期刊文献+
共找到10,146篇文章
< 1 2 250 >
每页显示 20 50 100
Multi-Scale Dilated Convolution Network for SPECT-MPI Cardiovascular Disease Classification with Adaptive Denoising and Attenuation Correction
1
作者 A.Robert Singh Suganya Athisayamani +1 位作者 Gyanendra Prasad Joshi Bhanu Shrestha 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期299-327,共29页
Myocardial perfusion imaging(MPI),which uses single-photon emission computed tomography(SPECT),is a well-known estimating tool for medical diagnosis,employing the classification of images to show situations in coronar... Myocardial perfusion imaging(MPI),which uses single-photon emission computed tomography(SPECT),is a well-known estimating tool for medical diagnosis,employing the classification of images to show situations in coronary artery disease(CAD).The automatic classification of SPECT images for different techniques has achieved near-optimal accuracy when using convolutional neural networks(CNNs).This paper uses a SPECT classification framework with three steps:1)Image denoising,2)Attenuation correction,and 3)Image classification.Image denoising is done by a U-Net architecture that ensures effective image denoising.Attenuation correction is implemented by a convolution neural network model that can remove the attenuation that affects the feature extraction process of classification.Finally,a novel multi-scale diluted convolution(MSDC)network is proposed.It merges the features extracted in different scales and makes the model learn the features more efficiently.Three scales of filters with size 3×3 are used to extract features.All three steps are compared with state-of-the-art methods.The proposed denoising architecture ensures a high-quality image with the highest peak signal-to-noise ratio(PSNR)value of 39.7.The proposed classification method is compared with the five different CNN models,and the proposed method ensures better classification with an accuracy of 96%,precision of 87%,sensitivity of 87%,specificity of 89%,and F1-score of 87%.To demonstrate the importance of preprocessing,the classification model was analyzed without denoising and attenuation correction. 展开更多
关键词 SPECT-MPI CAD MSDC denoising attenuation correction classification
在线阅读 下载PDF
DnCNN-RM:an adaptive SAR image denoising algorithm based on residual networks
2
作者 OU Hai-ning LI Chang-di +3 位作者 ZENG Rui-bin WU Yan-feng LIU Jia-ning CHENG Peng 《中国光学(中英文)》 北大核心 2025年第5期1209-1218,共10页
In the field of image processing,the analysis of Synthetic Aperture Radar(SAR)images is crucial due to its broad range of applications.However,SAR images are often affected by coherent speckle noise,which significantl... In the field of image processing,the analysis of Synthetic Aperture Radar(SAR)images is crucial due to its broad range of applications.However,SAR images are often affected by coherent speckle noise,which significantly degrades image quality.Traditional denoising methods,typically based on filter techniques,often face challenges related to inefficiency and limited adaptability.To address these limitations,this study proposes a novel SAR image denoising algorithm based on an enhanced residual network architecture,with the objective of enhancing the utility of SAR imagery in complex electromagnetic environments.The proposed algorithm integrates residual network modules,which directly process the noisy input images to generate denoised outputs.This approach not only reduces computational complexity but also mitigates the difficulties associated with model training.By combining the Transformer module with the residual block,the algorithm enhances the network's ability to extract global features,offering superior feature extraction capabilities compared to CNN-based residual modules.Additionally,the algorithm employs the adaptive activation function Meta-ACON,which dynamically adjusts the activation patterns of neurons,thereby improving the network's feature extraction efficiency.The effectiveness of the proposed denoising method is empirically validated using real SAR images from the RSOD dataset.The proposed algorithm exhibits remarkable performance in terms of EPI,SSIM,and ENL,while achieving a substantial enhancement in PSNR when compared to traditional and deep learning-based algorithms.The PSNR performance is enhanced by over twofold.Moreover,the evaluation of the MSTAR SAR dataset substantiates the algorithm's robustness and applicability in SAR denoising tasks,with a PSNR of 25.2021 being attained.These findings underscore the efficacy of the proposed algorithm in mitigating speckle noise while preserving critical features in SAR imagery,thereby enhancing its quality and usability in practical scenarios. 展开更多
关键词 SAR images image denoising residual networks adaptive activation function
在线阅读 下载PDF
Rendered image denoising method with filtering guided by lighting information
3
作者 MA Minghui HU Xiaojuan +2 位作者 ZHANG Ripei CHEN Chunyi YU Haiyang 《Optoelectronics Letters》 2025年第4期242-248,共7页
