Potential vorticity(PV)streamers are elongated filaments of high PV intrusions that generally exhibit three distinct shapes:ordinarily southwestward,hook,and treble-clef,each with significant influences on weather.The...Potential vorticity(PV)streamers are elongated filaments of high PV intrusions that generally exhibit three distinct shapes:ordinarily southwestward,hook,and treble-clef,each with significant influences on weather.These PV streamers are most frequent over arid and semi-arid Central Asia in the mid–high latitudes.This study applied the Mask Region-based Convolutional Neural Network algorithm(Mask R-CNN)to PV streamers on the dynamical tropopause during the warm season(May to September)over the years 2000–04 to train a weighted variational model capable of identifying these different shapes.The trained model demonstrated a strong ability to distinguish between the three shapes.A climatological analysis of PV streamers over Central Asia spanning 2000 to 2021 revealed an increasingly deep and pronounced reversal of circulation from ordinary to treble-clef shapes.The treble-clef shape featured a PV tower and distinct cut-off low in the troposphere,but the associated upward motions and precipitation were confined within approximately 1200 km to the east of the PV tower.Although the hook-shape PV streamers were linked to a weaker cut-off low,the extent of upward motion and precipitation was nearly double that of the treble-clef category.In contrast,the ordinary PV streamer was primarily associated with tropopause Rossby wave breaking and exhibited relatively shallow characteristics,which resulted in moderate upward motion and precipitation to 500 km to its east.展开更多
A hierarchical model is developed to predict the streaming potential (SP) in the canaliculi of a loaded os teon. Canaliculi are assumed to run straight across the os teon annular cylinder wall, while disregarding th...A hierarchical model is developed to predict the streaming potential (SP) in the canaliculi of a loaded os teon. Canaliculi are assumed to run straight across the os teon annular cylinder wall, while disregarding the effect of lacuna. SP is generalized by the canalicular fluid flow. Ana lytical solutions are obtained for the canalicular fluid veloc ity, pressure, and SP. Results demonstrate that SP amplitude (SPA) is proportional to the pressure difference, strain am plitude, frequency, and strain rate amplitude. However, the key loading factor governing SP is the strain rate, which is a representative loading parameter under the specific phys iological state. Moreover, SPA is independent of canalicu lar length. This model links external loads to the canalicu lar fluid pressure, velocity, and SP, which can facilitate fur ther understanding of the mechanotransduction and electro mechanotransduction mechanisms of bones.展开更多
Surface charge characteristics of a membrane can be determined by the streaming potential. In order to obtain more accurate streaming potential value during the measurement, four measurement operation modes were inves...Surface charge characteristics of a membrane can be determined by the streaming potential. In order to obtain more accurate streaming potential value during the measurement, four measurement operation modes were investigated in this study, and among the four modes, the steady mode with pressure stepped downward was considered the best one. Experimental results showed that the effects of compaction on the streaming potential measurement for a microfiltration membrane was more obvious than that for a ultrafiltration membrane. Both feed pH and presoaking could affect the measurement of streaming potential.展开更多
The non-uniqueness of solution and compatibility between the coupled boundary conditions in computing velocity potential and streamfunction from horizontal velocity in a limited domain of arbitrary shape are revisited...The non-uniqueness of solution and compatibility between the coupled boundary conditions in computing velocity potential and streamfunction from horizontal velocity in a limited domain of arbitrary shape are revisited theoretically with rigorous mathematic treatments.Classic integral formulas and their variants are used to formulate solutions for the coupled problems.In the absence of data holes,the total solution is the sum of two integral solutions.One is the internally induced solution produced purely and uniquely by the domain internal divergence and vorticity,and its two components(velocity potential and streamfunction) can be constructed by applying Green's function for Poisson equation in unbounded domain to the divergence and vorticity inside the domain.The other is the externally induced solution produced purely but non-uniquely by the domain external divergence and vorticity,and the non-uniqueness is caused by the harmonic nature of the solution and the unknown divergence and vorticity distributions outside the domain.By setting either the velocity potential(or streamfunction) component to zero,the other component of the externally induced solution can be expressed by the imaginary(or real) part of the Cauchy integral constructed using the coupled boundary conditions and solvability conditions that exclude the internally induced solution.The streamfunction(or velocity potential) for the externally induced solution can also be expressed by the boundary integral of a double-layer(or singlelayer) density function.In the presence of data holes,the total solution includes a data-hole-induced solution in addition to the above internally and externally induced solutions.展开更多
Groundwater and surface water contamination by PTE(Potentially Toxic Elements)was assessed in Ruashi and Annexe municipalities of Lubumbashi city.Analyses of seventy water samples collected from six drilled wells,eigh...Groundwater and surface water contamination by PTE(Potentially Toxic Elements)was assessed in Ruashi and Annexe municipalities of Lubumbashi city.Analyses of seventy water samples collected from six drilled wells,eight spade-sunk wells,one river and one spring in both municipalities in 2017 and 2018 were carried out by ICP-SF-MS(Inductively Coupled Plasma-Sector Field Mass Spectrometry).Twenty PTEs including aluminum,arsenic,barium,bismuth,cadmium,cesium,chromium,cobalt,copper,iron,lead,manganese,molybdenum,nickel,strontium,thallium,tungsten,uranium,vanadium and zinc were detected at various concentrations in each one of the samples.Many samples had concentrations and mean concentrations of PTEs,such as aluminum,cadmium,copper,iron,lead,manganese,nickel and zinc,higher than the respective acceptable limits set for drinking water by the EU(European Union),the USEPA(United States Environmental Protection Agency),and the WHO(World Health Organization)standards.Most PTEs being deleterious to human health even at very low concentrations,people who use the groundwater and surface water to meet their water needs in both Ruashi and Annexe municipalities are at risk.展开更多
