The double-alloy powder mixed method is very proper for developing new small-mass products by changing the composi- tion of sintered Nd-Fe-B magnets, and there is little research on this aspect. The variation on magne...The double-alloy powder mixed method is very proper for developing new small-mass products by changing the composi- tion of sintered Nd-Fe-B magnets, and there is little research on this aspect. The variation on magnetic and mechanical properties of high intrinsic coercivity Nd-Fe-B magnets prepared by double-alloy powder mixed method was discussed, which is a method blend- ing two-type main phase alloy powders with different components. The results showed that the intrinsic coercivity and density of sin- tered Nd-Fe-B magnets increased gradually with the increase in Dy content, and the double-alloy powder mixed method could obtain high intrinsic coercivity Nd-Fe-B magnets with good crystallographic alignment and microstructure. The bending strength of sintered Nd-Fe-B magnets declined, and the Rockwell hardness of sintered Nd-Fe-B magnets first declined, and then increased with the in- crease in Dy content. The microstructure showed that there existed the phenomenon that the Dy element diffused into main phase dur- ing sintering process, and the distribution of Dy content in main phase had some variation in homogeneity as a result of incomplete reaction between the double-alloy powder types.展开更多
This hydrometallurgical method consists of oxidation leaching, sulfide impurities removing, and sulfur dioxide reduction. The crude tellurium powder was treated by H2Oa oxidation for 2.0 h at pH 2.5 when adding 50 ml ...This hydrometallurgical method consists of oxidation leaching, sulfide impurities removing, and sulfur dioxide reduction. The crude tellurium powder was treated by H2Oa oxidation for 2.0 h at pH 2.5 when adding 50 ml H2O2 (30 %) per 100 g raw material, a tellurium recover rate around 91% is achieved. The tellurium leaching ratio can reach 98.9 % under 3.75 mol.L-1 NaOH concentration in liquid-solid ratio of 5:1 at 80 ℃ for 1.5 h. The overall separation of tellurium and other heavy metals is optimum at sulfide dosages of about 1.1 times of the theoretical values. The removal rates of Ag, Ni, Pb, and Cu from the solution are greater than 99.8 %, and As and Se removal rates are 98.6 % and 97.2 %, respectively. Over 99.5 % tellurium can be recovered by SOu reaction when the operation is conducted at 85 ℃ in 6 mol.L-1 HC1 solution. The tellurium powder with size of 〈5 μm and purity of 〉99.999 % is obtained.展开更多
The high boron alloy surfacing layer was easily cracked due to its insufficient toughness by using hybrid powder/ wire overlaying method. In order to explore the cracked mechanism, the microstructures and the wear res...The high boron alloy surfacing layer was easily cracked due to its insufficient toughness by using hybrid powder/ wire overlaying method. In order to explore the cracked mechanism, the microstructures and the wear resistance of the samples with different boron contents were studied. Further, phases analysis, microhardness, macrohardness and wear test were also carried out. The boron content depended microstructures were observed. The precipitation of the Fe2B, Fe3 ( C, B), Fe23 (C, B)6 were increased with the increase of boron content. It was found that the wear resistance was independent of the macrohardness as the macrohardness increased firstly and then remained steady at -62 HRC. However, the wear resistance was depended on the boron contents, and which increased with the increase of the boron contents. The abrasive loss mechanism changed from plastic deformation removal to fracture removal.展开更多
Silver-tin oxide composite powders and silver powders were synthesized by hydrothermal method using NH3 to complex Ag+, SO 32?to reduce Ag (NH3)+2 and Na2SnO3 as the source of tin. The powders were characterized by XR...Silver-tin oxide composite powders and silver powders were synthesized by hydrothermal method using NH3 to complex Ag+, SO 32?to reduce Ag (NH3)+2 and Na2SnO3 as the source of tin. The powders were characterized by XRD, SEM and EDX. The results show that there are macroscopic and microscopic differences between two kinds of powders. Spherical silver powders are 3 μm in diameter, and silver-tin oxide composite powders are mainly flake of about 0.3 μm in thickness. Silver crystal in silver-tin oxide composite powders is preferentially oriented in the (111) crystallographic direction and its oriented index is 2.581. Crystal lattice parameter of silver crystal of silver tin-oxide composite powders is 0.409 34 nm, larger than 0.408 68 nm of silver powders. The XPS analysis shows that silver in silver-tin oxide composite powders is metallic silver and tin oxide in silver tin-oxide composite powders has the red shift for Sn4+(3d5/2) and O2-(1s).展开更多