The visual noise of each light intensity area is different when the image is drawn by Monte Carlo method.However,the existing denoising algorithms have limited denoising performance under complex lighting conditions a... The visual noise of each light intensity area is different when the image is drawn by Monte Carlo method.However,the existing denoising algorithms have limited denoising performance under complex lighting conditions and are easy to lose detailed information.So we propose a rendered image denoising method with filtering guided by lighting information.First,we design an image segmentation algorithm based on lighting information to segment the image into different illumination areas.Then,we establish the parameter prediction model guided by lighting information for filtering(PGLF)to predict the filtering parameters of different illumination areas.For different illumination areas,we use these filtering parameters to construct area filters,and the filters are guided by the lighting information to perform sub-area filtering.Finally,the filtering results are fused with auxiliary features to output denoised images for improving the overall denoising effect of the image.Under the physically based rendering tool(PBRT)scene and Tungsten dataset,the experimental results show that compared with other guided filtering denoising methods,our method improves the peak signal-to-noise ratio(PSNR)metrics by 4.2164 dB on average and the structural similarity index(SSIM)metrics by 7.8%on average.This shows that our method can better reduce the noise in complex lighting scenesand improvethe imagequality. 展开更多
关键词 establish paramet rendered image denoising Monte Carlo method filtering guided lighting information denoising algorithms image segmentation algorithm rendered image denoising method monte carlo methodhoweverthe
原文传递
Enhancing Malware Detection Resilience:A U-Net GAN Denoising Framework for Image-Based Classification
4
作者 Huiyao Dong Igor Kotenko 《Computers, Materials & Continua》 2025年第3期4263-4285,共23页
The growing complexity of cyber threats requires innovative machine learning techniques,and image-based malware classification opens up new possibilities.Meanwhile,existing research has largely overlooked the impact o... The growing complexity of cyber threats requires innovative machine learning techniques,and image-based malware classification opens up new possibilities.Meanwhile,existing research has largely overlooked the impact of noise and obfuscation techniques commonly employed by malware authors to evade detection,and there is a critical gap in using noise simulation as a means of replicating real-world malware obfuscation techniques and adopting denoising framework to counteract these challenges.This study introduces an image denoising technique based on a U-Net combined with a GAN framework to address noise interference and obfuscation challenges in image-based malware analysis.The proposed methodology addresses existing classification limitations by introducing noise addition,which simulates obfuscated malware,and denoising strategies to restore robust image representations.To evaluate the approach,we used multiple CNN-based classifiers to assess noise resistance across architectures and datasets,measuring significant performance variation.Our denoising technique demonstrates remarkable performance improvements across two multi-class public datasets,MALIMG and BIG-15.For example,the MALIMG classification accuracy improved from 23.73%to 88.84%with denoising applied after Gaussian noise injection,demonstrating robustness.This approach contributes to improving malware detection by offering a robust framework for noise-resilient classification in noisy conditions. 展开更多
关键词 MALWARE CYBERSECURITY deep learning denoising
在线阅读 下载PDF
Self-supervised multi-stage deep learning network for seismic data denoising
5
作者 Omar M.Saad Matteo Ravasi Tariq Alkhalifah 《Artificial Intelligence in Geosciences》 2025年第1期240-249,共10页
Seismic data denoising is a critical process usually applied at various stages of the seismic processing workflow,as our ability to mitigate noise in seismic data affects the quality of our subsequent analyses.However... Seismic data denoising is a critical process usually applied at various stages of the seismic processing workflow,as our ability to mitigate noise in seismic data affects the quality of our subsequent analyses.However,finding an optimal balance between preserving seismic signals and effectively reducing seismic noise presents a substantial challenge.In this study,we introduce a multi-stage deep learning model,trained in a self-supervised manner,designed specifically to suppress seismic noise while minimizing signal leakage.This model operates as a patch-based approach,extracting overlapping patches from the noisy data and converting them into 1D vectors for input.It consists of two identical sub-networks,each configured differently.Inspired by the transformer architecture,each sub-network features an embedded block that comprises two fully connected layers,which are utilized for feature extraction from the input patches.After reshaping,a multi-head attention module enhances the model’s focus on significant features by assigning higher attention weights to them.The key difference between the two sub-networks lies in the number of neurons within their fully connected layers.The first sub-network serves as a strong denoiser with a small number of neurons,effectively attenuating seismic noise;in contrast,the second sub-network functions as a signal-add-back model,using a larger number of neurons to retrieve some of the signal that was not preserved in the output of the first sub-network.The proposed model produces two outputs,each corresponding to one of the sub-networks,and both sub-networks are optimized simultaneously using the noisy data as the label for both outputs.Evaluations conducted on both synthetic and field data demonstrate the model’s effectiveness in suppressing seismic noise with minimal signal leakage,outperforming some benchmark methods. 展开更多
