期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Digital light processing three-dimensional printing with acrylic-titanium composite powders for multiscale porous scaffolds
1
作者 Guangbin Zhao Yanlong Wu +11 位作者 Bochen Li Hang Tian Bo Li Xiao Li Xu Chen Tao Zhou Yaning Wang Yichao Gong Dingchang Hou Yaxiong Liu Xuewen Zong Bingheng Lu 《International Journal of Extreme Manufacturing》 2025年第3期321-335,共15页
Porous metals fabricated via three-dimensional(3D)printing have attracted extensive attention in many fields owing to their open pores and customization potential.However,dense internal structures produced by the powd... Porous metals fabricated via three-dimensional(3D)printing have attracted extensive attention in many fields owing to their open pores and customization potential.However,dense internal structures produced by the powder bed fusion technique fails to meet the feature of porous materials in scenarios that demand large specific surface areas.Herein,we propose a strategy for 3D printing of titanium scaffolds featuring multiscale porous internal structures via powder modification and digital light processing(DLP).After modification,the titanium powders were composited with acrylic resin and maintained spherical shapes.Compared with the raw powder slurries,the modified powder slurries exhibited higher stability and preferable curing characteristics,and the depth sensitivity of the modified powder slurries with 45 vol%solid loading increased by approximately 72%.Green scaffolds were subsequently printed from the slurries with a solid loading reaching 45 vol%via DLP 3D printing.The scaffolds had macropores(pore diameters of approximately 1 mm)and internal open micropores(pore diameters of approximately 5.7-13.0μm)after sintering.Additionally,these small-featured(approximately 320μm)scaffolds retained sufficient compressive strength((70.01±3.53)MPa)even with high porosity(approximately 73.95%).This work can facilitate the fabrication of multiscale porous metal scaffolds with high solid loading slurries,offering potential for applications requiring high specific surface area ratios. 展开更多
关键词 multiscale porous metal titanium scaffolds powder modification 3D printing SINTERING
在线阅读 下载PDF
Magnetic modification of diamagnetic agglomerate forming powder materials
2
作者 Ivo Safarik Eva Baldikova +1 位作者 Kristyna Pospiskova Mirka Safarikova 《Particuology》 SCIE EI CAS CSCD 2016年第6期169-171,共3页
A simple method for the magnetic modification of various types of powdered agglomerate forming dia- magnetic materials was developed. Magnetic iron oxide particles were prepared from ferrous sulfate by microwave assis... A simple method for the magnetic modification of various types of powdered agglomerate forming dia- magnetic materials was developed. Magnetic iron oxide particles were prepared from ferrous sulfate by microwave assisted synthesis. A suspension of the magnetic particles in water soluble organic solvent (methanol, ethanol, propanol, isopropyl alcohol, or acetone) was mixed with the material to be modified and then completely dried at elevated temperature. The magnetically modified materials were found to be stable in water suspension at least for 2 months. 展开更多
关键词 Magnetic modification Magnetic separation powdered material Magnetic iron oxide Microwave assisted synthesis
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部