From economy to political administrations, education to health, environment to human rights, many problems we met have gained a global importance in recent days. Existing state systems, political parties and nation st...From economy to political administrations, education to health, environment to human rights, many problems we met have gained a global importance in recent days. Existing state systems, political parties and nation states are not adequate for solving these problems in question effectively on their own. Not only governments and local authorities but also voluntary organizations based on completely voluntary activities have significant roles in solving these problems. Effective performance of voluntary organizations depends on increasing volunteer population. Individuals' attitudes or their perception of understanding volunteerism play an important role in their contributions to voluntary organizations. The aim of this study is to determine individuals' ways of perceiving volunteerism concept and their tendency towards it. Furthermore, differences between men and women's perception and attitudes towards volunteerism concept have been examined. For this purpose, a survey has been conducted over university students of bachelor's degree. Tendencies and attitudes towards volunteerism compared to gender differences have been tested via logistic regression method. Research results reveal that women take part in voluntary activities more than men and women perceive volunteerism as "a political position" while men perceive volunteerism as "a learning atmosphere and learning process".展开更多
Bioactive peptides and proteins(BAPPs)are promising therapeutic agents for tissue repair with considerable advantages,including multifunctionality,specificity,biocompatibility,and biodegradability.However,the high com...Bioactive peptides and proteins(BAPPs)are promising therapeutic agents for tissue repair with considerable advantages,including multifunctionality,specificity,biocompatibility,and biodegradability.However,the high complexity of tissue microenvironments and their inherent deficiencies such as short half-live and susceptibility to enzymatic degradation,adversely affect their therapeutic efficacy and clinical applications.Investigating the fundamental mechanisms by which BAPPs modulate the microenvironment and developing rational delivery strategies are essential for optimizing their administration in distinct tissue repairs and facilitating clinical translation.This review initially focuses on the mechanisms through which BAPPs influence the microenvironment for tissue repair via reactive oxygen species,blood and lymphatic vessels,immune cells,and repair cells.Then,a variety of delivery platforms,including scaffolds and hydrogels,electrospun fibers,surface coatings,assisted particles,nanotubes,two-dimensional nanomaterials,and nanoparticles engineered cells,are summarized to incorporate BAPPs for effective tissue repair,modification strategies aimed at enhancing loading efficiencies and release kinetics are also reviewed.Additionally,the delivery of BAPPs can be precisely regulated by endogenous stimuli(glucose,reactive oxygen species,enzymes,pH)or exogenous stimuli(ultrasound,heat,light,magnetic field,and electric field)to achieve on-demand release tailored for specific tissue repair needs.Furthermore,this review focuses on the clinical potential of BAPPs in facilitating tissue repair across various types,including bone,cartilage,intervertebral discs,muscle,tendons,periodontal tissues,skin,myocardium,nervous system(encompassing brain,spinal cord,and peripheral nerve),endometrium,as well as ear and ocular tissue.Finally,current challenges and prospects are discussed.展开更多
Eight sesquiterpenes were isolated from Ainsliaea glabra.Among them,a new guaianolide sesquiterpenoid,named ainsglaolide A(1),and seven known sesquiterpenoids 2~8 were identified.Compound 1 was a novel guaianolide ses...Eight sesquiterpenes were isolated from Ainsliaea glabra.Among them,a new guaianolide sesquiterpenoid,named ainsglaolide A(1),and seven known sesquiterpenoids 2~8 were identified.Compound 1 was a novel guaianolide sesquiterpenoid featuring a rare six-membered lactone ring formed between C-4 and C-15.The new compound structure was elucidated by HRESI-MS and NMR spectroscopy,as well as electrostatic circular dichroism(ECD)calculations were used to further confirm the absolute of 1.Anti-inflammatory activity tests were conducted on the separated compounds,indicating that compound 1 had significant inhibitory effect on NLRP3 inflammasome with an IC_(50) value of 1.86μmol/L.展开更多
