding petrophysical theory into machine learning based on seismic and logging-while-drilling(LWD)data was proposed.Gated recurrent unit(GRU)and long short-term memory(LSTM)models were developed and validated using data from three wells in the Bohai Oilfield,and the Shapley additive explanations(SHAP)were utilized to visualize and interpret the models proposed in this study,thereby providing valuable insights into the relative importance and impact of input features.The results show that among the eight models trained in this study,almost all model prediction errors converge to 0.05 g/cm^(3),with the largest root mean square error(RMSE)being 0.03072 and the smallest RMSE being 0.008964.Moreover,continuously updating the model with the increasing training data during drilling operations can further improve accuracy.Compared to other approaches,this study accurately and precisely depicts formation pore pressure,while SHAP analysis guides effective model refinement and feature engineering strategies.This work underscores the potential of integrating advanced machine learning techniques with domain-specific knowledge to enhance predictive accuracy for petroleum engineering applications. 展开更多
关键词 Formation pore pressure Prediction ahead of the drill bit seismic and logging-while-drilling data Machine learning Model interpretation
原文传递
Irregular seismic data reconstruction based on exponential threshold model of POCS method 被引量:18
10
作者 高建军 陈小宏 +2 位作者 李景叶 刘国昌 马剑 《Applied Geophysics》 SCIE CSCD 2010年第3期229-238,292,293,共12页
Irregular seismic data causes problems with multi-trace processing algorithms and degrades processing quality. We introduce the Projection onto Convex Sets (POCS) based image restoration method into the seismic data... Irregular seismic data causes problems with multi-trace processing algorithms and degrades processing quality. We introduce the Projection onto Convex Sets (POCS) based image restoration method into the seismic data reconstruction field to interpolate irregularly missing traces. For entire dead traces, we transfer the POCS iteration reconstruction process from the time to frequency domain to save computational cost because forward and reverse Fourier time transforms are not needed. In each iteration, the selection threshold parameter is important for reconstruction efficiency. In this paper, we designed two types of threshold models to reconstruct irregularly missing seismic data. The experimental results show that an exponential threshold can greatly reduce iterations and improve reconstruction efficiency compared to a linear threshold for the same reconstruction result. We also analyze the anti- noise and anti-alias ability of the POCS reconstruction method. Finally, theoretical model tests and real data examples indicate that the proposed method is efficient and applicable. 展开更多
关键词 Irregular missing traces seismic data reconstruction POCS threshold model.
在线阅读 下载PDF
Pre-stack-texture-based reservoir characteristics and seismic facies analysis 被引量:5
11
作者 宋承云 刘致宁 +2 位作者 蔡涵鹏 钱峰 胡光岷 《Applied Geophysics》 SCIE CSCD 2016年第1期69-79,219,共12页
Seismic texture attributes are closely related to seismic facies and reservoir characteristics and are thus widely used in seismic data interpretation.However,information is mislaid in the stacking process when tradit... Seismic texture attributes are closely related to seismic facies and reservoir characteristics and are thus widely used in seismic data interpretation.However,information is mislaid in the stacking process when traditional texture attributes are extracted from poststack data,which is detrimental to complex reservoir description.In this study,pre-stack texture attributes are introduced,these attributes can not only capable of precisely depicting the lateral continuity of waveforms between different reflection points but also reflect amplitude versus offset,anisotropy,and heterogeneity in the medium.Due to its strong ability to represent stratigraphies,a pre-stack-data-based seismic facies analysis method is proposed using the selforganizing map algorithm.This method is tested on wide azimuth seismic data from China,and the advantages of pre-stack texture attributes in the description of stratum lateral changes are verified,in addition to the method's ability to reveal anisotropy and heterogeneity characteristics.The pre-stack texture classification results effectively distinguish different seismic reflection patterns,thereby providing reliable evidence for use in seismic facies analysis. 展开更多
关键词 pre-stack texture attributes reservoir characteristic seismic facies analysis SOM clustering gray level co-occurrence matrix
在线阅读 下载PDF
Separation of P. and SV-wavefields from multi-componen seismic data 被引量:1
12
作者 刘道理 胡天跃 王彦宾 《Applied Geophysics》 SCIE CSCD 2006年第3期163-168,共6页
In multi-component seismic exploration, the horizontal and vertical components both contain P- and SV-waves. The P- and SV-wavefields in a seismic record can be separated by their horizontal and vertical displacements... In multi-component seismic exploration, the horizontal and vertical components both contain P- and SV-waves. The P- and SV-wavefields in a seismic record can be separated by their horizontal and vertical displacements when upgoing P- and SV-waves arrive at the sea floor. If the sea floor P wave velocity, S wave velocity, and density are known, the separation can be achieved in ther-p domain. The separated wavefields are then transformed to the time domain. A method of separating P- and SV-wavefields is presented in this paper and used to effectively separate P- and SV-wavefields in synthetic and real data. The application to real data shows that this method is feasible and effective. It also can be used for free surface data. 展开更多
关键词 multi-component seismic data wavefield separation P-SV wave r-p transform.