The measurements of the streaming potential coefficient and the zeta potential of two consolidated samples saturated with four monovalent electrolytes at different electrolyte concentrations have been performed. The e...The measurements of the streaming potential coefficient and the zeta potential of two consolidated samples saturated with four monovalent electrolytes at different electrolyte concentrations have been performed. The experimental results show that the streaming potential coefficient and the zeta potential in magnitude both decrease with increasing electrolyte concentration for all electrolytes. It is also shown that there is a dependence of the streaming potential coefficient on types of electrolyte for a given sample. This is explained by the dependence of the zeta potential and the electrical conductivity on types of electrolyte. Additionally, the variation of the zeta potential with types of electrolyte is also reported and qualitatively explained. From experimental data on the streaming potential coefficient and the zeta potential, the empirical expressions between the streaming potential coefficients, the zeta potential and electrolyte concentration are also obtained. The obtained expressions have the similar forms to those available in literature. However, there is a deviation between them due to dissimilarities of fluid conductivity, fluid pH, mineral composition of porous materials and temperature.展开更多
Built on the integral formulas in Part I,numerical methods are developed for computing velocity potential and streamfunction in a limited domain.When there is no inner boundary(around a data hole) inside the domain,...Built on the integral formulas in Part I,numerical methods are developed for computing velocity potential and streamfunction in a limited domain.When there is no inner boundary(around a data hole) inside the domain,the total solution is the sum of the internally and externally induced parts.For the internally induced part,three numerical schemes(grid-staggering,local-nesting and piecewise continuous integration) are designed to deal with the singularity of the Green's function encountered in numerical calculations.For the externally induced part,by setting the velocity potential(or streamfunction) component to zero,the other component of the solution can be computed in two ways:(1) Solve for the density function from its boundary integral equation and then construct the solution from the boundary integral of the density function.(2) Use the Cauchy integral to construct the solution directly.The boundary integral can be discretized on a uniform grid along the boundary.By using local-nesting(or piecewise continuous integration),the scheme is refined to enhance the discretization accuracy of the boundary integral around each corner point(or along the entire boundary).When the domain is not free of data holes,the total solution contains a data-hole-induced part,and the Cauchy integral method is extended to construct the externally induced solution with irregular external and internal boundaries.An automated algorithm is designed to facilitate the integrations along the irregular external and internal boundaries.Numerical experiments are performed to evaluate the accuracy and efficiency of each scheme relative to others.展开更多
Polysulfone(PS)hollow-fiber ultrafiltration membrane was characterized combined with flux and streaming potential in single electrolyte solutions.The effects of trans-membrane pressure,electrolyte concentration,ion va...Polysulfone(PS)hollow-fiber ultrafiltration membrane was characterized combined with flux and streaming potential in single electrolyte solutions.The effects of trans-membrane pressure,electrolyte concentration,ion valence and pH value of electrolyte solution on the streaming potential(SP)of the membrane were investigated.The zeta potential and surface charge density of the membrane were calculated on the basis of Helmholtz-Smoluchowski equation and Gouy-Chapmann theory.The results indicate that the valence and concentration of cation have a greater influence on the SP and surface charge density of PS membrane than those of anion,and the pH value of electrolyte solution has great effects on the SP and zeta potential of the membrane surface. Both the absolute value of the streaming potential and water flux of the adsorbed membrane decrease,compared with those of the clean membrane.The streaming potential and flux of the cleaned membrane can be completely recovered by cleaning with the mass fraction of 0.8%EDTA at pH=10.展开更多
After first reviewing historical and current difficulties in solving streamfunction and velocity potential in a limited domain,and describing recent developments in obtaining accurate solutions in a limited domain wit...After first reviewing historical and current difficulties in solving streamfunction and velocity potential in a limited domain,and describing recent developments in obtaining accurate solutions in a limited domain with arbitrary shape,a newly proposed approach is introduced and its application to a torrential rain event is reported.The results show that the newly developed method has advantages in capturing mesoscale information,compared with horizontal winds.展开更多
The word “senescence” comes from the Latin senescens, meaning “to begin to age”, and is characterized by a long-lasting but reversible block in proliferation, resulting from stress-induced cell cycle arrest of pre...The word “senescence” comes from the Latin senescens, meaning “to begin to age”, and is characterized by a long-lasting but reversible block in proliferation, resulting from stress-induced cell cycle arrest of previously replication-competent cells.展开更多
By reviewing the research progress and exploration practices of shale gas geology in China,analyzing and summarizing the geological characteristics,enrichment laws,and resource potential of different types of shale ga...By reviewing the research progress and exploration practices of shale gas geology in China,analyzing and summarizing the geological characteristics,enrichment laws,and resource potential of different types of shale gas,the following understandings have been obtained:(1)Marine,transitional,and lacustrine shales in China are distributed from old to new in geological age,and the complexity of tectonic reworking and hydrocarbon generation evolution processes gradually decreases.(2)The sedimentary environment controls the type of source-reservoir configuration,which is the basis of“hydrocarbon generation and reservoir formation”.The types of source-reservoir configuration in marine and lacustrine shales are mainly source-reservoir integration,with occasional source-reservoir separation.The configuration types of transitional shale are mainly source-reservoir integration and source-reservoir symbiosis.(3)The resistance of rigid minerals to compression for pore preservation and the overpressure facilitate the enrichment of source-reservoir integrated shale gas.Good source reservoir coupling and preservation conditions are crucial for the shale gas enrichment of source-reservoir symbiosis and source-reservoir separation types.(4)Marine shale remains the main battlefield for increasing shale gas reserves and production in China,while transitional and lacustrine shales are expected to become important replacement areas.It is recommended to carry out the shale gas exploration at three levels:Accelerate the exploration of Silurian,Cambrian,and Permian marine shales in the Upper-Middle Yangtze region;make key exploration breakthroughs in ultra-deep marine shales of the Upper-Middle Yangtze region,the new Ordovician marine shale strata in the North China region,the transitional shales of the Carboniferous and Permian,as well as the Mesozoic lacustrine shale gas in basins such as Sichuan,Ordos and Songliao;explore and prepare for new shale gas exploration areas such as South China and Northwest China,providing technology and resource reserves for the sustainable development of shale gas in China.展开更多