关键词 Seismic data denoising Self-supervised Multi-stage deep learning
在线阅读 下载PDF
From Spatial Domain to Patch-Based Models:A Comprehensive Review and Comparison of Multimodal Medical Image Denoising Algorithms
6
作者 Apoorav Sharma Ayush Dogra +2 位作者 Bhawna Goyal Archana Saini Vinay Kukreja 《Computers, Materials & Continua》 2025年第10期367-481,共115页
To enable proper diagnosis of a patient,medical images must demonstrate no presence of noise and artifacts.The major hurdle lies in acquiring these images in such a manner that extraneous variables,causing distortions... To enable proper diagnosis of a patient,medical images must demonstrate no presence of noise and artifacts.The major hurdle lies in acquiring these images in such a manner that extraneous variables,causing distortions in the form of noise and artifacts,are kept to a bare minimum.The unexpected change realized during the acquisition process specifically attacks the integrity of the image’s quality,while indirectly attacking the effectiveness of the diagnostic process.It is thus crucial that this is attended to with maximum efficiency at the level of pertinent expertise.The solution to these challenges presents a complex dilemma at the acquisition stage,where image processing techniques must be adopted.The necessity of this mandatory image pre-processing step underpins the implementation of traditional state-of-the-art methods to create functional and robust denoising or recovery devices.This article hereby provides an extensive systematic review of the above techniques,with the purpose of presenting a systematic evaluation of their effect on medical images under three different distributions of noise,i.e.,Gaussian,Poisson,and Rician.A thorough analysis of these methods is conducted using eight evaluation parameters to highlight the unique features of each method.The covered denoising methods are essential in actual clinical scenarios where the preservation of anatomical details is crucial for accurate and safe diagnosis,such as tumor detection in MRI and vascular imaging in CT. 展开更多
关键词 Image denoising MRI CT spatial domain filters transform domain
在线阅读 下载PDF
Terahertz image denoising via multiscale hybrid-convolution residual network
7
作者 Heng Wu Zijie Guo +2 位作者 Chunhua He Shaojuan Luo Bofang Song 《CAAI Transactions on Intelligence Technology》 2025年第1期235-252,共18页
Terahertz imaging technology has great potential applications in areas,such as remote sensing,navigation,security checks,and so on.However,terahertz images usually have the problems of heavy noises and low resolution.... Terahertz imaging technology has great potential applications in areas,such as remote sensing,navigation,security checks,and so on.However,terahertz images usually have the problems of heavy noises and low resolution.Previous terahertz image denoising methods are mainly based on traditional image processing methods,which have limited denoising effects on the terahertz noise.Existing deep learning-based image denoising methods are mostly used in natural images and easily cause a large amount of detail loss when denoising terahertz images.Here,a residual-learning-based multiscale hybridconvolution residual network(MHRNet)is proposed for terahertz image denoising,which can remove noises while preserving detail features in terahertz images.Specifically,a multiscale hybrid-convolution residual block(MHRB)is designed to extract rich detail features and local prediction residual noise from terahertz images.Specifically,MHRB is a residual structure composed of a multiscale dilated convolution block,a bottleneck layer,and a multiscale convolution block.MHRNet uses the MHRB and global residual learning to achieve terahertz image denoising.Ablation studies are performed to validate the effectiveness of MHRB.A series of experiments are conducted on the public terahertz image datasets.The experimental results demonstrate that MHRNet has an excellent denoising effect on synthetic and real noisy terahertz images.Compared with existing methods,MHRNet achieves comprehensive competitive results. 展开更多
关键词 image processing multiscale hybrid-convolution residual learning terahertz image denoising
在线阅读 下载PDF
Measurement and Characterization of Micro Corner-Cube Reflectors Array Using Coherent Denoising Interference and Physical Model-Based Neural Network
8
作者 Xinlan Tang Lingbao Kong +4 位作者 Zhenzhen Ding Yuhan Wang Bo Wang Huixin Song Yanwen Shen 《Chinese Journal of Mechanical Engineering》 2025年第3期61-76,共16页