在线阅读 下载PDF
Offshore Fault Geometrics in the Pearl River Estuary,Southeastern China:Evidence from Seismic Reflection Data 被引量:11
13
作者 CAO Jinghe XIA Shaohong +3 位作者 SUN Jinlong ZHAO Fang WAN Kuiyuan XU Huilong 《Journal of Ocean University of China》 SCIE CAS CSCD 2018年第4期799-810,共12页
The Pearl River Estuary(PRE) is located at the onshore-offshore transition zone between South China and South China Sea Basin, and it is of great significant value in discussing tectonic relationships between South Ch... The Pearl River Estuary(PRE) is located at the onshore-offshore transition zone between South China and South China Sea Basin, and it is of great significant value in discussing tectonic relationships between South China block and South China Sea block and seismic activities along the offshore active faults in PRE. However, the researches on geometric characteristics of offshore faults in this area are extremely lacking. To investigate the offshore fault distribution and their geometric features in the PRE in greater detail, we acquired thirteen seismic reflection profiles in 2015. Combining the analysis of the seismic reflection and free-air gravity anomaly data, this paper revealed the location, continuity, and geometry of the littoral fault zone and other offshore faults in PRE. The littoral fault zone is composed of the major Dangan Islands fault and several parallel, high-angle, normal faults, which mainly trend northeast to northeast-to-east and dip to the southeast with large displacements. The fault zone is divided into three different segments by the northwest-trending faults. Moreover, the basement depth around Dangan Islands is very shallow, while it suddenly increases along the islands westward and southward. These has resulted in the islands and neighboring areas becoming the places where the stress accumulates easily. The seismogenic pattern of this area is closely related to the comprehensive effect of intersecting faults together with the low velocity layer. 展开更多
关键词 OFFSHORE active FAULTS LITTORAL FAULT zone PEARL River ESTUARY earthquake seismic reflection data
在线阅读 下载PDF
The Analysis of Seismic Data Structure and Oil and Gas Prediction 被引量:15
14
作者 WangShangxu LinChangrong 《Applied Geophysics》 SCIE CSCD 2004年第2期75-82,共8页
In this paper, a new concept called numerical structure of seismic data is introduced and the difference between numerical structure and numerical value of seismic data is explained. Our study shows that the numerical... In this paper, a new concept called numerical structure of seismic data is introduced and the difference between numerical structure and numerical value of seismic data is explained. Our study shows that the numerical seismic structure is closely related to oil and gas-bearing reservoir, so it is very useful for a geologist or a geophysicist to precisely interpret the oil-bearing layers from the seismic data. This technology can be applied to any exploration or production stage. The new method has been tested on a series of exploratory or development wells and proved to be reliable in China. Hydrocarbon-detection with this new method for 39 exploration wells on 25 structures indi- cates a success ratio of over 80 percent. The new method of hydrocarbon prediction can be applied for: (1) depositional environment of reservoirs with marine fades, delta, or non-marine fades (including fluvial facies, lacustrine fades); (2) sedimentary rocks of reservoirs that are non-marine clastic rocks and carbonate rock; and (3) burial depths range from 300 m to 7000 m, and the minimum thickness of these reservoirs is over 8 m (main frequency is about 50 Hz). 展开更多
关键词 hydrocarbon prediction hydrocarbon oil-bearing stratum seismic data structure data value seismic facies
在线阅读 下载PDF
The improved ICA algorithm and its application in the seismic data denoising 被引量:6
15
作者 QIN Fei-long LIU Jian 《Journal of Chongqing University》 CAS 2018年第4期162-170,共9页
