The global rise in energy demand, particularly in remote and sparsely populated regions, necessitates innovative and cost-effective electrical distribution solutions. Traditional Rural Electrification (RE) methods, li...The global rise in energy demand, particularly in remote and sparsely populated regions, necessitates innovative and cost-effective electrical distribution solutions. Traditional Rural Electrification (RE) methods, like Conventional Rural Electrification (CRE), have proven economically unfeasible in such areas due to high infrastructure costs and low electricity demand. Consequently, Unconventional Rural Electrification (URE) technologies, such as Capacitor Coupled Substations (CCS), are gaining attention as viable alternatives. This study presents the design and simulation of an 80 kW CCS system, which taps power directly from a 132 kV transmission line to supply low-voltage consumers. The critical components of the CCS, the capacitors are calculated, then a MATLAB/Simulink model with the attained results is executed. Mathematical representation and state-space representation for maintaining the desired tapped voltage area also developed. The research further explores the feasibility and operational performance of this CCS configuration, aiming to address the challenges of rural electrification by offering a sustainable and scalable solution. The results show that the desired value of the tapped voltage can be achieved at any level of High Voltage (HV) with the selection of capacitors that are correctly rated. With an adequately designed control strategy, the research also shows that tapped voltage can be attained under both steady-state and dynamic loads. By leveraging CCS technology, the study demonstrates the potential for delivering reliable electricity to underserved areas, highlighting the system’s practicality and effectiveness in overcoming the limitations of conventional distribution methods.展开更多
A substation is a complex coupled system composed of various electrical equipment.Compared with standalone equipment,there is a significant coupling effect in the seismic response of interconnected equipment.To addres...A substation is a complex coupled system composed of various electrical equipment.Compared with standalone equipment,there is a significant coupling effect in the seismic response of interconnected equipment.To address this issue,this study investigates the seismic interaction of substation equipment with multiple electrical configurations and proposes an improved seismic design method.First,the concept of the coupling coefficient is introduced,which is used to improve the Newmark-βmethod and response spectrum method for the seismic design of standalone equipment.Then,the finite element models of a substation system with multiple configurations are established,and the vibration characteristics and seismic responses of the interconnected equipment are investigated.Finally,the coupling coefficients are obtained by kernel density estimation of the response results under twenty seismic ground motions,and the effectiveness of the proposed method is verified through two numerical examples.The results show that the frequency coupling coefficients vary from 0.69 to 1.42,while the seismic action coupling coefficient has a wider range,changing from 1.04 to 3.91.The coupling effect amplifies the seismic response of higher-frequency equipment,and the amplification degree varies among different configurations for the same type of equipment.展开更多
Smart grid substation operations often take place in hazardous environments and pose significant threats to the safety of power personnel.Relying solely on manual supervision can lead to inadequate oversight.In respon...Smart grid substation operations often take place in hazardous environments and pose significant threats to the safety of power personnel.Relying solely on manual supervision can lead to inadequate oversight.In response to the demand for technology to identify improper operations in substation work scenarios,this paper proposes a substation safety action recognition technology to avoid the misoperation and enhance the safety management.In general,this paper utilizes a dual-branch transformer network to extract spatial and temporal information from the video dataset of operational behaviors in complex substation environments.Firstly,in order to capture the spatial-temporal correlation of people's behaviors in smart grid substation,we devise a sparse attention module and a segmented linear attention module that are embedded into spatial branch transformer and temporal branch transformer respectively.To avoid the redundancy of spatial and temporal information,we fuse the temporal and spatial features using a tensor decomposition fusion module by a decoupled manner.Experimental results indicate that our proposed method accurately detects improper operational behaviors in substation work scenarios,outperforming other existing methods in terms of detection and recognition accuracy.展开更多
Rural electrification remains a critical challenge in achieving equitable access to electricity, a cornerstone for poverty alleviation, economic growth, and improved living standards. Capacitor Coupled Substations (CC...Rural electrification remains a critical challenge in achieving equitable access to electricity, a cornerstone for poverty alleviation, economic growth, and improved living standards. Capacitor Coupled Substations (CCS) offer a promising solution for delivering cost-effective electricity to these underserved areas. However, the integration of multiple CCS units along a transmission network introduces complex interactions that can significantly impact voltage, current, and power flow. This study presents a detailed mathematical model to analyze the effects of varying distances and configurations of multiple CCS units on a transmission network, with a focus on voltage stability, power quality, and reactive power fluctuations. Furthermore, the research addresses the phenomenon of ferroresonance, a critical issue in networks with multiple CCS units, by developing and validating suppression strategies to ensure stable operation. Through simulation and practical testing, the study provides insights into optimizing CCS deployment, ultimately contributing to more reliable and efficient rural electrification solutions.展开更多