The rapid expansion of large-scale pig farming has brought about a surge in viral diseases with high morbidity rates and diverse manifestations.This widespread occurrence of multiple viral diseases in pig farms has in...The rapid expansion of large-scale pig farming has brought about a surge in viral diseases with high morbidity rates and diverse manifestations.This widespread occurrence of multiple viral diseases in pig farms has inflicted severe economic losses on the global swine industry.Consequently,there is an urgent need for eco-friendly and efficient antivi-ral drugs that can effectively combat viruses and prevent diseases such as PEDV,PRRSV,PRV,and other viral infections.To this end,we conducted a study on the antiviral activity and cytotoxicity of eleven different Chinese herbal extracts(CHE) against PRV.In vitro testing of several extracts,namely,Echinacea,Ilex purpurea Hassk,Ganoderma lucidum Kars,Taraxacum mongolicum,and Ilex rotunda Thunb,exhibited remarkable inhibition of PRV infection without causing any cytotoxic effects.Specifically,their antiviral selectivity indexes were significantly higher,with values ranging from 6-to 144-fold.The antiviral efficacy of five CHEs was evaluated against other RNA viruses,including PRRSV and PEDV.The extracts showed substantial inhibition of PEDV and PRRSV proliferation.Echinacea and Ilex purpurea Hassk extracts exhibited the highest virus inhibitory effects.To understand the antiviral mechanisms underlying their potent activity,a time-of-addition experiment was conducted.The results indicated that these extracts effectively targeted the early infection and postinfection stages of PRV,PEDV,and PRRSV.The study found that the Chinese herbal extracts,Echinacea and Ilex purpurea Hassk,had both direct and indirect effects on virus particles and cellular targets,demonstrating broad-spectrum antiviral activity against multiple clinical strains of PRV and PEDV.These findings provide a strong foundation for the development of herbal medicines to prevent and treat infections caused by PRV,PEDV and PRRSV in the swine industry.The identified extracts show great promise for the formulation of effective and environmentally friendly antiviral interventions.展开更多
We propose an approach for generating robust two-dimensional(2D)vortex clusters(VCs)in a Rydberg atomic system by utilizing parity-time(PT)symmetric optical Bessel potential.We show that the system supports novel mult...We propose an approach for generating robust two-dimensional(2D)vortex clusters(VCs)in a Rydberg atomic system by utilizing parity-time(PT)symmetric optical Bessel potential.We show that the system supports novel multicore VCs with four and eight cores,corresponding to topological charges 2 and 4,respectively.The stability of these VCs can be dynamically adjusted through the manipulation of the gain-loss component,Kerr nonlinearities,and the degree of nonlocality inherent in the Rydberg atoms.These VCs are confined within the first lattice well of the Bessel potential,and both the power and width of lights undergo a quasi-periodic breathing phenomenon,which is attributed to the power exchange between the light fields and Bessel potential.Both self-attractive and self-repulsive Kerr interactions can sustain robust VCs within this system.The insights presented here not only facilitate the creation and manipulation of 2D VCs through PT-symmetric potentials but also pave the way for potential applications in optical information processing and transmission.展开更多
The word “senescence” comes from the Latin senescens, meaning “to begin to age”, and is characterized by a long-lasting but reversible block in proliferation, resulting from stress-induced cell cycle arrest of pre...The word “senescence” comes from the Latin senescens, meaning “to begin to age”, and is characterized by a long-lasting but reversible block in proliferation, resulting from stress-induced cell cycle arrest of previously replication-competent cells.展开更多
The toxicity of PM_(2.5)does not necessarily change synchronously with its mass concentration.In this study,the chemical composition(carbonaceous species,water-soluble ions,and metals)and oxidative potential(dithiothr...The toxicity of PM_(2.5)does not necessarily change synchronously with its mass concentration.In this study,the chemical composition(carbonaceous species,water-soluble ions,and metals)and oxidative potential(dithiothreitol assay,DTT)of PM_(2.5)were investigated in 2017/2018 and 2022 in Xiamen,China.The decrease rate of volume-normalized DTT(DTTv)(38%)was lower than that of PM_(2.5)(55%)between the two sampling periods.However,the mass-normalized DTT(DTTm)increased by 44%.Clear seasonal patterns with higher levels in winter were found for PM_(2.5),most chemical constituents and DTTv but not for DTTm.The large decrease in DTT activity(84%−92%)after the addition of EDTA suggested that watersoluble metals were the main contributors to DTT in Xiamen.The increased gap between the reconstructed and measured DTTv and the stronger correlations between the reconstructed/measured DTT ratio and carbonaceous species in 2022were observed.The decrease rates of the hazard index(32.5%)and lifetime cancer risk(9.1%)differed from those of PM_(2.5)and DTTv due to their different main contributors.The PMF-MLR model showed that the contributions(nmol/(min·m^(3)))of vehicle emission,coal+biomass burning,ship emission and secondary aerosol to DTTv in 2022 decreased by 63.0%,65.2%,66.5%,and 22.2%,respectively,compared to those in 2017/2018,which was consistent with the emission reduction of vehicle exhaust and coal consumption,the adoption of low-sulfur fuel oil used on board ships and the reduced production of WSOC.However,the contributions of dust+sea salt and industrial emission increased.展开更多