The toxicity of PM_(2.5)does not necessarily change synchronously with its mass concentration.In this study,the chemical composition(carbonaceous species,water-soluble ions,and metals)and oxidative potential(dithiothr...The toxicity of PM_(2.5)does not necessarily change synchronously with its mass concentration.In this study,the chemical composition(carbonaceous species,water-soluble ions,and metals)and oxidative potential(dithiothreitol assay,DTT)of PM_(2.5)were investigated in 2017/2018 and 2022 in Xiamen,China.The decrease rate of volume-normalized DTT(DTTv)(38%)was lower than that of PM_(2.5)(55%)between the two sampling periods.However,the mass-normalized DTT(DTTm)increased by 44%.Clear seasonal patterns with higher levels in winter were found for PM_(2.5),most chemical constituents and DTTv but not for DTTm.The large decrease in DTT activity(84%−92%)after the addition of EDTA suggested that watersoluble metals were the main contributors to DTT in Xiamen.The increased gap between the reconstructed and measured DTTv and the stronger correlations between the reconstructed/measured DTT ratio and carbonaceous species in 2022were observed.The decrease rates of the hazard index(32.5%)and lifetime cancer risk(9.1%)differed from those of PM_(2.5)and DTTv due to their different main contributors.The PMF-MLR model showed that the contributions(nmol/(min·m^(3)))of vehicle emission,coal+biomass burning,ship emission and secondary aerosol to DTTv in 2022 decreased by 63.0%,65.2%,66.5%,and 22.2%,respectively,compared to those in 2017/2018,which was consistent with the emission reduction of vehicle exhaust and coal consumption,the adoption of low-sulfur fuel oil used on board ships and the reduced production of WSOC.However,the contributions of dust+sea salt and industrial emission increased.展开更多
Multiple instances of the Late Cretaceous granodiorites within the Anglonggangri region of the northwestern Lhasa Block were identified,their petrogenesis were explored and mineralization potential were assessed.The z...Multiple instances of the Late Cretaceous granodiorites within the Anglonggangri region of the northwestern Lhasa Block were identified,their petrogenesis were explored and mineralization potential were assessed.The zircon U-Pb dating of the Anglonggangri granodiorites revealed ages of 82.8 and 80.8 Ma.Granodiorite samples have SiO2 contents of 64.36-68.33 wt%,with high Sr/Y(55-95)and A/CNK ratios(0.99-1.06).Zirconε_(Hf)(t)values range from−0.3 to+16.2.Two granodiorite samples have(^(87)Sr/^(86)Sr)i values of 0.7034 and 0.7043 and positiveɛNd(t)values of 3.51 and 3.83.These geochemical properties indicate that they are adakitic rocks formed by partial melting of the juvenile thickened lower crust,slightly contaminated with material from the mantle due to the small-scale delamination of the lower crust.The zircons in the granodiorites have moderate Ce/Nd(2.5-43),logfO2(−20.0 to−9.6),andΔFMQ(−1.28 to+4.00)values;low(Ce/Nd)/Y(0.001-0.049)ratios;and high Dy/Yb(0.17-1.16)ratios,which indicate that these granodiorites exhibit moderate oxygen fugacity and lower magma water content than the Miocene Gangdese porphyry copper deposits associated with high-Sr/Y granites.Their ability to create porphyry-type copper deposits could have been hampered by their low magma water content and moderate oxygen fugacity.展开更多
The Early Cambrian Yuertusi Formation(Є_(1)y)in the Tarim Basin of China deposits a continuously developed suite of organic-rich black mudstones,which constitute an important source of oil and gas reservoirs in the Pa...The Early Cambrian Yuertusi Formation(Є_(1)y)in the Tarim Basin of China deposits a continuously developed suite of organic-rich black mudstones,which constitute an important source of oil and gas reservoirs in the Paleozoic.However,its hydrocarbon generation and evolution characteristics and resource potential have long been constrained by deeply buried strata and previous research.In this paper,based on the newly obtained ultra-deep well drilling data,the hydrocarbon generation and expulsion model ofЄ_(1)y shale was established by using data-driven Monte Carlo simulation,upon which the hydrocarbon generation,expulsion,and retention amounts were calculated by using the diagenetic method.The research indicates that theЄ_(1)y shale reaches the hydrocarbon generation and expulsion threshold at equivalent vitrinite reflectances of 0.46%and 0.72%,respectively.The cumulative hydrocarbon generation is 68.88×10^(10)t,the cumulative hydrocarbon expulsion is 35.59×10^(10)t,and the cumulative residual hydrocarbon is 33.29×10^(10)t.This paper systematically and quantitatively calculates the hydrocarbon expulsion at various key geological periods for theЄ_(1)y source rocks in the study area for the first time,more precisely confirming that the black shale of theЄ_(1)y is the most significant source rock contributing to the marine oil and gas resources in the Tarim Basin,filling the gap in hydrocarbon expulsion calculation in the study area,and providing an important basis for the formation and distribution of Paleozoic hydrocarbon reservoirs.The prospect of deep ultra-deep oil and gas exploration in the Tarim Basin is promising.Especially,the large area of dolomite reservoirs under the Cambrian salt and source rock interiors are the key breakthrough targets for the next exploration in the Tarim Basin.展开更多
Rationally regulating the porosity of hard carbon(HC),especially the closed pores matching the low potential plateau and the ultra-microporous structure suitable for Na+embedding,has been shown to be the key to improv...Rationally regulating the porosity of hard carbon(HC),especially the closed pores matching the low potential plateau and the ultra-microporous structure suitable for Na+embedding,has been shown to be the key to improving the sodium storage performance and initial coulombic efficiency(ICE).However,the preparation of such HC materials with specific pore structures still faces great challenges.Herein,a simple pre-oxidation strategy is employed to construct abundant closed ultra-microporous structures in soy protein powder-derived HC material,achieving a significant improvement in its ICE and platform capacity.The pre-oxidation process promotes the cross-linking degree of the soy protein,thereby hindering the directional growth of graphite domains during the carbonization process.The optimized HC exhibits ultra-high platform capacity(329 mAh g^(-1))and considerable energy density(148.5 Wh kg^(-1)).Based on the ex-situ Raman and X-ray photoelectron spectroscopy characterization results,the excellent sodium storage capacity of the HC material is attributed to the synergistic effect of adsorption-intercalation/filling.The presented work provides novel insights into the synthesis of other biomass-derived HC materials with abundant closed ultra-micro pores.展开更多