In modern industrial design trends featuring with integration,miniaturization,and versatility,there is a growing demand on the utilization of microstructural array devices.The measurement of such microstructural array... In modern industrial design trends featuring with integration,miniaturization,and versatility,there is a growing demand on the utilization of microstructural array devices.The measurement of such microstructural array components often encounters challenges due to the reduced scale and complex structures,either by contact or noncontact optical approaches.Among these microstructural arrays,there are still no optical measurement methods for micro corner-cube reflector arrays.To solve this problem,this study introduces a method for effectively eliminating coherent noise and achieving surface profile reconstruction in interference measurements of microstructural arrays.The proposed denoising method allows the calibration and inverse solving of system errors in the frequency domain by employing standard components with known surface types.This enables the effective compensation of the complex amplitude of non-sample coherent light within the interferometer optical path.The proposed surface reconstruction method enables the profile calculation within the situation that there is complex multi-reflection during the propagation of rays in microstructural arrays.Based on the measurement results,two novel metrics are defined to estimate diffraction errors at array junctions and comprehensive errors across multiple array elements,offering insights into other types of microstructure devices.This research not only addresses challenges of the coherent noise and multi-reflection,but also makes a breakthrough for quantitively optical interference measurement of microstructural array devices. 展开更多
关键词 Microstructural arrays measurement Optical measurement Coherent denoising Neural network Multi-reflection
暂未订购
A hybrid denoising method for low-field nuclear magnetic resonance data
9
作者 Yongjie Zhao Ranhong Xie +2 位作者 Ke Huang Huan Su Jiangfeng Guo 《Magnetic Resonance Letters》 2025年第2期19-29,共11页
Low-field nuclear magnetic resonance(NMR)has broad application prospects in the explo-ration and development of unconventional oil and gas reservoirs.However,NMR instruments tend to acquire echo signals with relativel... Low-field nuclear magnetic resonance(NMR)has broad application prospects in the explo-ration and development of unconventional oil and gas reservoirs.However,NMR instruments tend to acquire echo signals with relatively low signal-to-noise ratio(SNR),resulting in poor accuracy of T2 spectrum inversion.It is crucial to preprocess the low SNR data with denoising methods before inversion.In this paper,a hybrid NMR data denoising method combining empirical mode decomposition-singular value decomposition(EMD-SVD)was proposed.Firstly,the echo data were decomposed with the EMD method to low-and high-frequency intrinsic mode function(IMF)components as well as a residual.Next,the SVD method was employed for the high-frequency IMF components denoising.Finally,the low-frequency IMF components,the denoised high-frequency IMF components,and the residual are summed to form the denoised signal.To validate the effectiveness and feasibility of the EMD-SVDmethod,numerical simulations,experimental data,and NMR log data processingwere conducted.The results indicate that the inverted NMR spectra with the EMD-SVD denoising method exhibit higher quality compared to the EMD method and the SVD method. 展开更多
关键词 Low-field nuclear magnetic resonance Data denoising Empirical mode decomposition Singular value decomposition
在线阅读 下载PDF
Spatially Constrained Variational Autoencoder for Geochemical Data Denoising and Uncertainty Quantification
10
作者 Dazheng Huang Renguang Zuo +1 位作者 Jian Wang Raimon Tolosana-Delgado 《Journal of Earth Science》 2025年第5期2317-2336,共20页
Geochemical survey data are essential across Earth Science disciplines but are often affected by noise,which can obscure important geological signals and compromise subsequent prediction and interpretation.Quantifying... Geochemical survey data are essential across Earth Science disciplines but are often affected by noise,which can obscure important geological signals and compromise subsequent prediction and interpretation.Quantifying prediction uncertainty is hence crucial for robust geoscientific decision-making.This study proposes a novel deep learning framework,the Spatially Constrained Variational Autoencoder(SC-VAE),for denoising geochemical survey data with integrated uncertainty quantification.The SC-VAE incorporates spatial regularization,which enforces spatial coherence by modeling inter-sample relationships directly within the latent space.The performance of the SC-VAE was systematically evaluated against a standard Variational Autoencoder(VAE)using geochemical data from the gold polymetallic district in the northwestern part of Sichuan Province,China.Both models were optimized using Bayesian optimization,with objective functions specifically designed to maintain essential geostatistical characteristics.Evaluation metrics include variogram analysis,quantitative measures of spatial interpolation accuracy,visual assessment of denoised maps,and statistical analysis of data distributions,as well as decomposition of uncertainties.Results show that the SC-VAE