既有谐波源建模方法在应用于内部拓扑未知与机理不明场景时,难以有效兼顾谐波源的频域稳态特征与动态时变特征,致使所构建模型的准确性与鲁棒性难以提升。为此,该文提出一种基于时-频特征联合提取的谐波源数据驱动建模方法。首先,根据...既有谐波源建模方法在应用于内部拓扑未知与机理不明场景时,难以有效兼顾谐波源的频域稳态特征与动态时变特征,致使所构建模型的准确性与鲁棒性难以提升。为此,该文提出一种基于时-频特征联合提取的谐波源数据驱动建模方法。首先,根据谐波源历史电压电流的频域分量确定谐波源的主导谐波频次;其次,构建谐波源稳态电压时-频特征矩阵并对其进行伪彩色编码以实现特征升维;最后,将动态时变信号与稳态特征分量彩色图组合输入所构建的多重卷积神经网络(multiple convolutional neural network,MCNN)与双向长短时记忆网络(bi-directional long short term memory network,BiLSTM)组合模型,构建反映谐波源动态时变特征与频域稳态特征的电压-电流映射关系。经仿真与实测数据验证,相较于其他数据驱动建模方法,所提方法不仅在单一谐波源建模场景下具有明显的优势,在复杂多谐波源场景下也具备较高的准确率与较强的鲁棒性。展开更多
文摘既有谐波源建模方法在应用于内部拓扑未知与机理不明场景时,难以有效兼顾谐波源的频域稳态特征与动态时变特征,致使所构建模型的准确性与鲁棒性难以提升。为此,该文提出一种基于时-频特征联合提取的谐波源数据驱动建模方法。首先,根据谐波源历史电压电流的频域分量确定谐波源的主导谐波频次;其次,构建谐波源稳态电压时-频特征矩阵并对其进行伪彩色编码以实现特征升维;最后,将动态时变信号与稳态特征分量彩色图组合输入所构建的多重卷积神经网络(multiple convolutional neural network,MCNN)与双向长短时记忆网络(bi-directional long short term memory network,BiLSTM)组合模型,构建反映谐波源动态时变特征与频域稳态特征的电压-电流映射关系。经仿真与实测数据验证,相较于其他数据驱动建模方法,所提方法不仅在单一谐波源建模场景下具有明显的优势,在复杂多谐波源场景下也具备较高的准确率与较强的鲁棒性。