Due to advantages of high power-conversion efficiency(PCE), large power-to-weight ratio(PWR), low cost and solution processibility, flexible perovskite solar cells(f-PSCs) have attracted extensive attention in recent ...Due to advantages of high power-conversion efficiency(PCE), large power-to-weight ratio(PWR), low cost and solution processibility, flexible perovskite solar cells(f-PSCs) have attracted extensive attention in recent years. The PCE of f-PSCs has developed rapidly to over 25%, showing great application prospects in aerospace and wearable electronic devices. This review systematically sorts device structures and compositions of f-PSCs, summarizes various methods to improve its efficiency and stability recent years. In addition, the applications and potentials of f-PSCs in space vehicle and aircraft was discussed. At last, we prospect the key scientific and technological issues that need to be addressed for f-PSCs at current stage.展开更多
Sodium-ion batteries (SIBs) with organic electrodes are an emerging research direction due to the sustainability of organic materials based on elements like C,H,O,and sodium ions.Currently,organic electrode materials ...Sodium-ion batteries (SIBs) with organic electrodes are an emerging research direction due to the sustainability of organic materials based on elements like C,H,O,and sodium ions.Currently,organic electrode materials for SIBs are mainly used as cathodes because of their relatively high redox potentials(>1 V).Organic electrodes with low redox potential that can be used as anode are rare.Herein,a novel organic anode material (tetrasodium 1,4,5,8-naphthalenetetracarboxylate,Na_(4)TDC) has been developed with low redox potential (<0.7 V) and excellent cyclic stability.Its three-sodium storage mechanism was demonstrated with various in-situ/ex-situ spectroscopy and theoretical calculations,showing a high capacity of 208 mAh/g and an average decay rate of merely 0.022%per cycle.Moreover,the Na_(4)TDC-hard carbon composite can further acquire improved capacity and cycling stability for 1200 cycles even with a high mass loading of up to 20 mg cm^(-2).By pairing with a thick Na_(3)V_(2)(PO_(4))_(3)cathode (20.6 mg cm^(-2)),the as-fabricated full cell exhibited high operating voltage (2.8 V),excellent rate performance and cycling stability with a high capacity retention of 88.7% after 200 cycles,well highlighting the Na_(4)TDC anode material for SIBs.展开更多
This paper presents an analytical solution to periodical streaming potential, flow-induced electric field and velocity of periodical pressure-driven flows in twodimensional uniform microchannel based on the Poisson-Bo...This paper presents an analytical solution to periodical streaming potential, flow-induced electric field and velocity of periodical pressure-driven flows in twodimensional uniform microchannel based on the Poisson-Boltzmann equations for electric double layer and Navier-Stokes equation for liquid flow. Dimensional analysis indicates that electric-viscous force depends on three factors: (1) Electric-viscous number representing a ratio between maximum of electric-viscous force and pressure gradient in a steady state, (2) profile function describing the distribution profile of electro-viscous force in channel section, and (3) coupling coefficient reflecting behavior of arnplitude damping and phase offset of electro-viscous force. Analytical results indicate that flow-induced electric field and flow velocity depend on frequency Reynolds number (Re = wh^2/v). Flow-induced electric field varies very slowly with Re when Re 〈 1, and rapidly decreases when Re 〉 1. Electro-viscous effect on flow-induced electric field and flow velocity are very significant when the rate of the channel width to the thickness of electric double layer is small.展开更多
Reductive soil disinfestation(RSD)is commonly employed for soil remediation in greenhouse cultivation.However,its influence on antibiotic resistance genes(ARGs)in soil remains uncertain.This study investigated the dyn...Reductive soil disinfestation(RSD)is commonly employed for soil remediation in greenhouse cultivation.However,its influence on antibiotic resistance genes(ARGs)in soil remains uncertain.This study investigated the dynamic changes in soil communities,potential bacterial pathogens,and ARG profiles under various organicmaterial treatments during RSD,including distillers’grains,potato peel,peanut vine,and peanut vine combined with charcoal.Results revealed that applying diverse organic materials in RSD significantly altered bacterial community composition and diminished the relative abundance of potential bacterial pathogens(P<0.05).The relative abundance of high-risk ARGs decreased by 10.7%-30.6%after RSD treatments,the main decreased ARG subtypeswere AAC(3)_Via,dfrA1,ErmB,lnuB,aadA.Actinobacteria was the primary host of ARGs and was suppressed by RSD.Soil physicochemical properties,such as total nitrogen,soil pH,total carbon,were crucial factors affecting ARG profiles.Our findings demonstrated that RSD treatment inhibited pathogenic bacteria and could be an option for reducing high-risk ARG proliferation in soil.展开更多
In this paper,we mainly focus on a type of nonlinear Choquard equations with nonconstant potential.Under appropriate hypotheses on potential function and nonlinear terms,we prove that the above Choquard equation with ...In this paper,we mainly focus on a type of nonlinear Choquard equations with nonconstant potential.Under appropriate hypotheses on potential function and nonlinear terms,we prove that the above Choquard equation with prescribed 2-norm has some normalized solutions by introducing variational methods.展开更多
基金funded by the National Natural Science Foundation of China(Grant Nos.42275063 and U20A2097)the Open Grants of the State Key Laboratory of Severe Weather(Grant No.2023LASW-B29)。
文摘Potential vorticity(PV)streamers are elongated filaments of high PV intrusions that generally exhibit three distinct shapes:ordinarily southwestward,hook,and treble-clef,each with significant influences on weather.These PV streamers are most frequent over arid and semi-arid Central Asia in the mid–high latitudes.This study applied the Mask Region-based Convolutional Neural Network algorithm(Mask R-CNN)to PV streamers on the dynamical tropopause during the warm season(May to September)over the years 2000–04 to train a weighted variational model capable of identifying these different shapes.The trained model demonstrated a strong ability to distinguish between the three shapes.A climatological analysis of PV streamers over Central Asia spanning 2000 to 2021 revealed an increasingly deep and pronounced reversal of circulation from ordinary to treble-clef shapes.The treble-clef shape featured a PV tower and distinct cut-off low in the troposphere,but the associated upward motions and precipitation were confined within approximately 1200 km to the east of the PV tower.Although the hook-shape PV streamers were linked to a weaker cut-off low,the extent of upward motion and precipitation was nearly double that of the treble-clef category.In contrast,the ordinary PV streamer was primarily associated with tropopause Rossby wave breaking and exhibited relatively shallow characteristics,which resulted in moderate upward motion and precipitation to 500 km to its east.
