期刊文献+
共找到169篇文章
< 1 2 9 >
每页显示 20 50 100
Joint jammer selection and power optimization in covert communications against a warden with uncertain locations 被引量:1
1
作者 Zhijun Han Yiqing Zhou +3 位作者 Yu Zhang Tong-Xing Zheng Ling Liu Jinglin Shi 《Digital Communications and Networks》 2025年第4期1113-1123,共11页
In covert communications,joint jammer selection and power optimization are important to improve performance.However,existing schemes usually assume a warden with a known location and perfect Channel State Information(... In covert communications,joint jammer selection and power optimization are important to improve performance.However,existing schemes usually assume a warden with a known location and perfect Channel State Information(CSI),which is difficult to achieve in practice.To be more practical,it is important to investigate covert communications against a warden with uncertain locations and imperfect CSI,which makes it difficult for legitimate transceivers to estimate the detection probability of the warden.First,the uncertainty caused by the unknown warden location must be removed,and the Optimal Detection Position(OPTDP)of the warden is derived which can provide the best detection performance(i.e.,the worst case for a covert communication).Then,to further avoid the impractical assumption of perfect CSI,the covert throughput is maximized using only the channel distribution information.Given this OPTDP based worst case for covert communications,the jammer selection,the jamming power,the transmission power,and the transmission rate are jointly optimized to maximize the covert throughput(OPTDP-JP).To solve this coupling problem,a Heuristic algorithm based on Maximum Distance Ratio(H-MAXDR)is proposed to provide a sub-optimal solution.First,according to the analysis of the covert throughput,the node with the maximum distance ratio(i.e.,the ratio of the distances from the jammer to the receiver and that to the warden)is selected as the friendly jammer(MAXDR).Then,the optimal transmission and jamming power can be derived,followed by the optimal transmission rate obtained via the bisection method.In numerical and simulation results,it is shown that although the location of the warden is unknown,by assuming the OPTDP of the warden,the proposed OPTDP-JP can always satisfy the covertness constraint.In addition,with an uncertain warden and imperfect CSI,the covert throughput provided by OPTDP-JP is 80%higher than the existing schemes when the covertness constraint is 0.9,showing the effectiveness of OPTDP-JP. 展开更多
关键词 Covert communications Uncertain warden Jammer selection power optimization Throughput maximization
在线阅读 下载PDF
Reactive Power Optimization Model of Active Distribution Network with New Energy and Electric Vehicles 被引量:1
2
作者 Chenxu Wang Jing Bian Rui Yuan 《Energy Engineering》 2025年第3期985-1003,共19页
Considering the uncertainty of grid connection of electric vehicle charging stations and the uncertainty of new energy and residential electricity load,a spatio-temporal decoupling strategy of dynamic reactive power o... Considering the uncertainty of grid connection of electric vehicle charging stations and the uncertainty of new energy and residential electricity load,a spatio-temporal decoupling strategy of dynamic reactive power optimization based on clustering-local relaxation-correction is proposed.Firstly,the k-medoids clustering algorithm is used to divide the reduced power scene into periods.Then,the discrete variables and continuous variables are optimized in the same period of time.Finally,the number of input groups of parallel capacitor banks(CB)in multiple periods is fixed,and then the secondary static reactive power optimization correction is carried out by using the continuous reactive power output device based on the static reactive power compensation device(SVC),the new energy grid-connected inverter,and the electric vehicle charging station.According to the characteristics of the model,a hybrid optimization algorithm with a cross-feedback mechanism is used to solve different types of variables,and an improved artificial hummingbird algorithm based on tent chaotic mapping and adaptive mutation is proposed to improve the solution efficiency.The simulation results show that the proposed decoupling strategy can obtain satisfactory optimization resultswhile strictly guaranteeing the dynamic constraints of discrete variables,and the hybrid algorithm can effectively solve the mixed integer nonlinear optimization problem. 展开更多
关键词 Active distribution network new energy electric vehicles dynamic reactive power optimization kmedoids clustering hybrid optimization algorithm
在线阅读 下载PDF
A Two-Layer Active Power Optimization and Coordinated Control for Regional Power Grid Partitioning to Promote Distributed Renewable Energy Consumption 被引量:1
3
作者 Wentao Li Jiantao Liu +3 位作者 Yudun Li GuoxinMing Kaifeng Zhang Kun Yuan 《Energy Engineering》 EI 2024年第9期2479-2503,共25页