YAG:Ce3+(Yttrium aluminum garnet) fluorescence powders were successfully prepared by co-precipitation method using aluminum nitrate,yttrium nitrate,cerous nitrate as the starting materials and ammonium carbonate as pr...YAG:Ce3+(Yttrium aluminum garnet) fluorescence powders were successfully prepared by co-precipitation method using aluminum nitrate,yttrium nitrate,cerous nitrate as the starting materials and ammonium carbonate as precipitant.The products were characterized by X-ray powder diffraction,luminescence spectrometer,transmission electron microscope(TEM).The XRD results showed that the obtained YAG:Ce3+ fluorescence powders had the crystalline structures of YAG at calcinations temperature of 900 oC and the TEM results showed that the grain diameters were about 100 nm.The YAG:Ce3+ fluorescence powders,synthesized by co-precipitation method,had the best luminescence property when the Ce doping amount was x=0.06 in the molecular formula of Y3-xCexAl5O12,the calcinations time was 2 h and the calcinations temperature was 1000 °C.展开更多
In this paper, M-type hexagonal barium ferrite powders are synthesized using the sol-gel method. A dried precursor heated in air is analyzed in the temperature range from 50 to 1200 ℃ using thermo-gravimetric analysi...In this paper, M-type hexagonal barium ferrite powders are synthesized using the sol-gel method. A dried precursor heated in air is analyzed in the temperature range from 50 to 1200 ℃ using thermo-gravimetric analysis and differential scanning calorimetry. The effects of the additives and the cacinating temperature on the magnetic properties are investigated, and the results show that single-phase barium ferrite powders can be formed. After heat-treating at 950 ℃ for 4h with 3 wt% additive, the coercivity and saturation magnetization are found to be 440 Oe and 57.9 emu/g, respectively.展开更多
The precursor of ultrafine In 2O 3 powder was prepared by the hydrolysis, peptization and gelation of InCl 3·4H 2O used as raw material. After calcination, ultrafine In 2O 3 powder was obtained. The particl...The precursor of ultrafine In 2O 3 powder was prepared by the hydrolysis, peptization and gelation of InCl 3·4H 2O used as raw material. After calcination, ultrafine In 2O 3 powder was obtained. The particles were characterized by the methods of thermo gravimetric and differential thermal analysis (TG DTA), X ray diffractometry (XRD) and transmission electron microscopy (TEM), respectively.展开更多
Using the specially designed mechanochemical ball-mill equipment, ultramicro molybdenum nitride powders were prepared from pure molybdenum powders in ammonia atmosphere at room temperature by high-energy ball milling....Using the specially designed mechanochemical ball-mill equipment, ultramicro molybdenum nitride powders were prepared from pure molybdenum powders in ammonia atmosphere at room temperature by high-energy ball milling. The structure and the particle size of the powders were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The results show that the mass ratio of grinding media to powder was 8:1, after milling for 30 h the Mo2N of fcc structure was obtained, and the average particle size of the powders was around 100 nm. It is found that the chemisorption of ammonia onto the fresh molybdenum surfaces created by milling was the predominant process during solid-gas reaction, and the energy input due to introduction of highly dense grain boundaries and lattice defects offered the activation energy for the transition from Mo-N chemisorption to molybdenum nitride. In addition, the change of Mo electronic undersaturation induced by the grain refining accelerated the bonding between Mo and N. The mechanism model of whole nitriding reaction was given, During the high-energy ball milling processing, the rotational speed of milling played a critical role in determining the overall reaction speed.展开更多