This article presents an extensive examination and modeling of Capacitor Coupled Substations (CCS), noting some of their inherent constraints. The underlying implementation of a CCS is to supply electricity directly f...This article presents an extensive examination and modeling of Capacitor Coupled Substations (CCS), noting some of their inherent constraints. The underlying implementation of a CCS is to supply electricity directly from high-voltage (HV) transmission lines to low-voltage (LV) consumers through coupling capacitors and is said to be cost-effective as compared to conventional distribution networks. However, the functionality of such substations is susceptible to various transient phenomena, including ferroresonance and overvoltage occurrences. To address these challenges, the study uses simulations to evaluate the effectiveness of conventional resistor-inductor-capacitor (RLC) filter in mitigating hazardous overvoltage resulting from transients. The proposed methodology entails using standard RLC filter to suppress transients and its associated overvoltage risks. Through a series of MATLAB/Simulink simulations, the research emphasizes the practical effectiveness of this technique. The study examines the impact of transients under varied operational scenarios, including no-load switching conditions, temporary short-circuits, and load on/off events. The primary aim of the article is to assess the viability of using an established technology to manage system instabilities upon the energization of a CCS under no-load circumstances or in case of a short-circuit fault occurring on the primary side of the CCS distribution transformer. The findings underscore the effectiveness of conventional RLC filters in suppressing transients induced by the CCS no-load switching.展开更多
In order to deploy short-range wireless communication devices in the primary transformer substation, a Maximum Inner Product(MIP) Method is proposed to extract the path-loss parameters in 110 kV and 220 kV primary tra...In order to deploy short-range wireless communication devices in the primary transformer substation, a Maximum Inner Product(MIP) Method is proposed to extract the path-loss parameters in 110 kV and 220 kV primary transformer substations. The maximum inner product of the testing data is calculated to find out the loss index n and the standard deviation σ, and then the pathloss models can be set up. By comparing the MIP with Minimum Mean Square estimation(MMSE) and Cumulative Sum(CUSUM), MIP can match the measured values best. In order to apply the MIP path-loss model, under the initial signal to noise ratio(SNR) at 5 dB and 10 dB, a ZigBee simulation system is constructed to validate the situation that bit error rate(BER) varies with distance. And the ZigBee devices with 5 units are tested in a 220 kV primary transformer substation. The result of the test proves that the path-loss model is accurate.展开更多
A monitoring system is an important guarantee of safety in a production mine. However, not all monitoring substations pass the electrical fast transient/burst (EFT/B) immunity test and the explosion-proof test simul...A monitoring system is an important guarantee of safety in a production mine. However, not all monitoring substations pass the electrical fast transient/burst (EFT/B) immunity test and the explosion-proof test simultaneously. To enhance the immunity, the values of capacitance and inductance should be increased, which are actually limited by coal mine explosion-proof standards. Hence, for the first time, an active filter was applied in an electromagnetic interference (EMI) output filter. As a result, the interference within 30 MHz clearly weakened, but the frequency spectrum had a wide range. An EMI input filter and ferrite beads were adopted to restrain higher frequency interference. An output interference spectrogram of the substation was obtained with an analyzer. The results indicate that the improved complex filtering markedly help to control interference. With the support of improved complex filtering and other enhancing immunity means about I/O ports, the substation managed to pass both the EFT/B immunity test and the explosion-proof test synchronously. We conclude that improved complex filtering is of vital importance in enhancing the electromagnetic compatibilitv (EMC) of the coal mine monitoring system.展开更多
Recently, most electric power substations have adopted production control systems, such as SCADA systems, which communicate with field devices and remotely control processes from a computer screen. However, these syst...Recently, most electric power substations have adopted production control systems, such as SCADA systems, which communicate with field devices and remotely control processes from a computer screen. However, these systems together with protection measures and additional control actions (using protocol IEC61850) seem not to be enough to free substations of security attacks (e.g. virus, intruders, forgery or unauthorized data manipulation). This paper analyzes the main features of an electric power substation together with the aspects that might be significantly affected by cyber-attacks. The paper also presents the implementation of a specific security system (i.e. firewall-wise system) intended to protect a target distribution network.展开更多