With the large-scale development and utilization of renewable energy,industrial flexible loads,as a kind of loadside resource with strong regulation ability,provide new opportunities for the research on renewable ener... With the large-scale development and utilization of renewable energy,industrial flexible loads,as a kind of loadside resource with strong regulation ability,provide new opportunities for the research on renewable energy consumption problem in power systems.This paper proposes a two-layer active power optimization model based on industrial flexible loads for power grid partitioning,aiming at improving the line over-limit problem caused by renewable energy consumption in power grids with high proportion of renewable energy,and achieving the safe,stable and economical operation of power grids.Firstly,according to the evaluation index of renewable energy consumption characteristics of line active power,the power grid is divided into several partitions,and the interzone tie lines are taken as the optimization objects.Then,on the basis of partitioning,a two-layer active power optimization model considering the power constraints of industrial flexible loads is established.The upper-layer model optimizes the planned power of the inter-zone tie lines under the constraint of the minimum peak-valley difference within a day;the lower-layer model optimizes the regional source-load dispatching plan of each resource in each partition under the constraint of theminimumoperation cost of the partition,so as to reduce the line overlimit phenomenon caused by renewable energy consumption and save the electricity cost of industrial flexible loads.Finally,through simulation experiments,it is verified that the proposed model can effectively mobilize industrial flexible loads to participate in power grid operation and improve the economic stability of power grid. 展开更多
关键词 Renewable energy consumption active power optimization power grid partitioning industrial flexible loads line over-limit
在线阅读 下载PDF
Chaos quantum particle swarm optimization for reactive power optimization considering voltage stability 被引量:2
4
作者 瞿苏寒 马平 蔡兴国 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2010年第3期351-356,共6页
The reactive power optimization considering voltage stability is an effective method to improve voltage stablity margin and decrease network losses,but it is a complex combinatorial optimization problem involving nonl... The reactive power optimization considering voltage stability is an effective method to improve voltage stablity margin and decrease network losses,but it is a complex combinatorial optimization problem involving nonlinear functions having multiple local minima and nonlinear and discontinuous constraints. To deal with the problem,quantum particle swarm optimization (QPSO) is firstly introduced in this paper,and according to QPSO,chaotic quantum particle swarm optimization (CQPSO) is presented,which makes use of the randomness,regularity and ergodicity of chaotic variables to improve the quantum particle swarm optimization algorithm. When the swarm is trapped in local minima,a smaller searching space chaos optimization is used to guide the swarm jumping out the local minima. So it can avoid the premature phenomenon and to trap in a local minima of QPSO. The feasibility and efficiency of the proposed algorithm are verified by the results of calculation and simulation for IEEE 14-buses and IEEE 30-buses systems. 展开更多
关键词 reactive power optimization voltage stability margin quantum particle swarm optimization chaos optimization
在线阅读 下载PDF
Distribution Network Reactive Power Optimization Based on Ant Colony Optimization and Differential Evolution Algorithm 被引量:1
5
作者 Y.L. Zhao Q. Yu C.G. Zhao 《Journal of Energy and Power Engineering》 2011年第6期548-553,共6页
Due to the inherent complexity, traditional ant colony optimization (ACO) algorithm is inadequate and insufficient to the reactive power optimization for distribution network. Therefore, firstly the ACO algorithm is... Due to the inherent complexity, traditional ant colony optimization (ACO) algorithm is inadequate and insufficient to the reactive power optimization for distribution network. Therefore, firstly the ACO algorithm is improved in two aspects: pheromone mutation and re-initialization strategy. Then the thought of differential evolution (DE) algorithm is proposed to be merged into ACO, and by producing new individuals with random deviation disturbance of DE, pheromone quantity left by ants is disturbed appropriately, to search the optimal path, by which the ability of search having been improved. The proposed algorithm is tested on IEEE30-hus system and actual distribution network, and the reactive power optimization results are calculated to verify the feasibility and effectiveness of the improved algorithm. 展开更多
关键词 Ant colony optimization distribution network differential evolution reactive power optimization.