基金supported by the OIT of Higher Learning Institutions of Shanxithe National Natural Science Foundation of China(11302143,11472185)Natural Science Fund of Shanxi(2014021013)
文摘A hierarchical model is developed to predict the streaming potential (SP) in the canaliculi of a loaded os teon. Canaliculi are assumed to run straight across the os teon annular cylinder wall, while disregarding the effect of lacuna. SP is generalized by the canalicular fluid flow. Ana lytical solutions are obtained for the canalicular fluid veloc ity, pressure, and SP. Results demonstrate that SP amplitude (SPA) is proportional to the pressure difference, strain am plitude, frequency, and strain rate amplitude. However, the key loading factor governing SP is the strain rate, which is a representative loading parameter under the specific phys iological state. Moreover, SPA is independent of canalicu lar length. This model links external loads to the canalicu lar fluid pressure, velocity, and SP, which can facilitate fur ther understanding of the mechanotransduction and electro mechanotransduction mechanisms of bones.
基金the National Natural Science Foundation of China (No.29976031), the Collaboration Project Foundation of Tianjin University and Nankal University, and the Key Project Foundation of Tianjin (No.0331810112).
文摘Surface charge characteristics of a membrane can be determined by the streaming potential. In order to obtain more accurate streaming potential value during the measurement, four measurement operation modes were investigated in this study, and among the four modes, the steady mode with pressure stepped downward was considered the best one. Experimental results showed that the effects of compaction on the streaming potential measurement for a microfiltration membrane was more obvious than that for a ultrafiltration membrane. Both feed pH and presoaking could affect the measurement of streaming potential.
基金supported by the Office of Naval Research (Grant No. N000141010778) to the University of Oklahomathe National Natural Sciences Foundation of China (Grant Nos. 40930950,41075043,and 4092116037) to the Institute of Atmospheric Physicsprovided by NOAA/Office of Oceanic and Atmospheric Research under NOAA-University of Oklahoma Cooperative Agreement (No. NA17RJ1227),U.S. Department of Commerce
文摘The non-uniqueness of solution and compatibility between the coupled boundary conditions in computing velocity potential and streamfunction from horizontal velocity in a limited domain of arbitrary shape are revisited theoretically with rigorous mathematic treatments.Classic integral formulas and their variants are used to formulate solutions for the coupled problems.In the absence of data holes,the total solution is the sum of two integral solutions.One is the internally induced solution produced purely and uniquely by the domain internal divergence and vorticity,and its two components(velocity potential and streamfunction) can be constructed by applying Green's function for Poisson equation in unbounded domain to the divergence and vorticity inside the domain.The other is the externally induced solution produced purely but non-uniquely by the domain external divergence and vorticity,and the non-uniqueness is caused by the harmonic nature of the solution and the unknown divergence and vorticity distributions outside the domain.By setting either the velocity potential(or streamfunction) component to zero,the other component of the externally induced solution can be expressed by the imaginary(or real) part of the Cauchy integral constructed using the coupled boundary conditions and solvability conditions that exclude the internally induced solution.The streamfunction(or velocity potential) for the externally induced solution can also be expressed by the boundary integral of a double-layer(or singlelayer) density function.In the presence of data holes,the total solution includes a data-hole-induced solution in addition to the above internally and externally induced solutions.
基金funding received from UNESCO-SIDA Project as well as Professor Martine Leermakers and Professor Willy Baeyens for their financial help to analyze the water samples in their laboratory at VUB.Acknowledgements
文摘Groundwater and surface water contamination by PTE(Potentially Toxic Elements)was assessed in Ruashi and Annexe municipalities of Lubumbashi city.Analyses of seventy water samples collected from six drilled wells,eight spade-sunk wells,one river and one spring in both municipalities in 2017 and 2018 were carried out by ICP-SF-MS(Inductively Coupled Plasma-Sector Field Mass Spectrometry).Twenty PTEs including aluminum,arsenic,barium,bismuth,cadmium,cesium,chromium,cobalt,copper,iron,lead,manganese,molybdenum,nickel,strontium,thallium,tungsten,uranium,vanadium and zinc were detected at various concentrations in each one of the samples.Many samples had concentrations and mean concentrations of PTEs,such as aluminum,cadmium,copper,iron,lead,manganese,nickel and zinc,higher than the respective acceptable limits set for drinking water by the EU(European Union),the USEPA(United States Environmental Protection Agency),and the WHO(World Health Organization)standards.Most PTEs being deleterious to human health even at very low concentrations,people who use the groundwater and surface water to meet their water needs in both Ruashi and Annexe municipalities are at risk.