The characters of the intelligent substation communication network structure are analyzed in the paper. Combining existing integrated automation substation hardware circuit and VLAN (Virtual Local Area Network) resear...The characters of the intelligent substation communication network structure are analyzed in the paper. Combining existing integrated automation substation hardware circuit and VLAN (Virtual Local Area Network) research foundation to optimize the network configuration. In accordance with IEC61850 standard, the network is partitioned into several VLANs based on the Tag VLAN division method of ID address. Real-time communication packets between GOOSE networks, SV (sampling information) networks, and switches use 802.1Q protocol headers to distinguish these packets. Finally, OPNET simulation software was used to simulate and verify the simplified dual-star topology. The results demonstrate that the delay and traffic bandwidth meet the requirements of actual substation operation standards. Compared with ordinary single-star networks, the reliability is greatly improved and the effectiveness is improved.展开更多
The online-monitoring methods for insulation performance of current transformers of 330-750 kV substation are analyzed and compared.The effectiveness and availability of each method are discussed.Main features,advanta...The online-monitoring methods for insulation performance of current transformers of 330-750 kV substation are analyzed and compared.The effectiveness and availability of each method are discussed.Main features,advantages and disadvantages of each method and its corresponding standard are also described.展开更多
The characteristics and distribution law of electromagnetic environment around substations with different levels of voltage were studied,and the main influencing factors were discussed. Meanwhile,a scheme for locating...The characteristics and distribution law of electromagnetic environment around substations with different levels of voltage were studied,and the main influencing factors were discussed. Meanwhile,a scheme for locating monitoring points suitable for an on-line monitoring system of electromagnetic environment was proposed.展开更多
In order to solve the problems of mining monitor and control systems during the construction process of digital mining combined with network and embedded technologies, the kernel access equipment of a mining monitor a...In order to solve the problems of mining monitor and control systems during the construction process of digital mining combined with network and embedded technologies, the kernel access equipment of a mining monitor and control system was proposed and designed. It is the architecture of a mining embedded network multifunctional substation. This paper presents the design of hardware and software of the substation in detail. Finally, the system’s ef- ficiency was validated through experimentation.展开更多
An investigation into the optimal design of a substation grounding system for the transmission substation in Gaza City, Palestine has been carried out. A research into the most influential parameters on the effectiven...An investigation into the optimal design of a substation grounding system for the transmission substation in Gaza City, Palestine has been carried out. A research into the most influential parameters on the effectiveness of the substation grid system has been performed and its results have been incorporated into the Gaza case study. Through modelling and simulating the power station in Gaza while considering some field data, an optimal substation grounding grid has been designed and has shown complete conformance to safety. It is thus considered that such a design will protect personnel in any area of the substation in addition to the installed machinery if the largest possible fault current was to traverse the earth.展开更多
A substation is a part of an electrical generation, transmission, and distribution system. Substations generally have switching, protection and control equipment, and transformers. The low voltage distribution network...A substation is a part of an electrical generation, transmission, and distribution system. Substations generally have switching, protection and control equipment, and transformers. The low voltage distribution networks are supplied from MV/LV substation transformer that represent the last step of bringing transformation to the? low voltage and ensuring the? protection and monitoring of the network. There are three types of MV/LV substation: pole-mounted transformer substation, the substation in an envelope and substation in masonry. This paper presents a general description for different MV/LV substation and a methodology to design the various elements making up the public distribution substation (choice of the emplacement, engineering, power transformer, choice of MV cells, circuit breakers, fuses, disconnect? switch, conductors,...etc).展开更多
Research on reliability of relaying protection in smart substation not only has a positive effect on the rational configuration scheme of relaying protection in smart substation, but also can promote the stability and...Research on reliability of relaying protection in smart substation not only has a positive effect on the rational configuration scheme of relaying protection in smart substation, but also can promote the stability and safety of the overall operation of power system. There are many reliability strategies for relaying protection in smart substation. In practice, the key points of relaying protection should be clarified. Based on the reality, the protection configuration should be strengthened;the voltage limited delay should be used for protection, and the protection configuration scheme of actual lines should be paid attention to, so as to improve the reliability of relaying protection in smart substation and promote the realization of stable and sustainable development of power system and smart substation.展开更多
