针对电力线点云提取过程中自动化程度低且结果易受参数影响出现欠分割或过分割的问题,结合机载激光雷达(light detection and ranging,LiDAR)点云数据的分布特点,提出一种基于改进空间密度聚类算法的激光点云电力线的提取方法。该方法...针对电力线点云提取过程中自动化程度低且结果易受参数影响出现欠分割或过分割的问题,结合机载激光雷达(light detection and ranging,LiDAR)点云数据的分布特点,提出一种基于改进空间密度聚类算法的激光点云电力线的提取方法。该方法首先通过空间分割改进高程滤波算法完成电力线点云的粗提取;其次,利用基于距离-密度的方法和数学期望计算方法获得空间密度聚类的最佳参数,避免了繁杂的人工调参过程。实验结果显示,相较于空间密度聚类算法,所提算法效率显著提高,降低了约60%电力线提取时间,实现了单根电力线点云的自动化和高效提取。展开更多
文摘针对电力线点云提取过程中自动化程度低且结果易受参数影响出现欠分割或过分割的问题,结合机载激光雷达(light detection and ranging,LiDAR)点云数据的分布特点,提出一种基于改进空间密度聚类算法的激光点云电力线的提取方法。该方法首先通过空间分割改进高程滤波算法完成电力线点云的粗提取;其次,利用基于距离-密度的方法和数学期望计算方法获得空间密度聚类的最佳参数,避免了繁杂的人工调参过程。实验结果显示,相较于空间密度聚类算法,所提算法效率显著提高,降低了约60%电力线提取时间,实现了单根电力线点云的自动化和高效提取。