The major storage space types in the carbonate reservoir in the Ordovician in the TZ45 area are secondary dissolution caves.For the prediction of caved carbonate reservoir,post-stack methods are commonly used in the o...The major storage space types in the carbonate reservoir in the Ordovician in the TZ45 area are secondary dissolution caves.For the prediction of caved carbonate reservoir,post-stack methods are commonly used in the oilfield at present since pre-stack inversion is always limited by poor seismic data quality and insufficient logging data.In this paper,based on amplitude preserved seismic data processing and rock-physics analysis,pre-stack inversion is employed to predict the caved carbonate reservoir in TZ45 area by seriously controlling the quality of inversion procedures.These procedures mainly include angle-gather conversion,partial stack,wavelet estimation,low-frequency model building and inversion residual analysis.The amplitude-preserved data processing method can achieve high quality data based on the principle that they are very consistent with the synthetics.Besides,the foundation of pre-stack inversion and reservoir prediction criterion can be established by the connection between reservoir property and seismic reflection through rock-physics analysis.Finally,the inversion result is consistent with drilling wells in most cases.It is concluded that integrated with amplitude-preserved processing and rock-physics,pre-stack inversion can be effectively applied in the caved carbonate reservoir prediction.展开更多
Inversion of Young’s modulus,Poisson’s ratio and density from pre-stack seismic data has been proved to be feasible and effective.However,the existing methods do not take full advantage of the prior information.With...Inversion of Young’s modulus,Poisson’s ratio and density from pre-stack seismic data has been proved to be feasible and effective.However,the existing methods do not take full advantage of the prior information.Without considering the lateral continuity of the inversion results,these methods need to invert the reflectivity first.In this paper,we propose multi-gather simultaneous inversion for pre-stack seismic data.Meanwhile,the total variation(TV)regularization,L1 norm regularization and initial model constraint are used.In order to solve the objective function contains L1norm,TV norm and L2 norm,we develop an algorithm based on split Bregman iteration.The main advantages of our method are as follows:(1)The elastic parameters are calculated directly from objective function rather than from their reflectivity,therefore the stability and accuracy of the inversion process can be ensured.(2)The inversion results are more in accordance with the prior geological information.(3)The lateral continuity of the inversion results are improved.The proposed method is illustrated by theoretical model data and experimented with a 2-D field data.展开更多
Joint PP–PS inversion offers better accuracy and resolution than conventional P-wave inversion. P-and S-wave elastic moduli determined through data inversions are key parameters for reservoir evaluation and fluid cha...Joint PP–PS inversion offers better accuracy and resolution than conventional P-wave inversion. P-and S-wave elastic moduli determined through data inversions are key parameters for reservoir evaluation and fluid characterization. In this paper, starting with the exact Zoeppritz equation that relates P-and S-wave moduli, a coefficient that describes the reflections of P-and converted waves is established. This method effectively avoids error introduced by approximations or indirect calculations, thus improving the accuracy of the inversion results. Considering that the inversion problem is ill-posed and that the forward operator is nonlinear, prior constraints on the model parameters and modified low-frequency constraints are also introduced to the objective function to make the problem more tractable. This modified objective function is solved over many iterations to continuously optimize the background values of the velocity ratio, which increases the stability of the inversion process. Tests of various models show that the method effectively improves the accuracy and stability of extracting P and S-wave moduli from underdetermined data. This method can be applied to provide inferences for reservoir exploration and fluid extraction.展开更多
The origin and distribution of formation overpressure have effect not only on hydrocarbon migration and accumulation, but also on technique of drilling well. The study and prediction of overpressure are very important...The origin and distribution of formation overpressure have effect not only on hydrocarbon migration and accumulation, but also on technique of drilling well. The study and prediction of overpressure are very important in basin analysis. At present, overpressure is mostly predicted by stack velocity. The process in calculating inter-velocity from stack velocity is very complex and inevitably leads to errors. Especially, this method is not available in the case that structural compression contribution to overpressure occurred. This paper introduces a new method, impedance inversion, to predict overpressure, and the principle is discussed. This method is used to predict the overpressure in Kuqa depression, Tarim basin and as a result, the absolute errors are less than 0.1, and relative errors are less than 5 % for predicted fluid pressure coefficients to the drill stem test (DST) measurements. It suggests that this method can be widely used to predict overpressure in foreland basins.展开更多
Numerical simulation of concrete-faced rockfill dams(CFRDs)considering the spatial variability of rockfill has become a popular research topic in recent years.In order to determine uncertain rockfill properties effici...Numerical simulation of concrete-faced rockfill dams(CFRDs)considering the spatial variability of rockfill has become a popular research topic in recent years.In order to determine uncertain rockfill properties efficiently and reliably,this study developed an uncertainty inversion analysis method for rockfill material parameters using the stacking ensemble strategy and Jaya optimizer.The comprehensive implementation process of the proposed model was described with an illustrative CFRD example.First,the surrogate model method using the stacking ensemble algorithm was used to conduct the Monte Carlo stochastic finite element calculations with reduced computational cost and improved accuracy.Afterwards,the Jaya algorithm was used to inversely calculate the combination of the coefficient of variation of rockfill material parameters.This optimizer obtained higher accuracy and more significant uncertainty reduction than traditional optimizers.Overall,the developed model effectively identified the random parameters of rockfill materials.This study provided scientific references for uncertainty analysis of CFRDs.In addition,the proposed method can be applied to other similar engineering structures.展开更多