Malaysia is one of the many countries that experience high lightning related activities. In fact, according to Malaysian Meteorological Department the Ground Flash Density (GFD) in Malaysia, it is rated at the fifth p...Malaysia is one of the many countries that experience high lightning related activities. In fact, according to Malaysian Meteorological Department the Ground Flash Density (GFD) in Malaysia, it is rated at the fifth place in the ten most lightning cities of the world, with a high keraunic level, which is 240 thunderstorm days per year, and in other words, a Ground Flash Density (GFD) of 48.3 flashes per square kilometer per year. In the power systems, high keraunic level would contribute to high possibility of power interruptions such as disruption, degradation, damage and downtime. These outages would ultimately lead to revenue losses and reduction of network reliability. These lightning related interruptions may be in terms of direct lightning strikes to the lines or to the equipments in the substation. By the use of Mat Lab GUI (Graphic Users Interface), this study presents a simple computer program which uses the electro-geometric model (EGM) for the designing of substation shielding systems. The EGM uses the concept where the protection zone of a lightning system lies within the radius where the upward channel initiates and propagates through the air terminal to meet the downward leader. This interception point is called “the point of discrimination” and is where the downward leader decides its final jump. The distance at which the last jump occurs is known as the striking distance. With the use of the striking distance and the mathematical equations developed by Young, Brown-Whitehead, IEEE-1992 (IEEE T&D Committee Equations) and IEEE-1995 (IEEE Substations Committee Equations). This project aimed to investigate, understand and analyse the substation protection by means of masts and shield wires. The analysis is extended to account for lightning protection provided by single mast to two masts as well as from single shield wire to double shielding wires. The outcomes of these four equations will be compared.展开更多
IEC 61850 allows the replacement of conventional wire based systems to communication based system with local area network. Since new engineering processes are introduced in substation, the specifications and tools are...IEC 61850 allows the replacement of conventional wire based systems to communication based system with local area network. Since new engineering processes are introduced in substation, the specifications and tools are required combined with new skills across the substation engineering. In order to construct the IEC 61850 based substation automation system, the IED engineering tools as an engineering means are necessary to cope with the substation automation by full digital devices in the real power systems. Compared the configuration tools provided IEDs vendors which are able to support the operation and communication analysis between IEDs, the XML based IED integration engineering tools as substation engineering tools which are developed can build, edit and save the ICD, SCL and CID files. Particularly, the substation engineering tools are possible to apply the IEC 61850 based IEDs for the engineering process of systems and also provide the reliability and efficiency of system for the utilities and manufacturers. The developed tools are applied to test and create the SCL files for domestic-made IEDs, and then compared with the conventional tools. The reliability including accuracy of results was proved.展开更多
As the emergency power supply for a simulation substation,lead-acid batteries have a work pattern featuring noncontinuous operation,which leads to capacity regeneration.However,the accurate estimation of battery state...As the emergency power supply for a simulation substation,lead-acid batteries have a work pattern featuring noncontinuous operation,which leads to capacity regeneration.However,the accurate estimation of battery state of charge(SOC),a measurement of the amount of energy available in a battery,remains a hard nut to crack because of the non-stationarity and randomness of battery capacity change.This paper has proposed a comprehensive method for lead-acid battery SOC estimation,which may aid in maintaining a reasonable charging schedule in a simulation substation and improving battery’s durability.Based on the battery work pattern,an improved Ampere-hour method is used to calculate the SOC during constant current and constant voltage(CC/CV)charging and discharging.In addition,the combined Particle Swarm Optimization(PSO)and Least Squares Support Vector Machine(LSSVM)model is used to estimate the SOC during non-CC discharging.Experimental results show that this method is workable in online SOC estimation of working batteries in a simulation substaion,with the maximum relative error standing at only 2.1%during the non-training period,indicating a high precision and wide applicability.展开更多
Based on a discussion of the feature of a substation, the paper presents the concept that a substation is composed of basic units (BC). The hardware structure of the IED of a BC is described. Next, the paper discusses...Based on a discussion of the feature of a substation, the paper presents the concept that a substation is composed of basic units (BC). The hardware structure of the IED of a BC is described. Next, the paper discusses the communication mode of the current Integrated Substation Automation Systems(ISA) and describes the hardware structre and the functions of the ISA with fieldbus. At last the paper presents trends in the development of ISA.展开更多