在线阅读 下载PDF
Research of Rural Power Network Reactive Power Optimization Based on Improved ACOA
6
作者 YU Qian ZHAO Yulin WANG Xintao 《Journal of Northeast Agricultural University(English Edition)》 CAS 2010年第3期48-52,共5页
In view of the serious reactive power loss in the rural network, improved ant colony optimization algorithm (ACOA) was used to optimize the reactive power compensation for the rural distribution system. In this stud... In view of the serious reactive power loss in the rural network, improved ant colony optimization algorithm (ACOA) was used to optimize the reactive power compensation for the rural distribution system. In this study, the traditional ACOA was improved in two aspects: one was the local search strategy, and the other was pheromone mutation and re-initialization strategies. The reactive power optimization for a county's distribution network showed that the improved ACOA was practicable. 展开更多
关键词 rural power network reactive power optimization ant colony optimization algorithm local search strategy pheromone mutation and re-initialization strategy
在线阅读 下载PDF
Research on Reactive Power Optimization of Offshore Wind Farms Based on Improved Particle Swarm Optimization
7
作者 Zhonghao Qian Hanyi Ma +5 位作者 Jun Rao Jun Hu Lichengzi Yu Caoyi Feng Yunxu Qiu Kemo Ding 《Energy Engineering》 EI 2023年第9期2013-2027,共15页
The lack of reactive power in offshore wind farms will affect the voltage stability and power transmission quality of wind farms.To improve the voltage stability and reactive power economy of wind farms,the improved p... The lack of reactive power in offshore wind farms will affect the voltage stability and power transmission quality of wind farms.To improve the voltage stability and reactive power economy of wind farms,the improved particle swarmoptimization is used to optimize the reactive power planning in wind farms.First,the power flow of offshore wind farms is modeled,analyzed and calculated.To improve the global search ability and local optimization ability of particle swarm optimization,the improved particle swarm optimization adopts the adaptive inertia weight and asynchronous learning factor.Taking the minimum active power loss of the offshore wind farms as the objective function,the installation location of the reactive power compensation device is compared according to the node voltage amplitude and the actual engineering needs.Finally,a reactive power optimizationmodel based on Static Var Compensator is established inMATLAB to consider the optimal compensation capacity,network loss,convergence speed and voltage amplitude enhancement effect of SVC.Comparing the compensation methods in several different locations,the compensation scheme with the best reactive power optimization effect is determined.Meanwhile,the optimization results of the standard particle swarm optimization and the improved particle swarm optimization are compared to verify the superiority of the proposed improved algorithm. 展开更多
关键词 Offshore wind farms improved particle swarm optimization reactive power optimization adaptive weight asynchronous learning factor voltage stability
在线阅读 下载PDF
A power optimization approach for mixed polarity Reed–Muller logic circuits based on multi-strategy fusion memetic algorithm
8
作者 Mengyu ZHANG Zhenxue HE +4 位作者 Yijin WANG Xiaojun ZHAO Xiaodan ZHANG Limin XIAO Xiang WANG 《Frontiers of Information Technology & Electronic Engineering》 2025年第3期415-426,共12页
The power optimization of mixed polarity Reed–Muller(MPRM)logic circuits is a classic combinatorial optimization problem.Existing optimization approaches often suffer from slow convergence and a propensity to converg... The power optimization of mixed polarity Reed–Muller(MPRM)logic circuits is a classic combinatorial optimization problem.Existing optimization approaches often suffer from slow convergence and a propensity to converge to local optima,limiting their effectiveness in achieving optimal power efficiency.First,we propose a novel multi-strategy fusion memetic algorithm(MFMA).MFMA integrates global exploration via the chimp optimization algorithm with local exploration using the coati optimization algorithm based on the optimal position learning and adaptive weight factor(COA-OLA),complemented by population management through truncation selection.Second,leveraging MFMA,we propose a power optimization approach for MPRM logic circuits that searches for the best polarity configuration to minimize circuit power.Experimental results based on Microelectronics Center of North Carolina(MCNC)benchmark circuits demonstrate significant improvements over existing power optimization approaches.MFMA achieves a maximum power saving rate of 72.30%and an average optimization rate of 43.37%;it searches for solutions faster and with higher quality,validating its effectiveness and superiority in power optimization. 展开更多