The field seismic data is disturbed by the interferential information, which has low signal to noise ratio (SNR). That is disadvantage for seismic data interpretation. So it is important to remove the noise of seismic... The field seismic data is disturbed by the interferential information, which has low signal to noise ratio (SNR). That is disadvantage for seismic data interpretation. So it is important to remove the noise of seismic data. Independent component analysis (ICA) can remove most of the noise interference. However, ICA has some defects in noise reduction, because it needs some conditions that seismic data is independent reciprocally for denoising. To solve these defects, this paper proposes an improved ICA algorithm to noise reduction. Through simulation experiments, it can be obtained that the best decomposition levels of the new algorithm is 3. At last, the proposed improved ICA is applied to deal with the actual seismic data. The results show that it can effectively eliminate most of seismic noise such as random noise, linear interference, surface waves, and so on. The improved ICA is not only easy to denoising, but also has excellent mathematical theoretical properties. 展开更多
关键词 seismic data IMPROVED ICA WAVELET transform DENOISING
在线阅读 下载PDF
Method for Morphological Filtering in Seismic Data Processing 被引量:5
16
作者 Li Qing Wang Runqiu Huang Wenfeng Zheng Guijuan 《Petroleum Science》 SCIE CAS CSCD 2005年第4期20-29,共10页
A new method is introduced to suppress the noise in seismic data processing. Based on the subtle difference in shape between the noise and the actual signal, we introduce morphologic filtering into seismic data proces... A new method is introduced to suppress the noise in seismic data processing. Based on the subtle difference in shape between the noise and the actual signal, we introduce morphologic filtering into seismic data processing. From the shape and the S/N we can see that the effect of morphologic filtering is superior to other methods like id-value filtering, neighbor average filtering, etc. The SNR of the signal after morphological filtering is comparatively great. In addition, the precision of the seismic data after morphological filtering is high. The characteristics of the actual signal, such as frequency and amplitude, are preserved. We give an example of the real seismic data processing using morphological filtering, in which the actual signal is retained, while the random high intensity noise was removed. 展开更多
关键词 Mathematical morphology seismic data EROSION DILATION OPENING CLOSING structuring element
原文传递
Application of multi-scaled morphology in denoising seismic data 被引量:7
17
作者 王润秋 李青 张明 《Applied Geophysics》 SCIE CSCD 2008年第3期197-203,共7页
In this paper, multi-scaled morphology is introduced into the digital processing domain for land seismic data. First, we describe the basic theory of multi-scaled morphology image decomposition of exploration seismic ... In this paper, multi-scaled morphology is introduced into the digital processing domain for land seismic data. First, we describe the basic theory of multi-scaled morphology image decomposition of exploration seismic waves; second, we illustrate how to use multi-scaled morphology for seismic data processing using two real examples. The first example demonstrates suppressing the surface waves in pre-stack seismic records using multi-scaled morphology decomposition and reconstitution and the other example demonstrates filtering different interference waves on the seismic record. Multi-scaled morphology filtering separates signal from noise by the detailed differences of the wave shapes. The successful applications suggest that multi-scaled morphology has a promising application in seismic data processing. 展开更多
关键词 Multi-scaled morphology structure element seismic data processing seismic data denoising.