To solve problems in small-scale and complex structural traps,the inverse Gaussian-beam stack-imaging method is commonly used to process crosswell seismic wave reflection data.Owing to limited coverage,the imaging qua...To solve problems in small-scale and complex structural traps,the inverse Gaussian-beam stack-imaging method is commonly used to process crosswell seismic wave reflection data.Owing to limited coverage,the imaging quality of conventional ray-based crosswell seismic stack imaging is poor in complex areas;moreover,the imaging range is small and with sever interference because of the arc phenomenon in seismic migration.Thus,we propose the inverse Gaussian-beam stack imaging,in which Gaussian weight functions of rays contributing to the geophones energy are calculated and used to decompose the seismic wavefield.This effectively enlarges the coverage of the reflection points and improves the transverse resolution.Compared with the traditional VSP–CDP stack imaging,the proposed methods extends the imaging range,yields higher horizontal resolution,and is more adaptable to complex geological structures.The method is applied to model a complex structure in the K-area.The results suggest that the wave group of the target layer is clearer,the resolution is higher,and the main frequency of the crosswell seismic section is higher than that in surface seismic exploration The effectiveness and robustness of the method are verified by theoretical model and practical data.展开更多
Understanding the dynamic control of supramolecular chirality is essential for the development of advanced chiral materials.This study presents a system where solvent-induced self-assembly of ortho-pyridine-azo-choles...Understanding the dynamic control of supramolecular chirality is essential for the development of advanced chiral materials.This study presents a system where solvent-induced self-assembly of ortho-pyridine-azo-cholesterol(o-PAzPCC)and temperature-regulated co-assembly with Cu2+exhibit dynamic supramolecular chirality inversion.Dimethylsulfoxide(DMSO)and alcohol solvents induce the reverse assembly of o-PAzPCC monomers,leading to circular dichroism(CD)signal inversion.Notably,the chloro-bridged Cu^(2+)/o-PAzPCC co-assembly system demonstrates temperature-regulated chirality inversion within a narrow range(283 to 293 K).At 283 K,van der Waals forces drive the formation of non-equilibrium nanosheet structures(Agg I)with positive CD absorption at 390 nm.At 293 K,π-πstacking interactions promote equilibrium nanoribbon structures(Agg III)with negative CD absorption at 440 nm wavelength.Increasing the temperature from 283 K can induce a transformation of the nanosheet structures to nanoflower structures(Agg II),characterized by positive CD absorption at 440 nm.The chirality inversion can be finely tuned by adjusting the concentrations and ultrasonication time.This work enhances our understanding of chiral assembly processes and their chirality transmission mechanisms,advancing the development of chiral supramolecular materials for applications in biological systems.展开更多
In crosswell seismic exploration,the imaging section produced by migration based on a wave equation has a serious arc phenomenon at its edge and a small effective range because of geometrical restrictions.Another imag...In crosswell seismic exploration,the imaging section produced by migration based on a wave equation has a serious arc phenomenon at its edge and a small effective range because of geometrical restrictions.Another imaging section produced by the VSP-CDP stack imaging method employed with ray-tracing theory is amplitude-preserved.However,imaging 3D complex lithological structures accurately with this method is difficult.Therefore,this study proposes inverse Gaussian beam stack imaging in the 3D crosswell seismic exploration of deviated wells on the basis of Gaussian beam ray-tracing theory.By employing Gaussian beam ray-tracing theory in 3D crosswell seismic exploration,we analyzed the energy relationship between seismic wave fields and their effective rays.In imaging,the single-channel seismic wave fi eld data in the common shot point gather are converted into multiple effective wave fields in the common reflection point gather by the inverse Gaussian beam.The process produces a large fold number of intensive reflection points.Selected from the horizontal and vertical directions of the 2D measuring line,the wave fi elds of the eff ective reflection points in the same stack bin are projected onto the 2D measuring line,chosen according to the distribution characteristics of the reflection points,and stacked into an imaging section.The method is applied to X oilfi eld to identify the internal structure of the off shore gas cloud area.The results provided positive support for the inverse Gaussian beam stack imaging of 3D complex lithological structures and proved that technology is a powerful imaging tool for 3D crosswell seismic data processing.展开更多
基金supported by National Basic Research Program(2006CB202304)of Chinaco-supported by the National Basic Research Program of China(Grant No.2011CB201103)the National Science and Technology Major Project of China(Grant No.2011ZX05004003)
文摘The major storage space types in the carbonate reservoir in the Ordovician in the TZ45 area are secondary dissolution caves.For the prediction of caved carbonate reservoir,post-stack methods are commonly used in the oilfield at present since pre-stack inversion is always limited by poor seismic data quality and insufficient logging data.In this paper,based on amplitude preserved seismic data processing and rock-physics analysis,pre-stack inversion is employed to predict the caved carbonate reservoir in TZ45 area by seriously controlling the quality of inversion procedures.These procedures mainly include angle-gather conversion,partial stack,wavelet estimation,low-frequency model building and inversion residual analysis.The amplitude-preserved data processing method can achieve high quality data based on the principle that they are very consistent with the synthetics.Besides,the foundation of pre-stack inversion and reservoir prediction criterion can be established by the connection between reservoir property and seismic reflection through rock-physics analysis.Finally,the inversion result is consistent with drilling wells in most cases.It is concluded that integrated with amplitude-preserved processing and rock-physics,pre-stack inversion can be effectively applied in the caved carbonate reservoir prediction.