关键词 power optimization Multi-strategy fusion memetic algorithm(MFMA) Mixed polarity Reed-Muller(MPRM) Combinatorial optimization problem
原文传递
A Sine and Wormhole Energy Whale Optimization Algorithm for Optimal FACTS Placement in Uncertain Wind Integrated Scenario Based Power Systems
9
作者 Sunilkumar P.Agrawal Pradeep Jangir +4 位作者 Arpita Sundaram B.Pandya Anil Parmar Ahmad O.Hourani Bhargavi Indrajit Trivedi 《Journal of Bionic Engineering》 2025年第4期2115-2134,共20页
The Sine and Wormhole Energy Whale Optimization Algorithm(SWEWOA)represents an advanced solution method for resolving Optimal Power Flow(OPF)problems in power systems equipped with Flexible AC Transmission System(FACT... The Sine and Wormhole Energy Whale Optimization Algorithm(SWEWOA)represents an advanced solution method for resolving Optimal Power Flow(OPF)problems in power systems equipped with Flexible AC Transmission System(FACTS)devices which include Thyristor-Controlled Series Compensator(TCSC),Thyristor-Controlled Phase Shifter(TCPS),and Static Var Compensator(SVC).SWEWOA expands Whale Optimization Algorithm(WOA)through the integration of sine and wormhole energy features thus improving exploration and exploitation capabilities for efficient convergence in complex non-linear OPF problems.A performance evaluation of SWEWOA takes place on the IEEE-30 bus test system through static and dynamic loading scenarios where it demonstrates better results than five contemporary algorithms:Adaptive Chaotic WOA(ACWOA),WOA,Chaotic WOA(CWOA),Sine Cosine Algorithm Differential Evolution(SCADE),and Hybrid Grey Wolf Optimization(HGWO).The research shows that SWEWOA delivers superior generation cost reduction than other algorithms by reaching a minimum of 0.9%better performance.SWEWOA demonstrates superior power loss performance by achieving(P_(loss,min))at the lowest level compared to all other tested algorithms which leads to better system energy efficiency.The dynamic loading performance of SWEWOA leads to a 4.38%reduction in gross costs which proves its capability to handle different operating conditions.The algorithm achieves top performance in Friedman Rank Test(FRT)assessments through multiple performance metrics which verifies its consistent reliability and strong stability during changing power demands.The repeated simulations show that SWEWOA generates mean costs(C_(gen,min))and mean power loss values(P_(loss,min))with small deviations which indicate its capability to maintain cost-effective solutions in each simulation run.SWEWOA demonstrates great potential as an advanced optimization solution for power system operations through the results presented in this study. 展开更多
关键词 Sine and wormhole energy whale optimization algorithm(SWEWOA) Optimal power flow(OPF) Wind integration FACTS devices power system optimization
在线阅读 下载PDF
Data-driven Reactive Power Optimization of Distribution Networks via Graph Attention Networks
10
作者 Wenlong Liao Dechang Yang +3 位作者 Qi Liu Yixiong Jia Chenxi Wang Zhe Yang 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2024年第3期874-885,共12页
Reactive power optimization of distribution networks is traditionally addressed by physical model based methods,which often lead to locally optimal solutions and require heavy online inference time consumption.To impr... Reactive power optimization of distribution networks is traditionally addressed by physical model based methods,which often lead to locally optimal solutions and require heavy online inference time consumption.To improve the quality of the solution and reduce the inference time burden,this paper proposes a new graph attention networks based method to directly map the complex nonlinear relationship between graphs(topology and power loads)and reactive power scheduling schemes of distribution networks,from a data-driven perspective.The graph attention network is tailored specifically to this problem and incorporates several innovative features such as a self-loop in the adjacency matrix,a customized loss function,and the use of max-pooling layers.Additionally,a rulebased strategy is proposed to adjust infeasible solutions that violate constraints.Simulation results on multiple distribution networks demonstrate that the proposed method outperforms other machine learning based methods in terms of the solution quality and robustness to varying load conditions.Moreover,its online inference time is significantly faster than traditional physical model based methods,particularly for large-scale distribution networks. 展开更多