achieves superior noise suppression and better preservation of spatial structure compared to the standard VAE,as demonstrated by a significant reduction in the variogram nugget effect and an increased partial sill.The SC-VAE produces denoised maps with clearer anomaly delineation and more regularized data distributions,effectively mitigating outliers and reducing kurtosis.Additionally,it delivers improved interpolation accuracy and spatially explicit uncertainty estimates,facilitating more reliable and interpretable assessments of prediction confidence.The SC-VAE framework thus provides a robust,geostatistically informed solution for enhancing the quality and interpretability of geochemical data,with broad applicability in mineral exploration,environmental geochemistry,and other Earth Science domains. 展开更多
关键词 geochemical data denoising spatially constrained variational autoencoder GEOSTATISTICS bayesian optimization uncertainty analysis GEOCHEMISTRY
原文传递
Clustering-based temporal deep neural network denoising method for event-based sensors
11
作者 LI Jianing XU Jiangtao GAO Jiandong 《Optoelectronics Letters》 2025年第7期441-448,共8页
To enhance the denoising performance of event-based sensors,we introduce a clustering-based temporal deep neural network denoising method(CBTDNN).Firstly,to cluster the sensor output data and obtain the respective clu... To enhance the denoising performance of event-based sensors,we introduce a clustering-based temporal deep neural network denoising method(CBTDNN).Firstly,to cluster the sensor output data and obtain the respective cluster centers,a combination of density-based spatial clustering of applications with noise(DBSCAN)and Kmeans++is utilized.Subsequently,long short-term memory(LSTM)is employed to fit and yield optimized cluster centers with temporal information.Lastly,based on the new cluster centers and denoising ratio,a radius threshold is set,and noise points beyond this threshold are removed.The comprehensive denoising metrics F1_score of CBTDNN have achieved 0.8931,0.7735,and 0.9215 on the traffic sequences dataset,pedestrian detection dataset,and turntable dataset,respectively.And these metrics demonstrate improvements of 49.90%,33.07%,19.31%,and 22.97%compared to four contrastive algorithms,namely nearest neighbor(NNb),nearest neighbor with polarity(NNp),Autoencoder,and multilayer perceptron denoising filter(MLPF).These results demonstrate that the proposed method enhances the denoising performance of event-based sensors. 展开更多
关键词 cluster centers denoising kmeans cluster centersa temporal deep neural network CLUSTERING event based sensors dbscan
原文传递
Deep learning-based workflow for atomic image denoising and chemical identification
12
作者 Ke Ma Shiqiang Feng +3 位作者 Haihui Hu Yimeng Cai Dechao Chen Lili Han 《Chinese Journal of Structural Chemistry》 2025年第5期63-68,共6页
Aberration-corrected annular dark-field scanning transmission electron microscopy(ADF-STEM)is a powerful tool for structural and chemical analysis of materials.Conventional analyses of ADF-STEM images rely on human la... Aberration-corrected annular dark-field scanning transmission electron microscopy(ADF-STEM)is a powerful tool for structural and chemical analysis of materials.Conventional analyses of ADF-STEM images rely on human labeling,making them labor-intensive and prone to subjective error.Here,we introduce a deep-learning-based workflow combining a pix2pix network for image denoising and either a mathematical algorithm local intensity threshold segmentation(LITS)or another deep learning network UNet for chemical identification.After denoising,the processed images exhibit a five-fold improvement in signal-to-noise ratio and a 20%increase in accuracy of atomic localization.Then,we take atomic-resolution images of Y–Ce dual-atom catalysts(DACs)and Fe-doped ReSe_(2) nanosheets as examples to validate the performance.Pix2pix is applied to identify atomic sites in Y–Ce DACs with a location recall of 0.88 and a location precision of 0.99.LITS is used to further differentiate Y and Ce sites by the intensity of atomic sites.Furthermore,pix2pix and UNet workflow with better automaticity is applied to identification of Fe-doped ReSe_(2) nanosheets.Three types of atomic sites(Re,the substitution of Fe for Re,and the adatom of Fe on Re)are distinguished with the identification recall of more than 0.90 and the precision of higher than 0.93.These results suggest that this strategy facilitates high-quality and automated chemical identification of atomic-resolution images. 展开更多
关键词 Atomic-resolution image Deep learning Chemical identification Dual-atoms catalyst Atomic dopant Scanning transmission electron microscopy denoising
原文传递
DNEFNET: Denoising and Frequency Domain Feature Enhancement Event Fusion Network for Image Deblurring
13
作者 Kangkang Zhao Yaojie Chen Jianbo Li 《Computers, Materials & Continua》 2025年第7期745-762,共18页