The evaluation of the implementation effect of the power substation project can find out the problems of the project more comprehensively,which has important practical significance for the further development of the p...The evaluation of the implementation effect of the power substation project can find out the problems of the project more comprehensively,which has important practical significance for the further development of the power substation project.To ensure accuracy and real-time evaluation,this paper proposes a novel hybrid intelligent evaluation and prediction model based on improved TOPSIS and Long Short-Term Memory(LSTM)optimized by a Sperm Whale Algorithm(SWA).Firstly,under the background of considering the development of new energy,the influencing factors of power substation project implementation effect are analyzed from three aspects of technology,economy and society.Moreover,an evaluation model based on improved TOPSIS is constructed.Then,an intelligent prediction model based on SWA optimized LSTM is designed.Finally,the scientificity and accuracy of the proposed model are verified by empirical analysis,and the important factors affecting the implementation effect of power substation projects are pointed out.展开更多
文摘The global rise in energy demand, particularly in remote and sparsely populated regions, necessitates innovative and cost-effective electrical distribution solutions. Traditional Rural Electrification (RE) methods, like Conventional Rural Electrification (CRE), have proven economically unfeasible in such areas due to high infrastructure costs and low electricity demand. Consequently, Unconventional Rural Electrification (URE) technologies, such as Capacitor Coupled Substations (CCS), are gaining attention as viable alternatives. This study presents the design and simulation of an 80 kW CCS system, which taps power directly from a 132 kV transmission line to supply low-voltage consumers. The critical components of the CCS, the capacitors are calculated, then a MATLAB/Simulink model with the attained results is executed. Mathematical representation and state-space representation for maintaining the desired tapped voltage area also developed. The research further explores the feasibility and operational performance of this CCS configuration, aiming to address the challenges of rural electrification by offering a sustainable and scalable solution. The results show that the desired value of the tapped voltage can be achieved at any level of High Voltage (HV) with the selection of capacitors that are correctly rated. With an adequately designed control strategy, the research also shows that tapped voltage can be attained under both steady-state and dynamic loads. By leveraging CCS technology, the study demonstrates the potential for delivering reliable electricity to underserved areas, highlighting the system’s practicality and effectiveness in overcoming the limitations of conventional distribution methods.
基金National Natural Science Foundation of China under Grant No. 52378483the Fundamental Research Funds for the Central Universities under Grant No. DUT21JC07+1 种基金the Scientific Research Fund of Institute of Engineering MechanicsChina Earthquake Administration under Grant No. 2021D17
文摘A substation is a complex coupled system composed of various electrical equipment.Compared with standalone equipment,there is a significant coupling effect in the seismic response of interconnected equipment.To address this issue,this study investigates the seismic interaction of substation equipment with multiple electrical configurations and proposes an improved seismic design method.First,the concept of the coupling coefficient is introduced,which is used to improve the Newmark-βmethod and response spectrum method for the seismic design of standalone equipment.Then,the finite element models of a substation system with multiple configurations are established,and the vibration characteristics and seismic responses of the interconnected equipment are investigated.Finally,the coupling coefficients are obtained by kernel density estimation of the response results under twenty seismic ground motions,and the effectiveness of the proposed method is verified through two numerical examples.The results show that the frequency coupling coefficients vary from 0.69 to 1.42,while the seismic action coupling coefficient has a wider range,changing from 1.04 to 3.91.The coupling effect amplifies the seismic response of higher-frequency equipment,and the amplification degree varies among different configurations for the same type of equipment.
文摘Smart grid substation operations often take place in hazardous environments and pose significant threats to the safety of power personnel.Relying solely on manual supervision can lead to inadequate oversight.In response to the demand for technology to identify improper operations in substation work scenarios,this paper proposes a substation safety action recognition technology to avoid the misoperation and enhance the safety management.In general,this paper utilizes a dual-branch transformer network to extract spatial and temporal information from the video dataset of operational behaviors in complex substation environments.Firstly,in order to capture the spatial-temporal correlation of people's behaviors in smart grid substation,we devise a sparse attention module and a segmented linear attention module that are embedded into spatial branch transformer and temporal branch transformer respectively.To avoid the redundancy of spatial and temporal information,we fuse the temporal and spatial features using a tensor decomposition fusion module by a decoupled manner.Experimental results indicate that our proposed method accurately detects improper operational behaviors in substation work scenarios,outperforming other existing methods in terms of detection and recognition accuracy.