The Early Cambrian Yuertusi Formation(Є_(1)y)in the Tarim Basin of China deposits a continuously developed suite of organic-rich black mudstones,which constitute an important source of oil and gas reservoirs in the Pa...The Early Cambrian Yuertusi Formation(Є_(1)y)in the Tarim Basin of China deposits a continuously developed suite of organic-rich black mudstones,which constitute an important source of oil and gas reservoirs in the Paleozoic.However,its hydrocarbon generation and evolution characteristics and resource potential have long been constrained by deeply buried strata and previous research.In this paper,based on the newly obtained ultra-deep well drilling data,the hydrocarbon generation and expulsion model ofЄ_(1)y shale was established by using data-driven Monte Carlo simulation,upon which the hydrocarbon generation,expulsion,and retention amounts were calculated by using the diagenetic method.The research indicates that theЄ_(1)y shale reaches the hydrocarbon generation and expulsion threshold at equivalent vitrinite reflectances of 0.46%and 0.72%,respectively.The cumulative hydrocarbon generation is 68.88×10^(10)t,the cumulative hydrocarbon expulsion is 35.59×10^(10)t,and the cumulative residual hydrocarbon is 33.29×10^(10)t.This paper systematically and quantitatively calculates the hydrocarbon expulsion at various key geological periods for theЄ_(1)y source rocks in the study area for the first time,more precisely confirming that the black shale of theЄ_(1)y is the most significant source rock contributing to the marine oil and gas resources in the Tarim Basin,filling the gap in hydrocarbon expulsion calculation in the study area,and providing an important basis for the formation and distribution of Paleozoic hydrocarbon reservoirs.The prospect of deep ultra-deep oil and gas exploration in the Tarim Basin is promising.Especially,the large area of dolomite reservoirs under the Cambrian salt and source rock interiors are the key breakthrough targets for the next exploration in the Tarim Basin.展开更多
Rationally regulating the porosity of hard carbon(HC),especially the closed pores matching the low potential plateau and the ultra-microporous structure suitable for Na+embedding,has been shown to be the key to improv...Rationally regulating the porosity of hard carbon(HC),especially the closed pores matching the low potential plateau and the ultra-microporous structure suitable for Na+embedding,has been shown to be the key to improving the sodium storage performance and initial coulombic efficiency(ICE).However,the preparation of such HC materials with specific pore structures still faces great challenges.Herein,a simple pre-oxidation strategy is employed to construct abundant closed ultra-microporous structures in soy protein powder-derived HC material,achieving a significant improvement in its ICE and platform capacity.The pre-oxidation process promotes the cross-linking degree of the soy protein,thereby hindering the directional growth of graphite domains during the carbonization process.The optimized HC exhibits ultra-high platform capacity(329 mAh g^(-1))and considerable energy density(148.5 Wh kg^(-1)).Based on the ex-situ Raman and X-ray photoelectron spectroscopy characterization results,the excellent sodium storage capacity of the HC material is attributed to the synergistic effect of adsorption-intercalation/filling.The presented work provides novel insights into the synthesis of other biomass-derived HC materials with abundant closed ultra-micro pores.展开更多
Due to advantages of high power-conversion efficiency(PCE), large power-to-weight ratio(PWR), low cost and solution processibility, flexible perovskite solar cells(f-PSCs) have attracted extensive attention in recent ...Due to advantages of high power-conversion efficiency(PCE), large power-to-weight ratio(PWR), low cost and solution processibility, flexible perovskite solar cells(f-PSCs) have attracted extensive attention in recent years. The PCE of f-PSCs has developed rapidly to over 25%, showing great application prospects in aerospace and wearable electronic devices. This review systematically sorts device structures and compositions of f-PSCs, summarizes various methods to improve its efficiency and stability recent years. In addition, the applications and potentials of f-PSCs in space vehicle and aircraft was discussed. At last, we prospect the key scientific and technological issues that need to be addressed for f-PSCs at current stage.展开更多