Traditional cameras inevitably suffer from motion blur when facing high-speed moving objects.Event cameras,as high temporal resolution bionic cameras,record intensity changes in an asynchronous manner,and their record... Traditional cameras inevitably suffer from motion blur when facing high-speed moving objects.Event cameras,as high temporal resolution bionic cameras,record intensity changes in an asynchronous manner,and their recorded high temporal resolution information can effectively solve the problem of time information loss in motion blur.Existing event-based deblurring methods still face challenges when facing high-speed moving objects.We conducted an in-depth study of the imaging principle of event cameras.We found that the event stream contains excessive noise.The valid information is sparse.Invalid event features hinder the expression of valid features due to the uncertainty of the global threshold.To address this problem,a denoising-based long and short-term memory module(DTM)is designed in this paper.The DTM suppressed the original event information by noise reduction process.Invalid features in the event stream and solves the problem of sparse valid information in the event stream,and it also combines with the long short-term memory module(LSTM),which further enhances the event feature information in the time scale.In addition,through the in-depth understanding of the unique characteristics of event features,it is found that the high-frequency information recorded by event features does not effectively guide the fusion feature deblurring process in the spatial-domain-based feature processing,and for this reason,we introduce the residual fast fourier transform module(RES-FFT)to further enhance the high-frequency characteristics of the fusion features by performing the feature extraction of the fusion features from the perspective of the frequency domain.Ultimately,our proposed event image fusion network based on event denoising and frequency domain feature enhancement(DNEFNET)achieved Peak Signal-to-Noise Ratio(PSNR)/Structural Similarity Index Measure(SSIM)scores of 35.55/0.972 on the GoPro dataset and 38.27/0.975 on the REBlur dataset,achieving the state of the art(SOTA)effect. 展开更多
关键词 Image deblurring event camera denoising frequency domain Algorithm 1:DNEFNET image processing
在线阅读 下载PDF
Geomagnetic Data Denoising Based on Deep Residual Shrinkage Network
14
作者 Zhang Bin Yang Chao +2 位作者 Zheng Hao-Hao Yan Jia-Yong Ma Chang-Ying 《Applied Geophysics》 2025年第3期820-834,897,共16页
Geomagnetic data hold significant value in fields such as earthquake monitoring and deep earth exploration.However,the increasing severity of anthropogenic noise contamination in existing geomagnetic observatory data ... Geomagnetic data hold significant value in fields such as earthquake monitoring and deep earth exploration.However,the increasing severity of anthropogenic noise contamination in existing geomagnetic observatory data poses substantial challenges to high-precision computational analysis of geomagnetic data.To overcome this problem,we propose a denoising method for geomagnetic data based on the Residual Shrinkage Network(RSN).We construct a sample library of simulated and measured geomagnetic data develop and train the RSN denoising network.Through its unique soft thresholding module,RSN adaptively learns and removes noise from the data,effectively improving data quality.In experiments with noise-added measured data,RSN enhances the quality of the noisy data by approximately 12 dB on average.The proposed method is further validated through denoising analysis on measured data by comparing results of time-domain sequences,multiple square coherence and geomagnetic transfer functions. 展开更多
关键词 residual shrinkage network(RSN) signal processing geomagnetic signal denoising electromagnetic exploration deep learning(DL)
在线阅读 下载PDF
BEDiff:denoising diffusion probabilistic models for building extraction
15
作者 LEI Yanjing WANG Yuan +3 位作者 CHAN Sixian HU Jie ZHOU Xiaolong ZHANG Hongkai 《Optoelectronics Letters》 2025年第5期298-305,共8页
Accurately identifying building distribution from remote sensing images with complex background information is challenging.The emergence of diffusion models has prompted the innovative idea of employing the reverse de... Accurately identifying building distribution from remote sensing images with complex background information is challenging.The emergence of diffusion models has prompted the innovative idea of employing the reverse denoising process to distill building distribution from these complex backgrounds.Building on this concept,we propose a novel framework,building extraction diffusion model(BEDiff),which meticulously refines the extraction of building footprints from remote sensing images in a stepwise fashion.Our approach begins with the design of booster guidance,a mechanism that extracts structural and semantic features from remote sensing images to serve as priors,thereby providing targeted guidance for the diffusion process.Additionally,we introduce a cross-feature fusion module(CFM)that bridges the semantic gap between different types of features,facilitating the integration of the attributes extracted by booster guidance into the diffusion process more effectively.Our proposed BEDiff marks the first application of diffusion models to the task of building extraction.Empirical evidence from extensive experiments on the Beijing building dataset demonstrates the superior performance of BEDiff,affirming its effectiveness and potential for enhancing the accuracy of building extraction in complex urban landscapes. 展开更多