文摘Rural electrification remains a critical challenge in achieving equitable access to electricity, a cornerstone for poverty alleviation, economic growth, and improved living standards. Capacitor Coupled Substations (CCS) offer a promising solution for delivering cost-effective electricity to these underserved areas. However, the integration of multiple CCS units along a transmission network introduces complex interactions that can significantly impact voltage, current, and power flow. This study presents a detailed mathematical model to analyze the effects of varying distances and configurations of multiple CCS units on a transmission network, with a focus on voltage stability, power quality, and reactive power fluctuations. Furthermore, the research addresses the phenomenon of ferroresonance, a critical issue in networks with multiple CCS units, by developing and validating suppression strategies to ensure stable operation. Through simulation and practical testing, the study provides insights into optimizing CCS deployment, ultimately contributing to more reliable and efficient rural electrification solutions.
文摘This article presents an extensive examination and modeling of Capacitor Coupled Substations (CCS), noting some of their inherent constraints. The underlying implementation of a CCS is to supply electricity directly from high-voltage (HV) transmission lines to low-voltage (LV) consumers through coupling capacitors and is said to be cost-effective as compared to conventional distribution networks. However, the functionality of such substations is susceptible to various transient phenomena, including ferroresonance and overvoltage occurrences. To address these challenges, the study uses simulations to evaluate the effectiveness of conventional resistor-inductor-capacitor (RLC) filter in mitigating hazardous overvoltage resulting from transients. The proposed methodology entails using standard RLC filter to suppress transients and its associated overvoltage risks. Through a series of MATLAB/Simulink simulations, the research emphasizes the practical effectiveness of this technique. The study examines the impact of transients under varied operational scenarios, including no-load switching conditions, temporary short-circuits, and load on/off events. The primary aim of the article is to assess the viability of using an established technology to manage system instabilities upon the energization of a CCS under no-load circumstances or in case of a short-circuit fault occurring on the primary side of the CCS distribution transformer. The findings underscore the effectiveness of conventional RLC filters in suppressing transients induced by the CCS no-load switching.
基金the scientific project supported by the National Natural Science Foundation of China (No. 61571063)supported by the Beijing Municipal Natural Science Foundation (No. 3182028)
文摘In order to deploy short-range wireless communication devices in the primary transformer substation, a Maximum Inner Product(MIP) Method is proposed to extract the path-loss parameters in 110 kV and 220 kV primary transformer substations. The maximum inner product of the testing data is calculated to find out the loss index n and the standard deviation σ, and then the pathloss models can be set up. By comparing the MIP with Minimum Mean Square estimation(MMSE) and Cumulative Sum(CUSUM), MIP can match the measured values best. In order to apply the MIP path-loss model, under the initial signal to noise ratio(SNR) at 5 dB and 10 dB, a ZigBee simulation system is constructed to validate the situation that bit error rate(BER) varies with distance. And the ZigBee devices with 5 units are tested in a 220 kV primary transformer substation. The result of the test proves that the path-loss model is accurate.
基金Project 50674093 supported by the National Natural Science Foundation of China
文摘A monitoring system is an important guarantee of safety in a production mine. However, not all monitoring substations pass the electrical fast transient/burst (EFT/B) immunity test and the explosion-proof test simultaneously. To enhance the immunity, the values of capacitance and inductance should be increased, which are actually limited by coal mine explosion-proof standards. Hence, for the first time, an active filter was applied in an electromagnetic interference (EMI) output filter. As a result, the interference within 30 MHz clearly weakened, but the frequency spectrum had a wide range. An EMI input filter and ferrite beads were adopted to restrain higher frequency interference. An output interference spectrogram of the substation was obtained with an analyzer. The results indicate that the improved complex filtering markedly help to control interference. With the support of improved complex filtering and other enhancing immunity means about I/O ports, the substation managed to pass both the EFT/B immunity test and the explosion-proof test synchronously. We conclude that improved complex filtering is of vital importance in enhancing the electromagnetic compatibilitv (EMC) of the coal mine monitoring system.