基金supported by the National Natural Science Foundation of China (Nos.61775030,61571096,41301460,61362018,and 41274127)the key projects of Hunan Provincial Department of Education (No.16A174)
文摘Inversion of Young’s modulus,Poisson’s ratio and density from pre-stack seismic data has been proved to be feasible and effective.However,the existing methods do not take full advantage of the prior information.Without considering the lateral continuity of the inversion results,these methods need to invert the reflectivity first.In this paper,we propose multi-gather simultaneous inversion for pre-stack seismic data.Meanwhile,the total variation(TV)regularization,L1 norm regularization and initial model constraint are used.In order to solve the objective function contains L1norm,TV norm and L2 norm,we develop an algorithm based on split Bregman iteration.The main advantages of our method are as follows:(1)The elastic parameters are calculated directly from objective function rather than from their reflectivity,therefore the stability and accuracy of the inversion process can be ensured.(2)The inversion results are more in accordance with the prior geological information.(3)The lateral continuity of the inversion results are improved.The proposed method is illustrated by theoretical model data and experimented with a 2-D field data.
基金supported by the National Science and Technology Major Project(No.2016ZX05047-002-001)
文摘Joint PP–PS inversion offers better accuracy and resolution than conventional P-wave inversion. P-and S-wave elastic moduli determined through data inversions are key parameters for reservoir evaluation and fluid characterization. In this paper, starting with the exact Zoeppritz equation that relates P-and S-wave moduli, a coefficient that describes the reflections of P-and converted waves is established. This method effectively avoids error introduced by approximations or indirect calculations, thus improving the accuracy of the inversion results. Considering that the inversion problem is ill-posed and that the forward operator is nonlinear, prior constraints on the model parameters and modified low-frequency constraints are also introduced to the objective function to make the problem more tractable. This modified objective function is solved over many iterations to continuously optimize the background values of the velocity ratio, which increases the stability of the inversion process. Tests of various models show that the method effectively improves the accuracy and stability of extracting P and S-wave moduli from underdetermined data. This method can be applied to provide inferences for reservoir exploration and fluid extraction.
文摘The origin and distribution of formation overpressure have effect not only on hydrocarbon migration and accumulation, but also on technique of drilling well. The study and prediction of overpressure are very important in basin analysis. At present, overpressure is mostly predicted by stack velocity. The process in calculating inter-velocity from stack velocity is very complex and inevitably leads to errors. Especially, this method is not available in the case that structural compression contribution to overpressure occurred. This paper introduces a new method, impedance inversion, to predict overpressure, and the principle is discussed. This method is used to predict the overpressure in Kuqa depression, Tarim basin and as a result, the absolute errors are less than 0.1, and relative errors are less than 5 % for predicted fluid pressure coefficients to the drill stem test (DST) measurements. It suggests that this method can be widely used to predict overpressure in foreland basins.
基金supported by the National Natural Science Foundation of China(Grants No.51879185 and 52179139)the Open Fund of the Hubei Key Laboratory of Construction and Management in Hydropower Engineering(Grant No.2020KSD06).