关键词 booster guidance building extraction reverse denoising process diffusion model bediff which remote sensing images complex background diffusion models
原文传递
Electrocardiogram Signal Denoising Using Optimized Adaptive Hybrid Filter with Empirical Wavelet Transform
16
作者 BALASUBRAMANIAN S NARUKA Mahaveer Singh TEWARI Gaurav 《Journal of Shanghai Jiaotong university(Science)》 2025年第1期66-80,共15页
Cardiovascular diseases are the world’s leading cause of death;therefore cardiac health of the human heart has been a fascinating topic for decades.The electrocardiogram(ECG)signal is a comprehensive non-invasive met... Cardiovascular diseases are the world’s leading cause of death;therefore cardiac health of the human heart has been a fascinating topic for decades.The electrocardiogram(ECG)signal is a comprehensive non-invasive method for determining cardiac health.Various health practitioners use the ECG signal to ascertain critical information about the human heart.In this article,swarm intelligence approaches are used in the biomedical signal processing sector to enhance adaptive hybrid filters and empirical wavelet transforms(EWTs).At first,the white Gaussian noise is added to the input ECG signal and then applied to the EWT.The ECG signals are denoised by the proposed adaptive hybrid filter.The honey badge optimization(HBO)algorithm is utilized to optimize the EWT window function and adaptive hybrid filter weight parameters.The proposed approach is simulated by MATLAB 2018a using the MIT-BIH dataset with white Gaussian,electromyogram and electrode motion artifact noises.A comparison of the HBO approach with recursive least square-based adaptive filter,multichannel least means square,and discrete wavelet transform methods has been done in order to show the efficiency of the proposed adaptive hybrid filter.The experimental results show that the HBO approach supported by EWT and adaptive hybrid filter can be employed efficiently for cardiovascular signal denoising. 展开更多
关键词 electrocardiogram(ECG)signal denoising empirical wavelet transform(EWT) honey badge optimization(HBO) adaptive hybrid filter window function
原文传递
Prediction of high-embankment settlement combining joint denoising technique and enhanced GWO-v-SVR method 被引量:1
17
作者 Qi Zhang Qian Su +2 位作者 Zongyu Zhang Zhixing Deng De Chen 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第1期317-332,共16页
Reliable long-term settlement prediction of a high embankment relates to mountain infrastructure safety.This study developed a novel hybrid model(NHM)that combines a joint denoising technique with an enhanced gray wol... Reliable long-term settlement prediction of a high embankment relates to mountain infrastructure safety.This study developed a novel hybrid model(NHM)that combines a joint denoising technique with an enhanced gray wolf optimizer(EGWO)-n-support vector regression(n-SVR)method.High-embankment field measurements were preprocessed using the joint denoising technique,which in-cludes complete ensemble empirical mode decomposition,singular value decomposition,and wavelet packet transform.Furthermore,high-embankment settlements were predicted using the EGWO-n-SVR method.In this method,the standard gray wolf optimizer(GWO)was improved to obtain the EGWO to better tune the n-SVR model hyperparameters.The proposed NHM was then tested in two case studies.Finally,the influences of the data division ratio and kernel function on the EGWO-n-SVR forecasting performance and prediction efficiency were investigated.The results indicate that the NHM suppresses noise and restores details in high-embankment field measurements.Simultaneously,the NHM out-performs other alternative prediction methods in prediction accuracy and robustness.This demonstrates that the proposed NHM is effective in predicting high-embankment settlements with noisy field mea-surements.Moreover,the appropriate data division ratio and kernel function for EGWO-n-SVR are 7:3 and radial basis function,respectively. 展开更多
关键词 High embankment Settlement prediction Joint denoising technique Enhanced gray wolf optimizer Support vector regression
在线阅读 下载PDF
Automatic modulation recognition of radio fuzes using a DR2D-based adaptive denoising method and textural feature extraction 被引量:1
18
作者 Yangtian Liu Xiaopeng Yan +2 位作者 Qiang Liu Tai An Jian Dai 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第4期328-338,共11页
The identification of intercepted radio fuze modulation types is a prerequisite for decision-making in interference systems.However,the electromagnetic environment of modern battlefields is complex,and the signal-to-n... The identification of intercepted radio fuze modulation types is a prerequisite for decision-making in interference systems.However,the electromagnetic environment of modern battlefields is complex,and the signal-to-noise ratio(SNR)of such environments is usually low,which makes it difficult to implement accurate recognition of radio fuzes.To solve the above problem,a radio fuze automatic modulation recognition(AMR)method for low-SNR environments is proposed.First,an adaptive denoising algorithm based on data rearrangement and the two-dimensional(2D)fast Fourier