In order to grow high-quality gallium garnet crystals,polycrystalline materials were used as starting materials.YSGG precursor was synthesized by co-precipitation method using aqueous ammonia as a precipitator,and the...In order to grow high-quality gallium garnet crystals,polycrystalline materials were used as starting materials.YSGG precursor was synthesized by co-precipitation method using aqueous ammonia as a precipitator,and the precursor was then sintered at different temperatures.The results showed that the feasible pH range was 8.3~9.84 in the process of co-precipitation reaction.The YSGG precursor and the powders sintered at different temperatures were characterized by IR,XRD and TEM methods.It was found that the precursor transformed to pure YSGG polycrystalline phase at 800 ℃.YSGG nano-polycrystalline powders sintered at 800~1000 ℃ were well dispersed and the sizes of the YSGG grains were about 40~100 nm.展开更多
PZT nanocrystalline powder was prepared by a stearic acid gel method. Thecrystallization process from the precursor was monitored by infrared spectroscopy, differentialthermal analysis, and thermogravimetric analysis....PZT nanocrystalline powder was prepared by a stearic acid gel method. Thecrystallization process from the precursor was monitored by infrared spectroscopy, differentialthermal analysis, and thermogravimetric analysis. The nano-sized PZT powder was characterized byX-ray diffraction and transmission electron microscopy. It shows that pure single-phase PZT powdercould be obtained at 450 deg C for 1 h, and the particle size is about 20 nm. With an increase inthe calcination temperature, the PZT crystallite size increased.展开更多
[Objectives] To study the effects of different drying methods on quality of Chinese wolfberry powder. [Methods] The physical properties and nutritional contents of Chinese wolfberry powder prepared by hot air drying,v...[Objectives] To study the effects of different drying methods on quality of Chinese wolfberry powder. [Methods] The physical properties and nutritional contents of Chinese wolfberry powder prepared by hot air drying,vacuum freeze drying,microwave vacuum drying,drum drying and spray drying were measured and analyzed to explore the effects of different drying methods on quality characteristics of Chinese wolfberry powder. [Results] The total sugar content and reducing sugar contents of product: vacuum freeze drying > spray drying > microwave vacuum drying > drum drying > hot air drying; carotene and total flavonoid contents: vacuum freeze drying > microwave vacuum drying > spray drying > drum drying > hot air drying; after drying process,the dietary fiber content of product obtained by drum drying and spray drying was relatively higher,while the Vc content of Chinese wolfberry powder prepared by vacuum freeze drying was the highest. a~*value( redness to greenness) of color: vacuum freeze drying > microwave vacuum drying > spray drying > drum drying > hot air drying; the Chinese wolfberry powder prepared by vacuum freeze drying had the best solubility,hygroscopicity and rehydration ratio. [Conclusions] Microwave vacuum drying was the best method to prepare Chinese wolfberry powder,in order to keep its quality and consider the cost of production.展开更多
Homogeneous and dispersed Y3 Al5 O12(yttrium aluminum garnet,YAG) nanopowders were synthesized via a homogeneous co-precipitation method from the mixed solutions of yttrium nitrate,aluminum nitrate and a small amoun...Homogeneous and dispersed Y3 Al5 O12(yttrium aluminum garnet,YAG) nanopowders were synthesized via a homogeneous co-precipitation method from the mixed solutions of yttrium nitrate,aluminum nitrate and a small amount of ammonium sulfate using hot urea as the precipitant.The method has the superiorities that co-precipitation of cations is ensured and continuous decomposition of the hot urea is achieved to obtain the narrow size distribution particles.The addition of small amount of ammonium sulfate surfactant,although has no influence on YAG garnet phase formation,has significant effect on dispersion,particles distribution and sinterability of the resultant YAG and Yb:YAG powders.Compared with the undoped sample,the green body of Yb:YAG doped with ammonium sulfate has higher total shrinkage,linear shrinkage rate and relative density through sintering at 1600 ℃.The resultant Yb:YAG powders can be sintered into transparent ceramics at 1700 ℃ through vacuum sintering.The influence of the sulfate ions on characteristics of the resultant powders was thoroughly studied.展开更多