关键词 Reactive power optimization graph neural network distribution network machine learning DATA-DRIVEN
原文传递
Enhancing Renewable Energy Integration:A Gaussian-Bare-Bones Levy Cheetah Optimization Approach to Optimal Power Flow in Electrical Networks
11
作者 Ali S.Alghamdi Mohamed A.Zohdy Saad Aldoihi 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第8期1339-1370,共32页
In the contemporary era,the global expansion of electrical grids is propelled by various renewable energy sources(RESs).Efficient integration of stochastic RESs and optimal power flow(OPF)management are critical for n... In the contemporary era,the global expansion of electrical grids is propelled by various renewable energy sources(RESs).Efficient integration of stochastic RESs and optimal power flow(OPF)management are critical for network optimization.This study introduces an innovative solution,the Gaussian Bare-Bones Levy Cheetah Optimizer(GBBLCO),addressing OPF challenges in power generation systems with stochastic RESs.The primary objective is to minimize the total operating costs of RESs,considering four functions:overall operating costs,voltage deviation management,emissions reduction,voltage stability index(VSI)and power loss mitigation.Additionally,a carbon tax is included in the objective function to reduce carbon emissions.Thorough scrutiny,using modified IEEE 30-bus and IEEE 118-bus systems,validates GBBLCO’s superior performance in achieving optimal solutions.Simulation results demonstrate GBBLCO’s efficacy in six optimization scenarios:total cost with valve point effects,total cost with emission and carbon tax,total cost with prohibited operating zones,active power loss optimization,voltage deviation optimization and enhancing voltage stability index(VSI).GBBLCO outperforms conventional techniques in each scenario,showcasing rapid convergence and superior solution quality.Notably,GBBLCO navigates complexities introduced by valve point effects,adapts to environmental constraints,optimizes costs while considering prohibited operating zones,minimizes active power losses,and optimizes voltage deviation by enhancing the voltage stability index(VSI)effectively.This research significantly contributes to advancing OPF,emphasizing GBBLCO’s improved global search capabilities and ability to address challenges related to local minima.GBBLCO emerges as a versatile and robust optimization tool for diverse challenges in power systems,offering a promising solution for the evolving needs of renewable energy-integrated power grids. 展开更多
关键词 Renewable energy integration optimal power flow stochastic renewable energy sources gaussian-bare-bones levy cheetah optimizer electrical network optimization carbon tax optimization
在线阅读 下载PDF
Security-Constrained Optimal Power Flow in Renewable Energy-Based Microgrids Using Line Outage Distribution Factor for Contingency Management
12
作者 Luki Septya Mahendra Rezi Delfianti +4 位作者 Karimatun Nisa Sutedjo Bima Mustaqim Catur Harsito Rafiel Carino Syahroni 《Energy Engineering》 2025年第7期2695-2717,共23页
Ensuring the reliability of power systems in microgrids is critical,particularly under contingency conditions that can disrupt power flow and system stability.This study investigates the application of Security-Constr... Ensuring the reliability of power systems in microgrids is critical,particularly under contingency conditions that can disrupt power flow and system stability.This study investigates the application of Security-Constrained Optimal Power Flow(SCOPF)using the Line Outage Distribution Factor(LODF)to enhance resilience in a renewable energy-integrated microgrid.The research examines a 30-bus system with 14 generators and an 8669 MW load demand,optimizing both single-objective and multi-objective scenarios.The single-objective opti-mization achieves a total generation cost of$47,738,while the multi-objective approach reduces costs to$47,614 and minimizes battery power output to 165.02 kW.Under contingency conditions,failures in transmission lines 1,22,and 35 lead to complete power loss in those lines,requiring a redistribution strategy.Implementing SCOPF mitigates these disruptions by adjusting power flows,ensuring no line exceeds its capacity.Specifically,in contingency 1,power in channel 4 is reduced from 59 to 32 kW,while overall load shedding is minimized to 0.278 MW.These results demonstrate the effectiveness of SCOPF in maintaining stability and reducing economic losses.Unlike prior studies,this work integrates LODF into SCOPF for large-scale microgrid applications,offering a computationally efficient contingency management framework that enhances grid resilience and supports renewable energy adoption. 展开更多