文摘Recently, most electric power substations have adopted production control systems, such as SCADA systems, which communicate with field devices and remotely control processes from a computer screen. However, these systems together with protection measures and additional control actions (using protocol IEC61850) seem not to be enough to free substations of security attacks (e.g. virus, intruders, forgery or unauthorized data manipulation). This paper analyzes the main features of an electric power substation together with the aspects that might be significantly affected by cyber-attacks. The paper also presents the implementation of a specific security system (i.e. firewall-wise system) intended to protect a target distribution network.
文摘The characters of the intelligent substation communication network structure are analyzed in the paper. Combining existing integrated automation substation hardware circuit and VLAN (Virtual Local Area Network) research foundation to optimize the network configuration. In accordance with IEC61850 standard, the network is partitioned into several VLANs based on the Tag VLAN division method of ID address. Real-time communication packets between GOOSE networks, SV (sampling information) networks, and switches use 802.1Q protocol headers to distinguish these packets. Finally, OPNET simulation software was used to simulate and verify the simplified dual-star topology. The results demonstrate that the delay and traffic bandwidth meet the requirements of actual substation operation standards. Compared with ordinary single-star networks, the reliability is greatly improved and the effectiveness is improved.
基金Science and Technology Projects of Gansu Electric Power Company(No.52274514005W)
文摘The online-monitoring methods for insulation performance of current transformers of 330-750 kV substation are analyzed and compared.The effectiveness and availability of each method are discussed.Main features,advantages and disadvantages of each method and its corresponding standard are also described.
基金Supported by the Open Project of Jiangsu Key Laboratory of Environmental Engineering(ZX2017005)
文摘The characteristics and distribution law of electromagnetic environment around substations with different levels of voltage were studied,and the main influencing factors were discussed. Meanwhile,a scheme for locating monitoring points suitable for an on-line monitoring system of electromagnetic environment was proposed.
文摘In order to solve the problems of mining monitor and control systems during the construction process of digital mining combined with network and embedded technologies, the kernel access equipment of a mining monitor and control system was proposed and designed. It is the architecture of a mining embedded network multifunctional substation. This paper presents the design of hardware and software of the substation in detail. Finally, the system’s ef- ficiency was validated through experimentation.
文摘An investigation into the optimal design of a substation grounding system for the transmission substation in Gaza City, Palestine has been carried out. A research into the most influential parameters on the effectiveness of the substation grid system has been performed and its results have been incorporated into the Gaza case study. Through modelling and simulating the power station in Gaza while considering some field data, an optimal substation grounding grid has been designed and has shown complete conformance to safety. It is thus considered that such a design will protect personnel in any area of the substation in addition to the installed machinery if the largest possible fault current was to traverse the earth.
文摘A substation is a part of an electrical generation, transmission, and distribution system. Substations generally have switching, protection and control equipment, and transformers. The low voltage distribution networks are supplied from MV/LV substation transformer that represent the last step of bringing transformation to the? low voltage and ensuring the? protection and monitoring of the network. There are three types of MV/LV substation: pole-mounted transformer substation, the substation in an envelope and substation in masonry. This paper presents a general description for different MV/LV substation and a methodology to design the various elements making up the public distribution substation (choice of the emplacement, engineering, power transformer, choice of MV cells, circuit breakers, fuses, disconnect? switch, conductors,...etc).
文摘Research on reliability of relaying protection in smart substation not only has a positive effect on the rational configuration scheme of relaying protection in smart substation, but also can promote the stability and safety of the overall operation of power system. There are many reliability strategies for relaying protection in smart substation. In practice, the key points of relaying protection should be clarified. Based on the reality, the protection configuration should be strengthened;the voltage limited delay should be used for protection, and the protection configuration scheme of actual lines should be paid attention to, so as to improve the reliability of relaying protection in smart substation and promote the realization of stable and sustainable development of power system and smart substation.
