Focus is laid on the adaptive practical output-tracking problem of a class of nonlinear systems with high-order lower-triangular structure and uncontrollable unstable linearization. Using the modified adaptive additio...Focus is laid on the adaptive practical output-tracking problem of a class of nonlinear systems with high-order lower-triangular structure and uncontrollable unstable linearization. Using the modified adaptive addition of a power integrator technique as a basic tool, a new smooth adaptive state feedback controller is designed. This controller can ensure all signals of the closed-loop systems are globally bounded and output tracking error is arbitrary small.展开更多
This paper deals with the adaptive practical output maneuvering control problems for a class of nonlinear systems with uncontrollable unstable linearization. The objective is to design a smooth adaptive maneuvering co...This paper deals with the adaptive practical output maneuvering control problems for a class of nonlinear systems with uncontrollable unstable linearization. The objective is to design a smooth adaptive maneuvering controller to solve the geometric and dynamic tasks with an arbitrary small steady tracking error. The method of adding a power integrator and the robust recursive design technique are employed to force the system output to track a desired path and make the tracking speed to follow a desired speed along the path. An example is considered and simulation results are given. The proposed design procedure can be illustrated by the use of this example.展开更多
基金This work was supported by the National Natural Sdence Foundation of China (No. 60304003)the National Sdence Foundation of Shandong Province (No. Q2002G02)
文摘Focus is laid on the adaptive practical output-tracking problem of a class of nonlinear systems with high-order lower-triangular structure and uncontrollable unstable linearization. Using the modified adaptive addition of a power integrator technique as a basic tool, a new smooth adaptive state feedback controller is designed. This controller can ensure all signals of the closed-loop systems are globally bounded and output tracking error is arbitrary small.
基金Supported by the National Natural Science Foundation of China (No. 60304003, 60574007, and 60574080).
文摘This paper deals with the adaptive practical output maneuvering control problems for a class of nonlinear systems with uncontrollable unstable linearization. The objective is to design a smooth adaptive maneuvering controller to solve the geometric and dynamic tasks with an arbitrary small steady tracking error. The method of adding a power integrator and the robust recursive design technique are employed to force the system output to track a desired path and make the tracking speed to follow a desired speed along the path. An example is considered and simulation results are given. The proposed design procedure can be illustrated by the use of this example.