关键词 CONTINGENCY LODF optimal power flow smart grid solar power
在线阅读 下载PDF
Estimating Optimal Location of STATCOM and Minimization of Congestion Cost by Locational Marginal Price Using Flower Pollination and Particle Swarm Optimization Techniques
13
作者 Gagandeep Kaur Akhil Gupta 《Journal of Harbin Institute of Technology(New Series)》 2025年第1期67-75,共9页
Restructuring of power market not only introduces competition but also brings complexity which increases overloading of Transmission Lines(TL).To obviate this complexity,this paper aims to mitigate the overloading and... Restructuring of power market not only introduces competition but also brings complexity which increases overloading of Transmission Lines(TL).To obviate this complexity,this paper aims to mitigate the overloading and estimate the optimal location of Static Synchronous Compensator(STATCOM) by reducing congestion for a deregulated power system.The proposed method is based on the use of Locational Marginal Price(LMP) difference technique and congestion cost.LMPs are obtained as a by-product of Optimal Power Flow(OPF),whereas Congestion Cost(CC) is a function of difference in LMP and power flows.The effiectiveness of this approach is demonstrated by reducing the CC and solution space which can identify the TLs more suitable for placement of STATCOM.Importantly,total real power loss,reactive power loss and total CC are the three main objective functions in this optimization process.The process is implemented by developing an IEEE-69 bus test system which verifies and validates the effectiveness of proposed optimization technique.Additionally,a comparative analysis is enumerated by implementing two optimization techniques:Flower Pollination Algorithm(FPA) and Particle Swarm Optimization(PSO).The comparative analysis is sufficient to demonstrate the superiority of FPA technique over PSO technique in estimating an optimal placement of a STATCOM.The results from the load-flow analysis illustrate the reduction in CC,total real and reactive power loss using FPA technique compared to PSO technique.Overall,satisfactory results are obtained without using complex calculations which verify the effectiveness of optimization techniques. 展开更多
关键词 congestion management congestion cost optimal power particle swarm flower pollination optimization
在线阅读 下载PDF
Data-driven Reactive Power Optimization for Distribution Networks Using Capsule Networks 被引量:6
14
作者 Wenlong Liao Jiejing Chen +3 位作者 Qi Liu Ruijin Zhu Like Song Zhe Yang 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2022年第5期1274-1287,共14页
The construction of advanced metering infrastructure and the rapid evolution of artificial intelligence bring opportunities to quickly searching for the optimal dispatching strategy for reactive power optimization. Th... The construction of advanced metering infrastructure and the rapid evolution of artificial intelligence bring opportunities to quickly searching for the optimal dispatching strategy for reactive power optimization. This can be realized by mining existing prior knowledge and massive data without explicitly constructing physical models. Therefore, a novel datadriven approach is proposed for reactive power optimization of distribution networks using capsule networks(CapsNet). The convolutional layers with strong feature extraction ability are used to project the power loads to the feature space to realize the automatic extraction of key features. Furthermore, the complex relationship between input features and dispatching strategies is captured accurately by capsule layers. The back propagation algorithm is utilized to complete the training process of the CapsNet. Case studies show that the accuracy and robustness of the CapsNet are better than those of popular baselines(e.g.,convolutional neural network, multi-layer perceptron, and casebased reasoning). Besides, the computing time is much lower than that of traditional heuristic methods such as genetic algorithm, which can meet the real-time demand of reactive power optimization in distribution networks. 展开更多
关键词 DATA-DRIVEN reactive power optimization distribution networks deep learning capsule networks
原文传递
A New Filter Collaborative State Transition Algorithm for Two-Objective Dynamic Reactive Power Optimization 被引量:5
15
作者 Hongli Zhang Cong Wang Wenhui Fan 《Tsinghua Science and Technology》 SCIE EI CAS CSCD 2019年第1期30-43,共14页
