We present a new nonparametric predictive inference(NPI)method using a power-normal model for accelerated life testing(ALT).Combined with the accelerating link function and imprecise probability theory,the proposed me...We present a new nonparametric predictive inference(NPI)method using a power-normal model for accelerated life testing(ALT).Combined with the accelerating link function and imprecise probability theory,the proposed method is a feasible way to predict the life of the product using ALT failure data.To validate the method,we run a series of simulations and conduct accelerated life tests with real products.The NPI lower and upper survival functions show the robustness of our method for life prediction.This is a continuous research,and some progresses have been made by updating the link function between different stress levels.We also explain how to renew and apply our model.Moreover,discussions have been made about the performance.展开更多
Speech intelligibility enhancement in noisy environments is still one of the major challenges for hearing impaired in everyday life.Recently,Machine-learning based approaches to speech enhancement have shown great pro...Speech intelligibility enhancement in noisy environments is still one of the major challenges for hearing impaired in everyday life.Recently,Machine-learning based approaches to speech enhancement have shown great promise for improving speech intelligibility.Two key issues of these approaches are acoustic features extracted from noisy signals and classifiers used for supervised learning.In this paper,features are focused.Multi-resolution power-normalized cepstral coefficients(MRPNCC)are proposed as a new feature to enhance the speech intelligibility for hearing impaired.The new feature is constructed by combining four cepstrum at different time–frequency(T–F)resolutions in order to capture both the local and contextual information.MRPNCC vectors and binary masking labels calculated by signals passed through gammatone filterbank are used to train support vector machine(SVM)classifier,which aim to identify the binary masking values of the T–F units in the enhancement stage.The enhanced speech is synthesized by using the estimated masking values and wiener filtered T–F unit.Objective experimental results demonstrate that the proposed feature is superior to other comparing features in terms of HIT-FA,STOI,HASPI and PESQ,and that the proposed algorithm not only improves speech intelligibility but also improves speech quality slightly.Subjective tests validate the effectiveness of the proposed algorithm for hearing impaired.展开更多
基金the National Natural Science Foundation of China(No.11272082)the China Scholarship Council State Scholarship Fund(No.201506070017)
文摘We present a new nonparametric predictive inference(NPI)method using a power-normal model for accelerated life testing(ALT).Combined with the accelerating link function and imprecise probability theory,the proposed method is a feasible way to predict the life of the product using ALT failure data.To validate the method,we run a series of simulations and conduct accelerated life tests with real products.The NPI lower and upper survival functions show the robustness of our method for life prediction.This is a continuous research,and some progresses have been made by updating the link function between different stress levels.We also explain how to renew and apply our model.Moreover,discussions have been made about the performance.
基金supported by the National Natural Science Foundation of China(Nos.61902158,61673108)the Science and Technology Program of Nantong(JC2018129,MS12018082)Top-notch Academic Programs Project of Jiangsu Higher Education Institu-tions(PPZY2015B135).
文摘Speech intelligibility enhancement in noisy environments is still one of the major challenges for hearing impaired in everyday life.Recently,Machine-learning based approaches to speech enhancement have shown great promise for improving speech intelligibility.Two key issues of these approaches are acoustic features extracted from noisy signals and classifiers used for supervised learning.In this paper,features are focused.Multi-resolution power-normalized cepstral coefficients(MRPNCC)are proposed as a new feature to enhance the speech intelligibility for hearing impaired.The new feature is constructed by combining four cepstrum at different time–frequency(T–F)resolutions in order to capture both the local and contextual information.MRPNCC vectors and binary masking labels calculated by signals passed through gammatone filterbank are used to train support vector machine(SVM)classifier,which aim to identify the binary masking values of the T–F units in the enhancement stage.The enhanced speech is synthesized by using the estimated masking values and wiener filtered T–F unit.Objective experimental results demonstrate that the proposed feature is superior to other comparing features in terms of HIT-FA,STOI,HASPI and PESQ,and that the proposed algorithm not only improves speech intelligibility but also improves speech quality slightly.Subjective tests validate the effectiveness of the proposed algorithm for hearing impaired.