With zirconium oxychloride, nitrate of lime and ammonia as raw materials, nano powder of CaO ZrO 2 was prepared by chemical coprecipitation method. By use of azeotropic distillation processing, chemical coprecipitatio...With zirconium oxychloride, nitrate of lime and ammonia as raw materials, nano powder of CaO ZrO 2 was prepared by chemical coprecipitation method. By use of azeotropic distillation processing, chemical coprecipitation precursor was obtained. Phase transformation of the precursor was observed at the temperature of 593.81 ℃ and 1 234.56 ℃ respectively with DTA analyses. Phase structure was analyzed through XRD and Raman spectra. The average particle size of tetragonal zirconium oxide powder was 9.8 and 43.7 nm after calcination at 600 and 1 100 ℃ respectively which was tested by TEM and BET analyses. Furthermore, the influences of the doping of nitrate of lime and the average particle size of zirconium oxide on the stability of tetragonal zirconium oxide were also discussed.展开更多
The single-phase BiFeO3 powders were prepared by sol-gel method with the starting materials of bismuth nitrate and ferric nitrate, and the effect of the calcined temperature on the phases of BiFeO3 samples was studied...The single-phase BiFeO3 powders were prepared by sol-gel method with the starting materials of bismuth nitrate and ferric nitrate, and the effect of the calcined temperature on the phases of BiFeO3 samples was studied. The x-ray diffraction (XRD)showed that the single-phase BiFeO3 powders were obtained with a calcined temperature of 700 ℃. The scanning electron microscope(SEM)analysis indicated that the grain size was around 500 nm in single-phase BiFeO3 powders, and uniform particle size distribution. The FT-IR spectra showed that the BiFeO3 powders began to crystallize at 500℃.展开更多
Sol-gel method was employed for the preparation of nanoscale tungsten powder. The effects of different preparation conditions on particle size were discussed and the optimum preparation condition was found. The produc...Sol-gel method was employed for the preparation of nanoscale tungsten powder. The effects of different preparation conditions on particle size were discussed and the optimum preparation condition was found. The products were characterized by X-ray diffraction, scan electron microscopy and so on. The results show that the intermediate is monoclinic WO3, its particle shape is approximately spherical, and the particle size distribution is narrow. The average particle size is about 60 nm. After deoxidization, WO3 turns into cubic tungsten powder with small particle size (average particle size about 120 nm) and narrow size distribution.展开更多
Slip line method for sintered powder materials under condition of axial symmetry is proposed based on the simplified yield condition of sintered powder materials and Haar-von Karman perfect plastic criterion. The equa...Slip line method for sintered powder materials under condition of axial symmetry is proposed based on the simplified yield condition of sintered powder materials and Haar-von Karman perfect plastic criterion. The equations of slip line and stress along slip line are derived, and numerical solutions are given. Deformation load in closed die upsetting of sintered copper cylinder is calculated by slip line method, and theoretical solutions are compared with experimental results.展开更多
Oily cold rolling mill (CRM) sludge is one of the pollutants emitted by iron and steel plants. Recycling oily CRM sludge can not only reduce pollution but also bring social and environmental benefits. In this study,...Oily cold rolling mill (CRM) sludge is one of the pollutants emitted by iron and steel plants. Recycling oily CRM sludge can not only reduce pollution but also bring social and environmental benefits. In this study, using oily CRM sludge as sources of iron oxide, the strontium ferrite powders were synthesized in multiple steps including vacuum distillation, magnetic separation, oxidizing roasting, and solidstate reaction. The optimal technological conditions of vacuum distillation and oxidizing roasting were studied carefully. To consider the effects of Fe203/ SrCO3 tool ratio, calcination temperature, milling time and calcination time on magnetic properties of prepared strontium ferrite powders, the orthogonal experimental method was adopted. The maximum saturation magneti- zation (62.6 mA-m2.g-1) of the synthesized strontium ferrite powders was achieved at the Fe203/SrCO3 mol ratio of 6, 5 h milling time, 1250 ~C calcination temperature, and 1 h calcination time. Strontium ferrite powders syn- thesis method not only provides a cheap, high quality raw material for the production of strontium ferrite powders, but also effectively prevents the environmental pollution.展开更多