文摘Numerical simulation of concrete-faced rockfill dams(CFRDs)considering the spatial variability of rockfill has become a popular research topic in recent years.In order to determine uncertain rockfill properties efficiently and reliably,this study developed an uncertainty inversion analysis method for rockfill material parameters using the stacking ensemble strategy and Jaya optimizer.The comprehensive implementation process of the proposed model was described with an illustrative CFRD example.First,the surrogate model method using the stacking ensemble algorithm was used to conduct the Monte Carlo stochastic finite element calculations with reduced computational cost and improved accuracy.Afterwards,the Jaya algorithm was used to inversely calculate the combination of the coefficient of variation of rockfill material parameters.This optimizer obtained higher accuracy and more significant uncertainty reduction than traditional optimizers.Overall,the developed model effectively identified the random parameters of rockfill materials.This study provided scientific references for uncertainty analysis of CFRDs.In addition,the proposed method can be applied to other similar engineering structures.
基金sponsored by the National Key R&D Plan Project(Grant No.2016YFC0303900)Natural Science Foundation of China(Grant No.41374145)
文摘To solve problems in small-scale and complex structural traps,the inverse Gaussian-beam stack-imaging method is commonly used to process crosswell seismic wave reflection data.Owing to limited coverage,the imaging quality of conventional ray-based crosswell seismic stack imaging is poor in complex areas;moreover,the imaging range is small and with sever interference because of the arc phenomenon in seismic migration.Thus,we propose the inverse Gaussian-beam stack imaging,in which Gaussian weight functions of rays contributing to the geophones energy are calculated and used to decompose the seismic wavefield.This effectively enlarges the coverage of the reflection points and improves the transverse resolution.Compared with the traditional VSP–CDP stack imaging,the proposed methods extends the imaging range,yields higher horizontal resolution,and is more adaptable to complex geological structures.The method is applied to model a complex structure in the K-area.The results suggest that the wave group of the target layer is clearer,the resolution is higher,and the main frequency of the crosswell seismic section is higher than that in surface seismic exploration The effectiveness and robustness of the method are verified by theoretical model and practical data.
基金supported by the National Natural Science Foundation of China(Nos.22471198 and 22101208)the Fundamental Research Funds for the Central Universitiesthe Program for Professors of Special Appointment(Eastern Scholar)at Shanghai Institutions of Higher Learning.
文摘Understanding the dynamic control of supramolecular chirality is essential for the development of advanced chiral materials.This study presents a system where solvent-induced self-assembly of ortho-pyridine-azo-cholesterol(o-PAzPCC)and temperature-regulated co-assembly with Cu2+exhibit dynamic supramolecular chirality inversion.Dimethylsulfoxide(DMSO)and alcohol solvents induce the reverse assembly of o-PAzPCC monomers,leading to circular dichroism(CD)signal inversion.Notably,the chloro-bridged Cu^(2+)/o-PAzPCC co-assembly system demonstrates temperature-regulated chirality inversion within a narrow range(283 to 293 K).At 283 K,van der Waals forces drive the formation of non-equilibrium nanosheet structures(Agg I)with positive CD absorption at 390 nm.At 293 K,π-πstacking interactions promote equilibrium nanoribbon structures(Agg III)with negative CD absorption at 440 nm wavelength.Increasing the temperature from 283 K can induce a transformation of the nanosheet structures to nanoflower structures(Agg II),characterized by positive CD absorption at 440 nm.The chirality inversion can be finely tuned by adjusting the concentrations and ultrasonication time.This work enhances our understanding of chiral assembly processes and their chirality transmission mechanisms,advancing the development of chiral supramolecular materials for applications in biological systems.
基金This research work is funded by the Scientific Research Program of Shaanxi Provincial Education Department(No.19JK0668)the Natural Science Basic Research Plan in Shaanxi Province of China(No.2021JQ-588).
文摘In crosswell seismic exploration,the imaging section produced by migration based on a wave equation has a serious arc phenomenon at its edge and a small effective range because of geometrical restrictions.Another imaging section produced by the VSP-CDP stack imaging method employed with ray-tracing theory is amplitude-preserved.However,imaging 3D complex lithological structures accurately with this method is difficult.Therefore,this study proposes inverse Gaussian beam stack imaging in the 3D crosswell seismic exploration of deviated wells on the basis of Gaussian beam ray-tracing theory.By employing Gaussian beam ray-tracing theory in 3D crosswell seismic exploration,we analyzed the energy relationship between seismic wave fields and their effective rays.In imaging,the single-channel seismic wave fi eld data in the common shot point gather are converted into multiple effective wave fields in the common reflection point gather by the inverse Gaussian beam.The process produces a large fold number of intensive reflection points.Selected from the horizontal and vertical directions of the 2D measuring line,the wave fi elds of the eff ective reflection points in the same stack bin are projected onto the 2D measuring line,chosen according to the distribution characteristics of the reflection points,and stacked into an imaging section.The method is applied to X oilfi eld to identify the internal structure of the off shore gas cloud area.The results provided positive support for the inverse Gaussian beam stack imaging of 3D complex lithological structures and proved that technology is a powerful imaging tool for 3D crosswell seismic data processing.