Sodium-ion batteries (SIBs) with organic electrodes are an emerging research direction due to the sustainability of organic materials based on elements like C,H,O,and sodium ions.Currently,organic electrode materials ...Sodium-ion batteries (SIBs) with organic electrodes are an emerging research direction due to the sustainability of organic materials based on elements like C,H,O,and sodium ions.Currently,organic electrode materials for SIBs are mainly used as cathodes because of their relatively high redox potentials(>1 V).Organic electrodes with low redox potential that can be used as anode are rare.Herein,a novel organic anode material (tetrasodium 1,4,5,8-naphthalenetetracarboxylate,Na_(4)TDC) has been developed with low redox potential (<0.7 V) and excellent cyclic stability.Its three-sodium storage mechanism was demonstrated with various in-situ/ex-situ spectroscopy and theoretical calculations,showing a high capacity of 208 mAh/g and an average decay rate of merely 0.022%per cycle.Moreover,the Na_(4)TDC-hard carbon composite can further acquire improved capacity and cycling stability for 1200 cycles even with a high mass loading of up to 20 mg cm^(-2).By pairing with a thick Na_(3)V_(2)(PO_(4))_(3)cathode (20.6 mg cm^(-2)),the as-fabricated full cell exhibited high operating voltage (2.8 V),excellent rate performance and cycling stability with a high capacity retention of 88.7% after 200 cycles,well highlighting the Na_(4)TDC anode material for SIBs.展开更多
Reductive soil disinfestation(RSD)is commonly employed for soil remediation in greenhouse cultivation.However,its influence on antibiotic resistance genes(ARGs)in soil remains uncertain.This study investigated the dyn...Reductive soil disinfestation(RSD)is commonly employed for soil remediation in greenhouse cultivation.However,its influence on antibiotic resistance genes(ARGs)in soil remains uncertain.This study investigated the dynamic changes in soil communities,potential bacterial pathogens,and ARG profiles under various organicmaterial treatments during RSD,including distillers’grains,potato peel,peanut vine,and peanut vine combined with charcoal.Results revealed that applying diverse organic materials in RSD significantly altered bacterial community composition and diminished the relative abundance of potential bacterial pathogens(P<0.05).The relative abundance of high-risk ARGs decreased by 10.7%-30.6%after RSD treatments,the main decreased ARG subtypeswere AAC(3)_Via,dfrA1,ErmB,lnuB,aadA.Actinobacteria was the primary host of ARGs and was suppressed by RSD.Soil physicochemical properties,such as total nitrogen,soil pH,total carbon,were crucial factors affecting ARG profiles.Our findings demonstrated that RSD treatment inhibited pathogenic bacteria and could be an option for reducing high-risk ARG proliferation in soil.展开更多
In this paper,we mainly focus on a type of nonlinear Choquard equations with nonconstant potential.Under appropriate hypotheses on potential function and nonlinear terms,we prove that the above Choquard equation with ...In this paper,we mainly focus on a type of nonlinear Choquard equations with nonconstant potential.Under appropriate hypotheses on potential function and nonlinear terms,we prove that the above Choquard equation with prescribed 2-norm has some normalized solutions by introducing variational methods.展开更多
In clinical practice,antibiotics have historically been utilized for the treatment of pathogenic bacteria.However,the gradual emergence of antibiotic resistance among bacterial strains has posed a significant challeng...In clinical practice,antibiotics have historically been utilized for the treatment of pathogenic bacteria.However,the gradual emergence of antibiotic resistance among bacterial strains has posed a significant challenge to this approach.In 2022,Escherichia coli,a Gram-negative bacterium renowned for its widespread pathogenicity and high virulence,emerged as the predominant pathogenic bacterium in China.The rapid emergence of antibiotic-resistant E.coli strains has rendered antibiotics insufficient to fight E.coli infections.Traditional Chinese medicine(TCM)has made remarkable contributions to the health of Chinese people for thousands of years,and its significant therapeutic effects have been proven in clinical practice.In this paper,we provide a comprehensive review of the advances and mechanisms of TCM and its active ingredients against antibiotic-resistant E.coli infections.First of all,this review introduces the classification,antibiotic resistance characteristics and mechanisms of E.coli.Then,the TCM formulas and extracts are listed along with their active ingredients against E.coli,including extraction solution,minimum inhibitory concentration(MIC),and the antibacterial mechanisms.In addition,there is growing evidence supporting the synergistic therapeutic strategy of combining TCM with antibiotics for the treatment of antibiotic-resistant E.coli infections,and we provide a summary of this evidence and its underlying mechanisms.In conclusion,we present a comprehensive review of TCM and highlight its potential and advantages in the prevention and treatment of E.coli infections.We hold the opinion that TCM will play an important role in global health,pharmaceutical development,and livestock farming in the future.展开更多