文摘The measurements of the streaming potential coefficient and the zeta potential of two consolidated samples saturated with four monovalent electrolytes at different electrolyte concentrations have been performed. The experimental results show that the streaming potential coefficient and the zeta potential in magnitude both decrease with increasing electrolyte concentration for all electrolytes. It is also shown that there is a dependence of the streaming potential coefficient on types of electrolyte for a given sample. This is explained by the dependence of the zeta potential and the electrical conductivity on types of electrolyte. Additionally, the variation of the zeta potential with types of electrolyte is also reported and qualitatively explained. From experimental data on the streaming potential coefficient and the zeta potential, the empirical expressions between the streaming potential coefficients, the zeta potential and electrolyte concentration are also obtained. The obtained expressions have the similar forms to those available in literature. However, there is a deviation between them due to dissimilarities of fluid conductivity, fluid pH, mineral composition of porous materials and temperature.
基金supported by the Office of Naval Research (Grant No.N000141010778) to the University of Oklahomathe National Natural Sciences Foundation of China (Grant Nos. 40930950,41075043,and 4092116037) to the Institute of Atmospheric Physicsprovided by NOAA/Office of Oceanic and Atmospheric Research under NOAA-University of Oklahoma Cooperative Agreement No. (NA17RJ1227),U.S. Department of Commerce
文摘Built on the integral formulas in Part I,numerical methods are developed for computing velocity potential and streamfunction in a limited domain.When there is no inner boundary(around a data hole) inside the domain,the total solution is the sum of the internally and externally induced parts.For the internally induced part,three numerical schemes(grid-staggering,local-nesting and piecewise continuous integration) are designed to deal with the singularity of the Green's function encountered in numerical calculations.For the externally induced part,by setting the velocity potential(or streamfunction) component to zero,the other component of the solution can be computed in two ways:(1) Solve for the density function from its boundary integral equation and then construct the solution from the boundary integral of the density function.(2) Use the Cauchy integral to construct the solution directly.The boundary integral can be discretized on a uniform grid along the boundary.By using local-nesting(or piecewise continuous integration),the scheme is refined to enhance the discretization accuracy of the boundary integral around each corner point(or along the entire boundary).When the domain is not free of data holes,the total solution contains a data-hole-induced part,and the Cauchy integral method is extended to construct the externally induced solution with irregular external and internal boundaries.An automated algorithm is designed to facilitate the integrations along the irregular external and internal boundaries.Numerical experiments are performed to evaluate the accuracy and efficiency of each scheme relative to others.
基金Project(20776161)supported by the National Natural Science Foundation of China
文摘Polysulfone(PS)hollow-fiber ultrafiltration membrane was characterized combined with flux and streaming potential in single electrolyte solutions.The effects of trans-membrane pressure,electrolyte concentration,ion valence and pH value of electrolyte solution on the streaming potential(SP)of the membrane were investigated.The zeta potential and surface charge density of the membrane were calculated on the basis of Helmholtz-Smoluchowski equation and Gouy-Chapmann theory.The results indicate that the valence and concentration of cation have a greater influence on the SP and surface charge density of PS membrane than those of anion,and the pH value of electrolyte solution has great effects on the SP and zeta potential of the membrane surface. Both the absolute value of the streaming potential and water flux of the adsorbed membrane decrease,compared with those of the clean membrane.The streaming potential and flux of the cleaned membrane can be completely recovered by cleaning with the mass fraction of 0.8%EDTA at pH=10.
基金supported by the National Basic Research Program of China(Grant No.2012CB417201)the National Science and Technology Support Program(Grant No.GYHY201406001)+1 种基金the National Natural Science Foundation of China(Grant No.41205033)the Key Project of the Key Laboratory of Atmosphere and Environments on the Plateau in Sichuan Province(Grant No.PAEKL-2014-C1)
文摘After first reviewing historical and current difficulties in solving streamfunction and velocity potential in a limited domain,and describing recent developments in obtaining accurate solutions in a limited domain with arbitrary shape,a newly proposed approach is introduced and its application to a torrential rain event is reported.The results show that the newly developed method has advantages in capturing mesoscale information,compared with horizontal winds.
基金supported by the Ministry of Science and Innovation and the Spanish Research Agency through FEDER funds (PID2021-1261520B-100) (MICINN/AEI/FEDER, EU)CBM receives an institutional grant from the Fundación Ramón Areces, Spain。
文摘The word “senescence” comes from the Latin senescens, meaning “to begin to age”, and is characterized by a long-lasting but reversible block in proliferation, resulting from stress-induced cell cycle arrest of previously replication-competent cells.
基金Supported by the National Natural Science Foundation of China(42172165,42272143)Project of SINOPEC Science and Technology Department(P24181,KLP24017).
文摘By reviewing the research progress and exploration practices of shale gas geology in China,analyzing and summarizing the geological characteristics,enrichment laws,and resource potential of different types of shale gas,the following understandings have been obtained:(1)Marine,transitional,and lacustrine shales in China are distributed from old to new in geological age,and the complexity of tectonic reworking and hydrocarbon generation evolution processes gradually decreases.(2)The sedimentary environment controls the type of source-reservoir configuration,which is the basis of“hydrocarbon generation and reservoir formation”.The types of source-reservoir configuration in marine and lacustrine shales are mainly source-reservoir integration,with occasional source-reservoir separation.The configuration types of transitional shale are mainly source-reservoir integration and source-reservoir symbiosis.(3)The resistance of rigid minerals to compression for pore preservation and the overpressure facilitate the enrichment of source-reservoir integrated shale gas.Good source reservoir coupling and preservation conditions are crucial for the shale gas enrichment of source-reservoir symbiosis and source-reservoir separation types.(4)Marine shale remains the main battlefield for increasing shale gas reserves and production in China,while transitional and lacustrine shales are expected to become important replacement areas.It is recommended to carry out the shale gas exploration at three levels:Accelerate the exploration of Silurian,Cambrian,and Permian marine shales in the Upper-Middle Yangtze region;make key exploration breakthroughs in ultra-deep marine shales of the Upper-Middle Yangtze region,the new Ordovician marine shale strata in the North China region,the transitional shales of the Carboniferous and Permian,as well as the Mesozoic lacustrine shale gas in basins such as Sichuan,Ordos and Songliao;explore and prepare for new shale gas exploration areas such as South China and Northwest China,providing technology and resource reserves for the sustainable development of shale gas in China.