transform(FFT)(DR2D)is used to reduce the noise of the intercepted radio fuze intermediate frequency(IF)signal.Then,the textural features of the denoised IF signal rearranged data matrix are extracted from the statistical indicator vectors of gray-level cooccurrence matrices(GLCMs),and support vector machines(SVMs)are used for classification.The DR2D-based adaptive denoising algorithm achieves an average correlation coefficient of more than 0.76 for ten fuze types under SNRs of-10 d B and above,which is higher than that of other typical algorithms.The trained SVM classification model achieves an average recognition accuracy of more than 96%on seven modulation types and recognition accuracies of more than 94%on each modulation type under SNRs of-12 d B and above,which represents a good AMR performance of radio fuzes under low SNRs. 展开更多
关键词 Automatic modulation recognition Adaptive denoising Data rearrangement and the 2D FFT(DR2D) Radio fuze
在线阅读 下载PDF
Image Processing for Denoising Using Composite Adaptive Filtering Methods Based on RMSE 被引量:1
19
作者 Yanlu Chen Ruijie Wang +1 位作者 Puming Zong Da Chen 《Open Journal of Applied Sciences》 2024年第3期660-675,共16页
As one of the carriers for human communication and interaction, images are prone to contamination by noise during transmission and reception, which is often uncontrollable and unknown. Therefore, how to denoise images... As one of the carriers for human communication and interaction, images are prone to contamination by noise during transmission and reception, which is often uncontrollable and unknown. Therefore, how to denoise images contaminated by unknown noise has gradually become one of the research focuses. In order to achieve blind denoising and separation to restore images, this paper proposes a method for image processing based on Root Mean Square Error (RMSE) by integrating multiple filtering methods for denoising. This method includes Wavelet Filtering, Gaussian Filtering, Median Filtering, Mean Filtering, Bilateral Filtering, Adaptive Bandpass Filtering, Non-local Means Filtering and Regularization Denoising suitable for different types of noise. We can apply this method to denoise images contaminated by blind noise sources and evaluate the denoising effects using RMSE. The smaller the RMSE, the better the denoising effect. The optimal denoising result is selected through comprehensively comparing the RMSE values of all methods. Experimental results demonstrate that the proposed method effectively denoises and restores images contaminated by blind noise sources. 展开更多
关键词 Blind denoising Adaptive RMSE Image Restoratio
在线阅读 下载PDF
AMicroseismic Signal Denoising Algorithm Combining VMD and Wavelet Threshold Denoising Optimized by BWOA
20
作者 Dijun Rao Min Huang +2 位作者 Xiuzhi Shi Zhi Yu Zhengxiang He 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第10期187-217,共31页
The denoising of microseismic signals is a prerequisite for subsequent analysis and research.In this research,a new microseismic signal denoising algorithm called the Black Widow Optimization Algorithm(BWOA)optimized ... The denoising of microseismic signals is a prerequisite for subsequent analysis and research.In this research,a new microseismic signal denoising algorithm called the Black Widow Optimization Algorithm(BWOA)optimized VariationalMode Decomposition(VMD)jointWavelet Threshold Denoising(WTD)algorithm(BVW)is proposed.The BVW algorithm integrates VMD and WTD,both of which are optimized by BWOA.Specifically,this algorithm utilizes VMD to decompose the microseismic signal to be denoised into several Band-Limited IntrinsicMode Functions(BLIMFs).Subsequently,these BLIMFs whose correlation coefficients with the microseismic signal to be denoised are higher than a threshold are selected as the effective mode functions,and the effective mode functions are denoised using WTD to filter out the residual low-and intermediate-frequency noise.Finally,the denoised microseismic signal is obtained through reconstruction.The ideal values of VMD parameters and WTD parameters are acquired by searching with BWOA to achieve the best VMD decomposition performance and solve the problem of relying on experience and requiring a large workload in the application of the WTD algorithm.The outcomes of simulated experiments indicate that this algorithm is capable of achieving good denoising performance under noise of different intensities,and the denoising performance is significantly better than the commonly used VMD and Empirical Mode Decomposition(EMD)algorithms.The BVW algorithm is more efficient in filtering noise,the waveform after denoising is smoother,the amplitude of the waveform is the closest to the original signal,and the signal-to-noise ratio(SNR)and the root mean square error after denoising are more satisfying.The case based on Fankou Lead-Zinc Mine shows that for microseismic signals with different intensities of noise monitored on-site,compared with VMD and EMD,the BVW algorithm ismore efficient in filtering noise,and the SNR after denoising is higher. 展开更多
关键词 Variational mode decomposition microseismic signal denoising wavelet threshold denoising black widow optimization algorithm
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部