Gallium nitride(GaN)single crystal with prominent electron mobility and heat resistance have great potential in the high temperature integrate electric power systems.However,the sluggish charge storage kinetics and in...Gallium nitride(GaN)single crystal with prominent electron mobility and heat resistance have great potential in the high temperature integrate electric power systems.However,the sluggish charge storage kinetics and inadequate energy densities are bottlenecks to its practical application.Herein,the self-supported GaN/Mn_(3)O_(4) integrated electrode is developed for both energy harvesting and storage under the high temperature environment.The experimental and theoretical calculations results reveal that such integrated structures with Mn-N heterointerface bring abundant active sites and reconstruct low-energy barrier channels for efficient charge transferring,reasonably optimizing the ions adsorption ability and strengthening the structural stability.Consequently,the assembled GaN based supercapacitors deliver the power density of 34.0 mW cm^(-2) with capacitance retention of 81.3%after 10000 cycles at 130℃.This work innovatively correlates the centimeter scale GaN single crystal with ideal theoretical capacity Mn_(3)O_(4) and provides an effective avenue for the follow-up energy storage applications of the wide bandgap semiconductor.展开更多
The local structure and thermophysical behavior of Mg-La liquid alloys were in-depth understood using deep potential molecular dynamic(DPMD) simulation driven via machine learning to promote the development of Mg-La a...The local structure and thermophysical behavior of Mg-La liquid alloys were in-depth understood using deep potential molecular dynamic(DPMD) simulation driven via machine learning to promote the development of Mg-La alloys. The robustness of the trained deep potential(DP) model was thoroughly evaluated through several aspects, including root-mean-square errors(RMSEs), energy and force data, and structural information comparison results;the results indicate the carefully trained DP model is reliable. The component and temperature dependence of the local structure in the Mg-La liquid alloy was analyzed. The effect of Mg content in the system on the first coordination shell of the atomic pairs is the same as that of temperature. The pre-peak demonstrated in the structure factor indicates the presence of a medium-range ordered structure in the Mg-La liquid alloy, which is particularly pronounced in the 80at% Mg system and disappears at elevated temperatures. The density, self-diffusion coefficient, and shear viscosity for the Mg-La liquid alloy were predicted via DPMD simulation, the evolution patterns with Mg content and temperature were subsequently discussed, and a database was established accordingly. Finally, the mixing enthalpy and elemental activity of the Mg-La liquid alloy at 1200 K were reliably evaluated,which provides new guidance for related studies.展开更多
Surface-supported clusters forming by aggregation of excessive adatoms could be the main defects of 2D materials after chemical vapor deposition.They will significantly impact the electronic/magnetic properties.Moreov...Surface-supported clusters forming by aggregation of excessive adatoms could be the main defects of 2D materials after chemical vapor deposition.They will significantly impact the electronic/magnetic properties.Moreover,surface supported atoms are also widely explored for high active and selecting catalysts.Severe deformation,even dipping into the surface,of these clusters can be expected because of the very active edge of clusters and strong interaction between supported clusters and surfaces.However,most models of these clusters are supposed to simply float on the top of the surface because ab initio simulations cannot afford the complex reconstructions.Here,we develop an accurate graph neural network machine learning potential(MLP)from ab initio data by active learning architecture through fine-tuning pre-trained models,and then employ the MLP into Monte Carlo to explore the structural evolutions of Mo and S clusters(1-8 atoms)on perfect and various defective MoS2 monolayers.Interestingly,Mo clusters can always sink and embed themselves into MoS2 layers.In contrast,S clusters float on perfect surfaces.On the defective surface,a few S atoms will fill the vacancy and rest S clusters float on the top.Such significant structural reconstructions should be carefully taken into account.展开更多
We conduct optical-tweezers experiments to investigate the average potential energies of passive plates harmonically trapped in bacterial suspensions.Our results show that the mean potential energies along both the ma...We conduct optical-tweezers experiments to investigate the average potential energies of passive plates harmonically trapped in bacterial suspensions.Our results show that the mean potential energies along both the major and minor axes increase with bacterial concentration but decrease with trap stiffness.Notably,the average potential energy along the major axis consistently exceeds that along the minor axis.This discrepancy from equilibrium systems is primarily attributed to the distinct bacterial flow fields and direct bacterium–plate collisions near the major and minor axes,as evidenced by the higher orientational order around the plate along the major compared to the minor axis,despite identical bacterial densities in these regions.Our findings highlight the critical role of hydrodynamic interactions in determining the potential energy of passive objects immersed in an active bath.展开更多