基金supported by the Science and Technology Program of Fujian Province,China(No.2023R1014002)the National Natural Science Foundation of China(No.41471390).
文摘The toxicity of PM_(2.5)does not necessarily change synchronously with its mass concentration.In this study,the chemical composition(carbonaceous species,water-soluble ions,and metals)and oxidative potential(dithiothreitol assay,DTT)of PM_(2.5)were investigated in 2017/2018 and 2022 in Xiamen,China.The decrease rate of volume-normalized DTT(DTTv)(38%)was lower than that of PM_(2.5)(55%)between the two sampling periods.However,the mass-normalized DTT(DTTm)increased by 44%.Clear seasonal patterns with higher levels in winter were found for PM_(2.5),most chemical constituents and DTTv but not for DTTm.The large decrease in DTT activity(84%−92%)after the addition of EDTA suggested that watersoluble metals were the main contributors to DTT in Xiamen.The increased gap between the reconstructed and measured DTTv and the stronger correlations between the reconstructed/measured DTT ratio and carbonaceous species in 2022were observed.The decrease rates of the hazard index(32.5%)and lifetime cancer risk(9.1%)differed from those of PM_(2.5)and DTTv due to their different main contributors.The PMF-MLR model showed that the contributions(nmol/(min·m^(3)))of vehicle emission,coal+biomass burning,ship emission and secondary aerosol to DTTv in 2022 decreased by 63.0%,65.2%,66.5%,and 22.2%,respectively,compared to those in 2017/2018,which was consistent with the emission reduction of vehicle exhaust and coal consumption,the adoption of low-sulfur fuel oil used on board ships and the reduced production of WSOC.However,the contributions of dust+sea salt and industrial emission increased.
基金jointly supported by the National Key Research&Development Program of China(2021YFC2900100)the Basic Research Fund of the Chinese Academy of Geological Sciences(KK2306)+1 种基金the Geological Survey Project(DD20230360,DD20243483)the Sichuan Provincial Natural Science Foundation(2023NSFSC0798).
文摘Multiple instances of the Late Cretaceous granodiorites within the Anglonggangri region of the northwestern Lhasa Block were identified,their petrogenesis were explored and mineralization potential were assessed.The zircon U-Pb dating of the Anglonggangri granodiorites revealed ages of 82.8 and 80.8 Ma.Granodiorite samples have SiO2 contents of 64.36-68.33 wt%,with high Sr/Y(55-95)and A/CNK ratios(0.99-1.06).Zirconε_(Hf)(t)values range from−0.3 to+16.2.Two granodiorite samples have(^(87)Sr/^(86)Sr)i values of 0.7034 and 0.7043 and positiveɛNd(t)values of 3.51 and 3.83.These geochemical properties indicate that they are adakitic rocks formed by partial melting of the juvenile thickened lower crust,slightly contaminated with material from the mantle due to the small-scale delamination of the lower crust.The zircons in the granodiorites have moderate Ce/Nd(2.5-43),logfO2(−20.0 to−9.6),andΔFMQ(−1.28 to+4.00)values;low(Ce/Nd)/Y(0.001-0.049)ratios;and high Dy/Yb(0.17-1.16)ratios,which indicate that these granodiorites exhibit moderate oxygen fugacity and lower magma water content than the Miocene Gangdese porphyry copper deposits associated with high-Sr/Y granites.Their ability to create porphyry-type copper deposits could have been hampered by their low magma water content and moderate oxygen fugacity.
基金supported by the CNPC Science and Technology Major Project of the Fourteenth Five-Year Plan(2021DJ0101)the National Natural Science Foundation of China(U19B600302,41872148)。
文摘The Early Cambrian Yuertusi Formation(Є_(1)y)in the Tarim Basin of China deposits a continuously developed suite of organic-rich black mudstones,which constitute an important source of oil and gas reservoirs in the Paleozoic.However,its hydrocarbon generation and evolution characteristics and resource potential have long been constrained by deeply buried strata and previous research.In this paper,based on the newly obtained ultra-deep well drilling data,the hydrocarbon generation and expulsion model ofЄ_(1)y shale was established by using data-driven Monte Carlo simulation,upon which the hydrocarbon generation,expulsion,and retention amounts were calculated by using the diagenetic method.The research indicates that theЄ_(1)y shale reaches the hydrocarbon generation and expulsion threshold at equivalent vitrinite reflectances of 0.46%and 0.72%,respectively.The cumulative hydrocarbon generation is 68.88×10^(10)t,the cumulative hydrocarbon expulsion is 35.59×10^(10)t,and the cumulative residual hydrocarbon is 33.29×10^(10)t.This paper systematically and quantitatively calculates the hydrocarbon expulsion at various key geological periods for theЄ_(1)y source rocks in the study area for the first time,more precisely confirming that the black shale of theЄ_(1)y is the most significant source rock contributing to the marine oil and gas resources in the Tarim Basin,filling the gap in hydrocarbon expulsion calculation in the study area,and providing an important basis for the formation and distribution of Paleozoic hydrocarbon reservoirs.The prospect of deep ultra-deep oil and gas exploration in the Tarim Basin is promising.Especially,the large area of dolomite reservoirs under the Cambrian salt and source rock interiors are the key breakthrough targets for the next exploration in the Tarim Basin.