A direct electroless copper (Cu) coating on tungsten powders method requiring no surface treatment or stabilizing agent and using glyoxylic acid (C2H203) as a reducing agent was reported. The effects of copper sul...A direct electroless copper (Cu) coating on tungsten powders method requiring no surface treatment or stabilizing agent and using glyoxylic acid (C2H203) as a reducing agent was reported. The effects of copper sulfate concentration and the pH of the plating solution on the properties of the prepared W@Cu composite powders were assessed. The content of Cu in the composite powders was controlled by adjusting the concentration of copper sulfate in the electroless plating solution. A uniform, dense, and consistent Cu coating was obtained under the established optimum conditions (flow rate of C2H203 = 5.01 mL/min, solution pH = 12.25 and reaction temperature 45.35℃) by using central composite design method. In addition, the crystalline Cu coating was evenly dispersed within the W@Cu composite powders and Cu element in the coating existed as Cu~. The formation mechanism for the W@Cu composite powders by electroless plating in the absence of surface treatment and stabilizing agent was also proposed.展开更多
基金Project supported by the Natural Science Foundation of Hubei Province(2014CFB626,2015CFC785)the Research Project of Hubei Provincial Department of Education(D20151801)the Opening Foundation of Hubei Key Laboratory of Automotive Power Train and Electronic Control(ZDK1201404)
文摘The double-alloy powder mixed method is very proper for developing new small-mass products by changing the composi- tion of sintered Nd-Fe-B magnets, and there is little research on this aspect. The variation on magnetic and mechanical properties of high intrinsic coercivity Nd-Fe-B magnets prepared by double-alloy powder mixed method was discussed, which is a method blend- ing two-type main phase alloy powders with different components. The results showed that the intrinsic coercivity and density of sin- tered Nd-Fe-B magnets increased gradually with the increase in Dy content, and the double-alloy powder mixed method could obtain high intrinsic coercivity Nd-Fe-B magnets with good crystallographic alignment and microstructure. The bending strength of sintered Nd-Fe-B magnets declined, and the Rockwell hardness of sintered Nd-Fe-B magnets first declined, and then increased with the in- crease in Dy content. The microstructure showed that there existed the phenomenon that the Dy element diffused into main phase dur- ing sintering process, and the distribution of Dy content in main phase had some variation in homogeneity as a result of incomplete reaction between the double-alloy powder types.
基金financially supported by the Science and Technology Department of Guangdong Province(No.2011B0508000033)
文摘This hydrometallurgical method consists of oxidation leaching, sulfide impurities removing, and sulfur dioxide reduction. The crude tellurium powder was treated by H2Oa oxidation for 2.0 h at pH 2.5 when adding 50 ml H2O2 (30 %) per 100 g raw material, a tellurium recover rate around 91% is achieved. The tellurium leaching ratio can reach 98.9 % under 3.75 mol.L-1 NaOH concentration in liquid-solid ratio of 5:1 at 80 ℃ for 1.5 h. The overall separation of tellurium and other heavy metals is optimum at sulfide dosages of about 1.1 times of the theoretical values. The removal rates of Ag, Ni, Pb, and Cu from the solution are greater than 99.8 %, and As and Se removal rates are 98.6 % and 97.2 %, respectively. Over 99.5 % tellurium can be recovered by SOu reaction when the operation is conducted at 85 ℃ in 6 mol.L-1 HC1 solution. The tellurium powder with size of 〈5 μm and purity of 〉99.999 % is obtained.
基金supported by the Heilongjiang Province Natural Science Foundation(No.ZD201008)Jiamusi University Scientific Research Project(22Zb201518)State Key Laboratory of Advanced Welding Production Technology Project(AWJ-M13-04)
文摘The high boron alloy surfacing layer was easily cracked due to its insufficient toughness by using hybrid powder/ wire overlaying method. In order to explore the cracked mechanism, the microstructures and the wear resistance of the samples with different boron contents were studied. Further, phases analysis, microhardness, macrohardness and wear test were also carried out. The boron content depended microstructures were observed. The precipitation of the Fe2B, Fe3 ( C, B), Fe23 (C, B)6 were increased with the increase of boron content. It was found that the wear resistance was independent of the macrohardness as the macrohardness increased firstly and then remained steady at -62 HRC. However, the wear resistance was depended on the boron contents, and which increased with the increase of the boron contents. The abrasive loss mechanism changed from plastic deformation removal to fracture removal.