在线阅读 下载PDF
Predicting the distribution of reservoirs by applying the method of seismic data structure characteristics: Example from the eighth zone in Tahe Oilfield 被引量:10
18
作者 Lin Changrong Wang Shangxu Zhang Yong 《Applied Geophysics》 SCIE CSCD 2006年第4期234-242,共9页
Seismic data structure characteristics means the waveform character arranged in the time sequence at discrete data points in each 2-D or 3-D seismic trace. Hydrocarbon prediction using seismic data structure character... Seismic data structure characteristics means the waveform character arranged in the time sequence at discrete data points in each 2-D or 3-D seismic trace. Hydrocarbon prediction using seismic data structure characteristics is a new reservoir prediction technique. When the main pay interval is in carbonate fracture and fissure-cavern type reservoirs with very strong inhomogeneity, there are some difficulties with hydrocarbon prediction. Because of the special geological conditions of the eighth zone in the Tahe oil field, we apply seismic data structure characteristics to hydrocarbon prediction for the Ordovician reservoir in this zone. We divide the area oil zone into favorable and unfavorable blocks. Eighteen well locations were proposed in the favorable oil block, drilled, and recovered higher output of oil and gas. 展开更多
关键词 seismic data structure numerical abnormality correlation analysis hydrocarbon prediction economic effect
在线阅读 下载PDF
A Method of Improving Seismic Data Resolution:Comprehensive Inversion of Well logging and Seismic Data 被引量:3
19
作者 Zhang Yufen Hong Feng(Department of Applied Geophysics, China University of Geosciences, Wuhan 430074)Li Fenglan Qing Guangsheng(Geological Survey Division, Zhongyuan Petroleum Exploration Bureau, Puyang 457001) 《Journal of Earth Science》 SCIE CAS CSCD 1996年第2期193-196,共4页
Comprehensive inversion of logging and seismic data presented in this paper is a method to improve seismic data resolution. It involves using ample high-frequency information and complete low-frequency information of ... Comprehensive inversion of logging and seismic data presented in this paper is a method to improve seismic data resolution. It involves using ample high-frequency information and complete low-frequency information of known logging to make up for the lack of limited bandwidth of practical seismic recording, obtaining an approximate reflection coefficient sequence (or wave impedance) of high resolution by iterative inversion and providing more reliable seismic evidence for further lithologic interpretation and lateral tracking, correlation and prediction of thin reservoir. The comprehensive inversion can be realized in the following steps: (1) to establish an initial model of higher resolution; (2) to obtain wavelets, and (3) to constrain iterative inversion. The key to this inversion lies in building an initial model. It is assumed from our experience that when the initial model is properly given, iterative inversion can be quickly converged to the ideal result. 展开更多
关键词 seismic data resolution reflection coefficient sequence wave impedance comprehension inversion
在线阅读 下载PDF
Static Corrections Methods in the Processing of Deep Reflection Seismic Data 被引量:3
20
作者 Xiaosan Zhu Rui Gao +3 位作者 Qiusheng Li Ye Guan Zhanwu Lu Haiyan Wang 《Journal of Earth Science》 SCIE CAS CSCD 2014年第2期299-308,共10页
Statics are big challenges for the processing of deep reflection seismic data. In this paper several different statics solutions have been implemented in the processing of deep reflection seismic data in South China a... Statics are big challenges for the processing of deep reflection seismic data. In this paper several different statics solutions have been implemented in the processing of deep reflection seismic data in South China and their corresponding results have been compared in order to find proper statics solutions. Either statics solutions based on tomographic principle or combining the low-frequency components of field statics with the high-frequency ones of refraction statics can provide reasonable statics solutions for deep reflection seismic data in South China with very rugged surface topography, and the two statics solutions can correct the statics anomalies of both long spatial wavelengths and short ones. The surface-consistent residual static corrections can serve as the good compensations to the several kinds of the first statics solutions. Proper statics solutions can improve both qualities and reso- lutions of seismic sections, especially for the reflections of Moho in the upmost mantle. 展开更多
关键词 deep reflection seismic data static correction field static refraction static tomographic static residual static correction.
原文传递
上一页 1 2 195 下一页 到第
使用帮助 返回顶部