基金supported by the National Natural Science Foundation of China(42167068,22269020)the Gansu Province Higher Education Industry Support Plan Project(2023CYZC-68)the Central Guidance for Local Science and Technology Development Funds Project(YDZX20216200001007)。
文摘Rationally regulating the porosity of hard carbon(HC),especially the closed pores matching the low potential plateau and the ultra-microporous structure suitable for Na+embedding,has been shown to be the key to improving the sodium storage performance and initial coulombic efficiency(ICE).However,the preparation of such HC materials with specific pore structures still faces great challenges.Herein,a simple pre-oxidation strategy is employed to construct abundant closed ultra-microporous structures in soy protein powder-derived HC material,achieving a significant improvement in its ICE and platform capacity.The pre-oxidation process promotes the cross-linking degree of the soy protein,thereby hindering the directional growth of graphite domains during the carbonization process.The optimized HC exhibits ultra-high platform capacity(329 mAh g^(-1))and considerable energy density(148.5 Wh kg^(-1)).Based on the ex-situ Raman and X-ray photoelectron spectroscopy characterization results,the excellent sodium storage capacity of the HC material is attributed to the synergistic effect of adsorption-intercalation/filling.The presented work provides novel insights into the synthesis of other biomass-derived HC materials with abundant closed ultra-micro pores.
基金supported by National Natural Science Foundation of China (Grant Nos. 62204104, 42005138, 12274190, 12274189, 62275115)Shandong Province High Education Youth Innovation Team Program (Grant No. 2023KJ210)Science and Technology Program of Yantai (Grant No. 2023JCYJ047)。
文摘Due to advantages of high power-conversion efficiency(PCE), large power-to-weight ratio(PWR), low cost and solution processibility, flexible perovskite solar cells(f-PSCs) have attracted extensive attention in recent years. The PCE of f-PSCs has developed rapidly to over 25%, showing great application prospects in aerospace and wearable electronic devices. This review systematically sorts device structures and compositions of f-PSCs, summarizes various methods to improve its efficiency and stability recent years. In addition, the applications and potentials of f-PSCs in space vehicle and aircraft was discussed. At last, we prospect the key scientific and technological issues that need to be addressed for f-PSCs at current stage.
基金National Key Research and Development Program of China (2022YFB2402200)National Natural Science Foundation of China (22225201,22379028)+2 种基金Fundamental Research Funds for the Central Universities (20720220010)Shanghai Pilot Program for Basic Research–Fudan University 21TQ1400100 (21TQ009)Key Basic Research Program of Science and Technology Commission of Shanghai Municipality (23520750400)。
文摘Sodium-ion batteries (SIBs) with organic electrodes are an emerging research direction due to the sustainability of organic materials based on elements like C,H,O,and sodium ions.Currently,organic electrode materials for SIBs are mainly used as cathodes because of their relatively high redox potentials(>1 V).Organic electrodes with low redox potential that can be used as anode are rare.Herein,a novel organic anode material (tetrasodium 1,4,5,8-naphthalenetetracarboxylate,Na_(4)TDC) has been developed with low redox potential (<0.7 V) and excellent cyclic stability.Its three-sodium storage mechanism was demonstrated with various in-situ/ex-situ spectroscopy and theoretical calculations,showing a high capacity of 208 mAh/g and an average decay rate of merely 0.022%per cycle.Moreover,the Na_(4)TDC-hard carbon composite can further acquire improved capacity and cycling stability for 1200 cycles even with a high mass loading of up to 20 mg cm^(-2).By pairing with a thick Na_(3)V_(2)(PO_(4))_(3)cathode (20.6 mg cm^(-2)),the as-fabricated full cell exhibited high operating voltage (2.8 V),excellent rate performance and cycling stability with a high capacity retention of 88.7% after 200 cycles,well highlighting the Na_(4)TDC anode material for SIBs.
基金Project supported by the National Natural Science Foundation of China (No.10472036)
文摘This paper presents an analytical solution to periodical streaming potential, flow-induced electric field and velocity of periodical pressure-driven flows in twodimensional uniform microchannel based on the Poisson-Boltzmann equations for electric double layer and Navier-Stokes equation for liquid flow. Dimensional analysis indicates that electric-viscous force depends on three factors: (1) Electric-viscous number representing a ratio between maximum of electric-viscous force and pressure gradient in a steady state, (2) profile function describing the distribution profile of electro-viscous force in channel section, and (3) coupling coefficient reflecting behavior of arnplitude damping and phase offset of electro-viscous force. Analytical results indicate that flow-induced electric field and flow velocity depend on frequency Reynolds number (Re = wh^2/v). Flow-induced electric field varies very slowly with Re when Re 〈 1, and rapidly decreases when Re 〉 1. Electro-viscous effect on flow-induced electric field and flow velocity are very significant when the rate of the channel width to the thickness of electric double layer is small.
基金supported by the Key Research and Development Program of Shandong Province,China(No 2021CXGC010803)Pan’an County Chinese Medicine Industry Project(No.PZYF202103).
文摘Reductive soil disinfestation(RSD)is commonly employed for soil remediation in greenhouse cultivation.However,its influence on antibiotic resistance genes(ARGs)in soil remains uncertain.This study investigated the dynamic changes in soil communities,potential bacterial pathogens,and ARG profiles under various organicmaterial treatments during RSD,including distillers’grains,potato peel,peanut vine,and peanut vine combined with charcoal.Results revealed that applying diverse organic materials in RSD significantly altered bacterial community composition and diminished the relative abundance of potential bacterial pathogens(P<0.05).The relative abundance of high-risk ARGs decreased by 10.7%-30.6%after RSD treatments,the main decreased ARG subtypeswere AAC(3)_Via,dfrA1,ErmB,lnuB,aadA.Actinobacteria was the primary host of ARGs and was suppressed by RSD.Soil physicochemical properties,such as total nitrogen,soil pH,total carbon,were crucial factors affecting ARG profiles.Our findings demonstrated that RSD treatment inhibited pathogenic bacteria and could be an option for reducing high-risk ARG proliferation in soil.
基金Supported by the National Natural Science Foundation of China(11671403,11671236,12101192)Henan Provincial General Natural Science Foundation Project(232300420113)。
文摘In this paper,we mainly focus on a type of nonlinear Choquard equations with nonconstant potential.Under appropriate hypotheses on potential function and nonlinear terms,we prove that the above Choquard equation with prescribed 2-norm has some normalized solutions by introducing variational methods.