文摘Silver-tin oxide composite powders and silver powders were synthesized by hydrothermal method using NH3 to complex Ag+, SO 32?to reduce Ag (NH3)+2 and Na2SnO3 as the source of tin. The powders were characterized by XRD, SEM and EDX. The results show that there are macroscopic and microscopic differences between two kinds of powders. Spherical silver powders are 3 μm in diameter, and silver-tin oxide composite powders are mainly flake of about 0.3 μm in thickness. Silver crystal in silver-tin oxide composite powders is preferentially oriented in the (111) crystallographic direction and its oriented index is 2.581. Crystal lattice parameter of silver crystal of silver tin-oxide composite powders is 0.409 34 nm, larger than 0.408 68 nm of silver powders. The XPS analysis shows that silver in silver-tin oxide composite powders is metallic silver and tin oxide in silver tin-oxide composite powders has the red shift for Sn4+(3d5/2) and O2-(1s).
基金Project supported by China Postdoctoral Science Foundation (20100471663)Science and Technology Program of Yantai Citiy (2008151)+1 种基金Natural Science Foundation of Shandong Province (ZR2009BL013)Innovation Group Foundation Plan of Ludong University
文摘YAG:Ce3+(Yttrium aluminum garnet) fluorescence powders were successfully prepared by co-precipitation method using aluminum nitrate,yttrium nitrate,cerous nitrate as the starting materials and ammonium carbonate as precipitant.The products were characterized by X-ray powder diffraction,luminescence spectrometer,transmission electron microscope(TEM).The XRD results showed that the obtained YAG:Ce3+ fluorescence powders had the crystalline structures of YAG at calcinations temperature of 900 oC and the TEM results showed that the grain diameters were about 100 nm.The YAG:Ce3+ fluorescence powders,synthesized by co-precipitation method,had the best luminescence property when the Ce doping amount was x=0.06 in the molecular formula of Y3-xCexAl5O12,the calcinations time was 2 h and the calcinations temperature was 1000 °C.
基金Project supported by the National Basic Research Program of China(Grant No.2007CB310407)the Science Fund for Creative Research Groups of the National Natural Science Foundation of China(Grant No.61021061)+1 种基金the National Natural Youth Fund of China(Grant No.61001025)National Programs for Science and Technology Development of Guangdong Province,China(Grant No.2010B090400314)
文摘In this paper, M-type hexagonal barium ferrite powders are synthesized using the sol-gel method. A dried precursor heated in air is analyzed in the temperature range from 50 to 1200 ℃ using thermo-gravimetric analysis and differential scanning calorimetry. The effects of the additives and the cacinating temperature on the magnetic properties are investigated, and the results show that single-phase barium ferrite powders can be formed. After heat-treating at 950 ℃ for 4h with 3 wt% additive, the coercivity and saturation magnetization are found to be 440 Oe and 57.9 emu/g, respectively.
文摘The precursor of ultrafine In 2O 3 powder was prepared by the hydrolysis, peptization and gelation of InCl 3·4H 2O used as raw material. After calcination, ultrafine In 2O 3 powder was obtained. The particles were characterized by the methods of thermo gravimetric and differential thermal analysis (TG DTA), X ray diffractometry (XRD) and transmission electron microscopy (TEM), respectively.
文摘Using the specially designed mechanochemical ball-mill equipment, ultramicro molybdenum nitride powders were prepared from pure molybdenum powders in ammonia atmosphere at room temperature by high-energy ball milling. The structure and the particle size of the powders were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The results show that the mass ratio of grinding media to powder was 8:1, after milling for 30 h the Mo2N of fcc structure was obtained, and the average particle size of the powders was around 100 nm. It is found that the chemisorption of ammonia onto the fresh molybdenum surfaces created by milling was the predominant process during solid-gas reaction, and the energy input due to introduction of highly dense grain boundaries and lattice defects offered the activation energy for the transition from Mo-N chemisorption to molybdenum nitride. In addition, the change of Mo electronic undersaturation induced by the grain refining accelerated the bonding between Mo and N. The mechanism model of whole nitriding reaction was given, During the high-energy ball milling processing, the rotational speed of milling played a critical role in determining the overall reaction speed.
