We present a detailed study of dynamically generating an M2 brane from super-gravitons(or DO branes)in a pp-wave background possessing maximal spacetime SUSY.We have three kinds of dynamical solutions depending on the...We present a detailed study of dynamically generating an M2 brane from super-gravitons(or DO branes)in a pp-wave background possessing maximal spacetime SUSY.We have three kinds of dynamical solutions depending on the excess energy which appears as an order parameter signalling a critical phenomenon about the solutions.As the excess energy is below a critical value,we have two branches of the solution,one can have its size zero while the other cannot for each given excess energy.However there can be an instanton tunnelling between the two.Once the excess energy is above the critical value,we have a single solution whose dynamical behavior is basically independent of the background chosen and whose size can be zero at some instant.A by product of this study is that the size of particles or extended objects can grow once there is a non-zero excess energy even without the presence of a background flux,therefore lending support to the spacetime uncertainty principle.展开更多
Multi-component seismic exploration technology, combining reflected PP- and converted PS-waves, is an effective tool for solving complicated oil and gas exploration problems. The improvement of converted wave resoluti...Multi-component seismic exploration technology, combining reflected PP- and converted PS-waves, is an effective tool for solving complicated oil and gas exploration problems. The improvement of converted wave resolution is one of the key problems. The main factor affecting converted wave resolution is the absorption of seismic waves in overlying strata. In order to remove the effect of absorption on converted waves, inverse Q filtering is used to improve the resolution. In this paper, we present a method to estimate the S-wave Q values from prestack converted wave gathers. Furthermore, we extend a stable and effective poststack inverse Q filtering method to prestack data which uses wave field continuation along the ray path to compensate for attenuation in prestack common shot PP- and PS-waves. The results of theoretical modeling prove that the method of estimating the S-wave Q values has high precision. The results from synthetic and real data prove that the stable inverse Q filtering method can effectively improve the resolution of prestack PP- and PS-waves.展开更多
Imaging the PP- and PS-wave for the elastic vector wave reverse-time migration requires separating the P- and S-waves during the wave field extrapolation. The amplitude and phase of the P- and S-waves are distorted wh...Imaging the PP- and PS-wave for the elastic vector wave reverse-time migration requires separating the P- and S-waves during the wave field extrapolation. The amplitude and phase of the P- and S-waves are distorted when divergence and curl operators are used to separate the P- and S-waves. We present a P- and S-wave amplitude-preserving separation algorithm for the elastic wavefield extrapolation. First, we add the P-wave pressure and P-wave vibration velocity equation to the conventional elastic wave equation to decompose the P- and S-wave vectors. Then, we synthesize the scalar P- and S-wave from the vector P- and S-wave to obtain the scalar P- and S-wave. The amplitude-preserved separated P- and S-waves are imaged based on the vector wave reverse-time migration (RTM). This method ensures that the amplitude and phase of the separated P- and S-wave remain unchanged compared with the divergence and curl operators. In addition, after decomposition, the P-wave pressure and vibration velocity can be used to suppress the interlayer reflection noise and to correct the S-wave polarity. This improves the image quality of P- and S-wave in multicomponent seismic data and the true-amplitude elastic reverse time migration used in prestack inversion.展开更多
基金We acknowledge support by grants from the NSF of China with Grant No:11775212 and 12047502.
文摘We present a detailed study of dynamically generating an M2 brane from super-gravitons(or DO branes)in a pp-wave background possessing maximal spacetime SUSY.We have three kinds of dynamical solutions depending on the excess energy which appears as an order parameter signalling a critical phenomenon about the solutions.As the excess energy is below a critical value,we have two branches of the solution,one can have its size zero while the other cannot for each given excess energy.However there can be an instanton tunnelling between the two.Once the excess energy is above the critical value,we have a single solution whose dynamical behavior is basically independent of the background chosen and whose size can be zero at some instant.A by product of this study is that the size of particles or extended objects can grow once there is a non-zero excess energy even without the presence of a background flux,therefore lending support to the spacetime uncertainty principle.
基金supported by the 863 Program(Grant No.2007AA06Z218)
文摘Multi-component seismic exploration technology, combining reflected PP- and converted PS-waves, is an effective tool for solving complicated oil and gas exploration problems. The improvement of converted wave resolution is one of the key problems. The main factor affecting converted wave resolution is the absorption of seismic waves in overlying strata. In order to remove the effect of absorption on converted waves, inverse Q filtering is used to improve the resolution. In this paper, we present a method to estimate the S-wave Q values from prestack converted wave gathers. Furthermore, we extend a stable and effective poststack inverse Q filtering method to prestack data which uses wave field continuation along the ray path to compensate for attenuation in prestack common shot PP- and PS-waves. The results of theoretical modeling prove that the method of estimating the S-wave Q values has high precision. The results from synthetic and real data prove that the stable inverse Q filtering method can effectively improve the resolution of prestack PP- and PS-waves.
基金supported by Special Research Grant for Non-profit Public Service(No.201511037)National Natural Science Foundation of China(No.41504109,41506084,and 41406071)+1 种基金China Postdoctoral Science Foundation(No.2015M582060)Qingdao Municipal Applied Research Projects(No.2015308)
文摘Imaging the PP- and PS-wave for the elastic vector wave reverse-time migration requires separating the P- and S-waves during the wave field extrapolation. The amplitude and phase of the P- and S-waves are distorted when divergence and curl operators are used to separate the P- and S-waves. We present a P- and S-wave amplitude-preserving separation algorithm for the elastic wavefield extrapolation. First, we add the P-wave pressure and P-wave vibration velocity equation to the conventional elastic wave equation to decompose the P- and S-wave vectors. Then, we synthesize the scalar P- and S-wave from the vector P- and S-wave to obtain the scalar P- and S-wave. The amplitude-preserved separated P- and S-waves are imaged based on the vector wave reverse-time migration (RTM). This method ensures that the amplitude and phase of the separated P- and S-wave remain unchanged compared with the divergence and curl operators. In addition, after decomposition, the P-wave pressure and vibration velocity can be used to suppress the interlayer reflection noise and to correct the S-wave polarity. This improves the image quality of P- and S-wave in multicomponent seismic data and the true-amplitude elastic reverse time migration used in prestack inversion.