文摘Malaysia is one of the many countries that experience high lightning related activities. In fact, according to Malaysian Meteorological Department the Ground Flash Density (GFD) in Malaysia, it is rated at the fifth place in the ten most lightning cities of the world, with a high keraunic level, which is 240 thunderstorm days per year, and in other words, a Ground Flash Density (GFD) of 48.3 flashes per square kilometer per year. In the power systems, high keraunic level would contribute to high possibility of power interruptions such as disruption, degradation, damage and downtime. These outages would ultimately lead to revenue losses and reduction of network reliability. These lightning related interruptions may be in terms of direct lightning strikes to the lines or to the equipments in the substation. By the use of Mat Lab GUI (Graphic Users Interface), this study presents a simple computer program which uses the electro-geometric model (EGM) for the designing of substation shielding systems. The EGM uses the concept where the protection zone of a lightning system lies within the radius where the upward channel initiates and propagates through the air terminal to meet the downward leader. This interception point is called “the point of discrimination” and is where the downward leader decides its final jump. The distance at which the last jump occurs is known as the striking distance. With the use of the striking distance and the mathematical equations developed by Young, Brown-Whitehead, IEEE-1992 (IEEE T&D Committee Equations) and IEEE-1995 (IEEE Substations Committee Equations). This project aimed to investigate, understand and analyse the substation protection by means of masts and shield wires. The analysis is extended to account for lightning protection provided by single mast to two masts as well as from single shield wire to double shielding wires. The outcomes of these four equations will be compared.
文摘IEC 61850 allows the replacement of conventional wire based systems to communication based system with local area network. Since new engineering processes are introduced in substation, the specifications and tools are required combined with new skills across the substation engineering. In order to construct the IEC 61850 based substation automation system, the IED engineering tools as an engineering means are necessary to cope with the substation automation by full digital devices in the real power systems. Compared the configuration tools provided IEDs vendors which are able to support the operation and communication analysis between IEDs, the XML based IED integration engineering tools as substation engineering tools which are developed can build, edit and save the ICD, SCL and CID files. Particularly, the substation engineering tools are possible to apply the IEC 61850 based IEDs for the engineering process of systems and also provide the reliability and efficiency of system for the utilities and manufacturers. The developed tools are applied to test and create the SCL files for domestic-made IEDs, and then compared with the conventional tools. The reliability including accuracy of results was proved.
基金The authors received funding for this study from Science and Technology Project of State Grid Jiangsu Electric Power Co.,Ltd.(J2021020).
文摘As the emergency power supply for a simulation substation,lead-acid batteries have a work pattern featuring noncontinuous operation,which leads to capacity regeneration.However,the accurate estimation of battery state of charge(SOC),a measurement of the amount of energy available in a battery,remains a hard nut to crack because of the non-stationarity and randomness of battery capacity change.This paper has proposed a comprehensive method for lead-acid battery SOC estimation,which may aid in maintaining a reasonable charging schedule in a simulation substation and improving battery’s durability.Based on the battery work pattern,an improved Ampere-hour method is used to calculate the SOC during constant current and constant voltage(CC/CV)charging and discharging.In addition,the combined Particle Swarm Optimization(PSO)and Least Squares Support Vector Machine(LSSVM)model is used to estimate the SOC during non-CC discharging.Experimental results show that this method is workable in online SOC estimation of working batteries in a simulation substaion,with the maximum relative error standing at only 2.1%during the non-training period,indicating a high precision and wide applicability.
文摘Based on a discussion of the feature of a substation, the paper presents the concept that a substation is composed of basic units (BC). The hardware structure of the IED of a BC is described. Next, the paper discusses the communication mode of the current Integrated Substation Automation Systems(ISA) and describes the hardware structre and the functions of the ISA with fieldbus. At last the paper presents trends in the development of ISA.
文摘The evaluation of the implementation effect of the power substation project can find out the problems of the project more comprehensively,which has important practical significance for the further development of the power substation project.To ensure accuracy and real-time evaluation,this paper proposes a novel hybrid intelligent evaluation and prediction model based on improved TOPSIS and Long Short-Term Memory(LSTM)optimized by a Sperm Whale Algorithm(SWA).Firstly,under the background of considering the development of new energy,the influencing factors of power substation project implementation effect are analyzed from three aspects of technology,economy and society.Moreover,an evaluation model based on improved TOPSIS is constructed.Then,an intelligent prediction model based on SWA optimized LSTM is designed.Finally,the scientificity and accuracy of the proposed model are verified by empirical analysis,and the important factors affecting the implementation effect of power substation projects are pointed out.