基金Project supported by the National Natural Science Foundation of China(5047210460478025)
文摘In order to grow high-quality gallium garnet crystals,polycrystalline materials were used as starting materials.YSGG precursor was synthesized by co-precipitation method using aqueous ammonia as a precipitator,and the precursor was then sintered at different temperatures.The results showed that the feasible pH range was 8.3~9.84 in the process of co-precipitation reaction.The YSGG precursor and the powders sintered at different temperatures were characterized by IR,XRD and TEM methods.It was found that the precursor transformed to pure YSGG polycrystalline phase at 800 ℃.YSGG nano-polycrystalline powders sintered at 800~1000 ℃ were well dispersed and the sizes of the YSGG grains were about 40~100 nm.
基金This work was financially supported by the Ministry of Science and Technology of China through 973-project (No. 2002CB613301).
文摘PZT nanocrystalline powder was prepared by a stearic acid gel method. Thecrystallization process from the precursor was monitored by infrared spectroscopy, differentialthermal analysis, and thermogravimetric analysis. The nano-sized PZT powder was characterized byX-ray diffraction and transmission electron microscopy. It shows that pure single-phase PZT powdercould be obtained at 450 deg C for 1 h, and the particle size is about 20 nm. With an increase inthe calcination temperature, the PZT crystallite size increased.
基金Supported by National Science and Technology Support Plan Program(2016-YFD0400704-3)
文摘[Objectives] To study the effects of different drying methods on quality of Chinese wolfberry powder. [Methods] The physical properties and nutritional contents of Chinese wolfberry powder prepared by hot air drying,vacuum freeze drying,microwave vacuum drying,drum drying and spray drying were measured and analyzed to explore the effects of different drying methods on quality characteristics of Chinese wolfberry powder. [Results] The total sugar content and reducing sugar contents of product: vacuum freeze drying > spray drying > microwave vacuum drying > drum drying > hot air drying; carotene and total flavonoid contents: vacuum freeze drying > microwave vacuum drying > spray drying > drum drying > hot air drying; after drying process,the dietary fiber content of product obtained by drum drying and spray drying was relatively higher,while the Vc content of Chinese wolfberry powder prepared by vacuum freeze drying was the highest. a~*value( redness to greenness) of color: vacuum freeze drying > microwave vacuum drying > spray drying > drum drying > hot air drying; the Chinese wolfberry powder prepared by vacuum freeze drying had the best solubility,hygroscopicity and rehydration ratio. [Conclusions] Microwave vacuum drying was the best method to prepare Chinese wolfberry powder,in order to keep its quality and consider the cost of production.
基金National Natural Science Foundation of China(51602042,51602045)the Fundamental Research Funds for the Central Universities(N162304004,N162304013)+1 种基金the Natural Science Foundation of Hebei Province(E2017501082)the Scientific Research Foundation of Northeastern University at Qinhuangdao(XNB201715)
文摘Homogeneous and dispersed Y3 Al5 O12(yttrium aluminum garnet,YAG) nanopowders were synthesized via a homogeneous co-precipitation method from the mixed solutions of yttrium nitrate,aluminum nitrate and a small amount of ammonium sulfate using hot urea as the precipitant.The method has the superiorities that co-precipitation of cations is ensured and continuous decomposition of the hot urea is achieved to obtain the narrow size distribution particles.The addition of small amount of ammonium sulfate surfactant,although has no influence on YAG garnet phase formation,has significant effect on dispersion,particles distribution and sinterability of the resultant YAG and Yb:YAG powders.Compared with the undoped sample,the green body of Yb:YAG doped with ammonium sulfate has higher total shrinkage,linear shrinkage rate and relative density through sintering at 1600 ℃.The resultant Yb:YAG powders can be sintered into transparent ceramics at 1700 ℃ through vacuum sintering.The influence of the sulfate ions on characteristics of the resultant powders was thoroughly studied.
文摘With zirconium oxychloride, nitrate of lime and ammonia as raw materials, nano powder of CaO ZrO 2 was prepared by chemical coprecipitation method. By use of azeotropic distillation processing, chemical coprecipitation precursor was obtained. Phase transformation of the precursor was observed at the temperature of 593.81 ℃ and 1 234.56 ℃ respectively with DTA analyses. Phase structure was analyzed through XRD and Raman spectra. The average particle size of tetragonal zirconium oxide powder was 9.8 and 43.7 nm after calcination at 600 and 1 100 ℃ respectively which was tested by TEM and BET analyses. Furthermore, the influences of the doping of nitrate of lime and the average particle size of zirconium oxide on the stability of tetragonal zirconium oxide were also discussed.