Dynamic Reactive Power Optimization(DRPO) is a large-scale, multi-period, and strongly coupled nonlinear mixed-integer programming problem that is difficult to solve directly. First, to handle discrete variables and s... Dynamic Reactive Power Optimization(DRPO) is a large-scale, multi-period, and strongly coupled nonlinear mixed-integer programming problem that is difficult to solve directly. First, to handle discrete variables and switching operation constraints, DRPO is formulated as a nonlinear constrained two-objective optimization problem in this paper. The first objective is to minimize the real power loss and the Total Voltage Deviations(TVDs), and the second objective is to minimize incremental system loss. Then a Filter Collaborative State Transition Algorithm(FCSTA) is presented for solving DRPO problems. Two populations corresponding to two different objectives are employed. Moreover, the filter technique is utilized to deal with constraints. Finally, the effectiveness of the proposed method is demonstrated through the results obtained for a 24-hour test on Ward & Hale 6 bus, IEEE 14 bus, and IEEE 30 bus test power systems. To substantiate the effectiveness of the proposed algorithms, the obtained results are compared with different approaches in the literature. 展开更多
关键词 dynamic reactive power optimization filter collaborative state transition algorithm Ward & Hale 6 bus IEEE 14 bus IEEE 30 bus
原文传递
Reactive power optimization of a distribution network with high-penetration of wind and solar renewable energy and electric vehicles 被引量:20
16
作者 Biao Xu Guiyuan Zhang +4 位作者 Ke Li Bing Li Hongyuan Chi Yao Yao Zhun Fan 《Protection and Control of Modern Power Systems》 2022年第1期788-800,共13页
As high amounts of new energy and electric vehicle(EV)charging stations are connected to the distribution network,the voltage deviations are likely to occur,which will further affect the power quality.It is challengin... As high amounts of new energy and electric vehicle(EV)charging stations are connected to the distribution network,the voltage deviations are likely to occur,which will further affect the power quality.It is challenging to manage high quality voltage control of a distribution network only relying on the traditional reactive power control mode.If the reactive power regulation potentials of new energy and EVs can be tapped,it will greatly reduce the reactive power optimization pressure on the network.Keeping this in mind,our reasearch first adds EVs to the traditional distribution network model with new forms of energy,and then a multi-objective optimization model,with achieving the lowest line loss,voltage deviation,and the highest static voltage stability margin as its objectives,is constructed.Meanwihile,the corresponding model parameters are set under different climate and equipment conditions.Ultimately,the optimization model under specific scenarios is obtained.Furthermore,considering the supply and demand relation-ship of the network,an improved technique for order preference by similarity to an ideal solution decision method is proposed,which aims to judge the adaptability of different algorithms to the optimized model,so as to select a most suitable algorithm for the problem.Finally,a comparison is made between the constructed model and a model without new energy.The results reveal that the constructed model can provide a high quality reactive power regula-tion strategy. 展开更多
关键词 Renewable energy Electric vehicle Multi-objective optimization Pareto front Reactive power optimization
在线阅读 下载PDF
Hierarchically Correlated Equilibrium Q-learning for Multi-area Decentralized Collaborative Reactive Power Optimization 被引量:5
17
作者 Min Tan Chuanjia Han +2 位作者 Xiaoshun Zhang Lexin Guo Tao Yu 《CSEE Journal of Power and Energy Systems》 SCIE 2016年第3期65-72,共8页
A hierarchically correlated equilibrium Q-learning(HCEQ)algorithm for reactive power optimization that considers carbon emission on the grid-side as an optimization objective,is proposed here.Based on the multi-area d... A hierarchically correlated equilibrium Q-learning(HCEQ)algorithm for reactive power optimization that considers carbon emission on the grid-side as an optimization objective,is proposed here.Based on the multi-area decentralized collaborative framework,the controllable variables in each region are divided into several optimization layers,which is an effective method for solving the limitations posed by dimensionality.The HCEQ provides constant information on the interaction between the state-action value function matrices,as well as on the cooperative game equilibrium among agents in each region.After acquiring the optimal value function matrix in the pre-learning process,HCEQ is able to quickly achieve an optimal solution online.Simulation of the IEEE 57-bus system is performed,which demonstrates that the proposed algorithm can effectively solve multi-area decentralized collaborative reactive power optimization,with the desired global search capabilities and convergence speed. 展开更多