文摘The single-phase BiFeO3 powders were prepared by sol-gel method with the starting materials of bismuth nitrate and ferric nitrate, and the effect of the calcined temperature on the phases of BiFeO3 samples was studied. The x-ray diffraction (XRD)showed that the single-phase BiFeO3 powders were obtained with a calcined temperature of 700 ℃. The scanning electron microscope(SEM)analysis indicated that the grain size was around 500 nm in single-phase BiFeO3 powders, and uniform particle size distribution. The FT-IR spectra showed that the BiFeO3 powders began to crystallize at 500℃.
文摘Sol-gel method was employed for the preparation of nanoscale tungsten powder. The effects of different preparation conditions on particle size were discussed and the optimum preparation condition was found. The products were characterized by X-ray diffraction, scan electron microscopy and so on. The results show that the intermediate is monoclinic WO3, its particle shape is approximately spherical, and the particle size distribution is narrow. The average particle size is about 60 nm. After deoxidization, WO3 turns into cubic tungsten powder with small particle size (average particle size about 120 nm) and narrow size distribution.
文摘Slip line method for sintered powder materials under condition of axial symmetry is proposed based on the simplified yield condition of sintered powder materials and Haar-von Karman perfect plastic criterion. The equations of slip line and stress along slip line are derived, and numerical solutions are given. Deformation load in closed die upsetting of sintered copper cylinder is calculated by slip line method, and theoretical solutions are compared with experimental results.
基金supported by the National Key Technology R&D Program (Nos. 2012BAC02B01, 2012BAC12B05, 2011BAE13B07, and 2011BAC10B02)the National High Technology Research and Development Program of China (No. 2012AA063202)+2 种基金the National Natural Science Foundation of China (Nos. 51174247 and 51004011)the Science and Technology Program of Guangdong Province, China (No. 2010A030200003)the Ph.D. Programs Foundation of the Ministry of Education of China (No. 2010000612003)
文摘Oily cold rolling mill (CRM) sludge is one of the pollutants emitted by iron and steel plants. Recycling oily CRM sludge can not only reduce pollution but also bring social and environmental benefits. In this study, using oily CRM sludge as sources of iron oxide, the strontium ferrite powders were synthesized in multiple steps including vacuum distillation, magnetic separation, oxidizing roasting, and solidstate reaction. The optimal technological conditions of vacuum distillation and oxidizing roasting were studied carefully. To consider the effects of Fe203/ SrCO3 tool ratio, calcination temperature, milling time and calcination time on magnetic properties of prepared strontium ferrite powders, the orthogonal experimental method was adopted. The maximum saturation magneti- zation (62.6 mA-m2.g-1) of the synthesized strontium ferrite powders was achieved at the Fe203/SrCO3 mol ratio of 6, 5 h milling time, 1250 ~C calcination temperature, and 1 h calcination time. Strontium ferrite powders syn- thesis method not only provides a cheap, high quality raw material for the production of strontium ferrite powders, but also effectively prevents the environmental pollution.
基金Funded by the National Natural Science Foundation of China(Nos.51202175 and 11072228)the National 111 Project(No.B13035)
文摘A direct electroless copper (Cu) coating on tungsten powders method requiring no surface treatment or stabilizing agent and using glyoxylic acid (C2H203) as a reducing agent was reported. The effects of copper sulfate concentration and the pH of the plating solution on the properties of the prepared W@Cu composite powders were assessed. The content of Cu in the composite powders was controlled by adjusting the concentration of copper sulfate in the electroless plating solution. A uniform, dense, and consistent Cu coating was obtained under the established optimum conditions (flow rate of C2H203 = 5.01 mL/min, solution pH = 12.25 and reaction temperature 45.35℃) by using central composite design method. In addition, the crystalline Cu coating was evenly dispersed within the W@Cu composite powders and Cu element in the coating existed as Cu~. The formation mechanism for the W@Cu composite powders by electroless plating in the absence of surface treatment and stabilizing agent was also proposed.