关键词 Hierarchically correlated equilibrium multiarea decentralized collaborative reactive power optimization reinforcement learning
原文传递
PMGA and its application in area and power optimization for ternary FPRM circuit 被引量:2
18
作者 汪鹏君 厉康平 张会红 《Journal of Semiconductors》 EI CAS CSCD 2016年第1期126-130,共5页
Based on the research of population migration algorithms (PMAs), a population migration genetic algo- rithm (PMGA) is proposed, combining a PMA with a genetic algorithm. A scheme of area and power optimization for... Based on the research of population migration algorithms (PMAs), a population migration genetic algo- rithm (PMGA) is proposed, combining a PMA with a genetic algorithm. A scheme of area and power optimization for a ternary FPRM circuit is proposed by using the PMGA. Firstly, according to the ternary FPRM logic function expression, area and power estimation models are established. Secondly, the PMGA is used to search for the best area and power polarity. Finally, 10 MCNC Benchmark circuits are used to verify the effectiveness of the proposed method. The results show that the ternary FPRM circuits optimized by the PMGA saved 13.33% area and 20.00% power on average than the corresponding FPRM circuits optimized by a whole annealing genetic algorithm. 展开更多
关键词 PMGA temary FPRM circuit area and power optimization polarity search
原文传递
Transmit Power Optimization for Relay-Aided Multi-Carrier D2D Communication 被引量:2
19
作者 Muhammad Waqas Guftaar Ahmad Sardar Sidhu +2 位作者 Tayyaba Jabeen Muhammad Afaq Ahmad Muhammad Awais Javed 《Tsinghua Science and Technology》 SCIE EI CAS CSCD 2018年第1期65-74,共10页
In this paper, we consider the power optimization problem in Orthogonal Frequency Division Multiplexing (OFDM)-based relay-enhanced device-to-device (D2D) communication. In a single cell transmission scenario, dua... In this paper, we consider the power optimization problem in Orthogonal Frequency Division Multiplexing (OFDM)-based relay-enhanced device-to-device (D2D) communication. In a single cell transmission scenario, dual- hop communication is assumed in which each D2D user re-uses the spectrum of just one Cellular User (CU). In this work, we formulate a joint optimization scheme under a Decode-and-Forward (DF) relaying protocol to maximize the sum throughput of D2D and cellular networks via power allocation over different sub-carriers. The problem is thus transformed into a standard convex optimization, subject to individual power constraints at different transmitting nodes. We exploit the duality theory to decompose the problem into several sub-problems and use Karush-Kuhn- Tucker (KKT) conditions to solve each sub-problem. We provide simulation results to validate the performance of our proposed scheme. 展开更多
关键词 device-to-device communication Orthogonal Frequency Division Multiplexing (OFDM) Decode-and-Forward (DF) relay transmission power optimization
原文传递
Suspension Power Optimization of Unbalanced Structure Permanent-electro Hybrid Magnet Using Genetic Algorithm
20
作者 Songqi Li Liangcheng Cai Kunlun Zhang 《CSEE Journal of Power and Energy Systems》 SCIE CSCD 2021年第1期201-207,共7页
The permanent magnet electromagnetic hybridmagnet (PEHM) has the advantages of low energy consumptionand a large suspension air gap. In this study, an unbalancedPEHM structure is proposed, which combines the advantage... The permanent magnet electromagnetic hybridmagnet (PEHM) has the advantages of low energy consumptionand a large suspension air gap. In this study, an unbalancedPEHM structure is proposed, which combines the advantages ofthe previous hybrid magnet structure. First, by establishing themagnetic circuit model of the new hybrid magnet structure, theinfluence of magnetic field distribution on the working magneticcircuit of the magnet is analyzed, and the method of magneticforce correction calculation of the new structure magnet isgiven. Then, the validity of the magnetic calculation method isverified by the 3D finite element method (FEM). Furthermore, theaverage suspension power force ratio is used as the optimizationgoal, and the system parameters of the hybrid magnet under aworking air gap of 6–10 mm and a load condition of 15000–20000 N are optimized by a genetic algorithm. Compared withthe previous hybrid magnet, the optimized hybrid magnet systemcan maintain lower power consumption under comprehensiveworking conditions. 展开更多
关键词 Element method maglev vehicles permanent magnet electromagnetic hybrid magnet power optimization SUSPENSION
原文传递
上一页 1 2 9 下一页 到第
使用帮助 返回顶部