For the magnetized complex plasma,dependences of modified Yukawa potential on the gov-erning parameters,viz.,mass ratio md/mi,number ratio nd/ne0,charge magnitude Q/e,and temperature ratio Te/Ti are investigated.It is...For the magnetized complex plasma,dependences of modified Yukawa potential on the gov-erning parameters,viz.,mass ratio md/mi,number ratio nd/ne0,charge magnitude Q/e,and temperature ratio Te/Ti are investigated.It is found that md/mi,nd/ne0 and Q/e contribute to the coupling strength of the system,and Te/Ti contributes to the shielding cloud surrounding the charged dust particles.Further analysis shows that the modified Yukawa potential depends on Te/Ti.The consequent structure changes of the system are discussed based on the Langevin dynamics simulation.It is found that the variation of Ham-iltonian contributes to the equilibrium structure of the system.展开更多
Permanent magnet synchronous motor based electro-mechanical actuation servo drives have widespread applications in the aviation field,such as unmanned aerial vehicle electric servos,electric cabin doors,and mechanical...Permanent magnet synchronous motor based electro-mechanical actuation servo drives have widespread applications in the aviation field,such as unmanned aerial vehicle electric servos,electric cabin doors,and mechanical arms.The performance of the servo drive,which encompasses the response to the torque,efficiency,control bandwidth and the steady-state positioning accuracy,significantly influences the performance of the aviation actuation.Consequently,enhancing the control bandwidth and refining the positioning accuracy of aviation electro-mechanical actuation servo drives have emerged as a focal point of research.This paper investigates the multi-source disturbances present in aviation electro-mechanical actuation servo systems and summarizes recent research on high-performance servo control methods based on active disturbance rejection control(ADRC).We present a comprehensive overview of the research status pertaining to servo control architecture,strategies for suppressing disturbances in the current loop,and ADRC-based strategies for the position loop.We delineate the research challenges and difficulties encountered by aviation electro-mechanical actuation servo drive control technology.展开更多
文摘From economy to political administrations, education to health, environment to human rights, many problems we met have gained a global importance in recent days. Existing state systems, political parties and nation states are not adequate for solving these problems in question effectively on their own. Not only governments and local authorities but also voluntary organizations based on completely voluntary activities have significant roles in solving these problems. Effective performance of voluntary organizations depends on increasing volunteer population. Individuals' attitudes or their perception of understanding volunteerism play an important role in their contributions to voluntary organizations. The aim of this study is to determine individuals' ways of perceiving volunteerism concept and their tendency towards it. Furthermore, differences between men and women's perception and attitudes towards volunteerism concept have been examined. For this purpose, a survey has been conducted over university students of bachelor's degree. Tendencies and attitudes towards volunteerism compared to gender differences have been tested via logistic regression method. Research results reveal that women take part in voluntary activities more than men and women perceive volunteerism as "a political position" while men perceive volunteerism as "a learning atmosphere and learning process".
基金supported by the National Natural Science Foundation of China(82372405,81871752)the Key Research and Development Program of Hubei Province(2022BCA052)+2 种基金the Key Research and Development Program of Wuhan City(2024020702030105)the Fundamental Research Funds for the Central Universities(2042023kf0199)the Translational Medicine and Interdisciplinary Research Joint Fund of Zhongnan Hospital of Wuhan University(ZNJC202014).
文摘Bioactive peptides and proteins(BAPPs)are promising therapeutic agents for tissue repair with considerable advantages,including multifunctionality,specificity,biocompatibility,and biodegradability.However,the high complexity of tissue microenvironments and their inherent deficiencies such as short half-live and susceptibility to enzymatic degradation,adversely affect their therapeutic efficacy and clinical applications.Investigating the fundamental mechanisms by which BAPPs modulate the microenvironment and developing rational delivery strategies are essential for optimizing their administration in distinct tissue repairs and facilitating clinical translation.This review initially focuses on the mechanisms through which BAPPs influence the microenvironment for tissue repair via reactive oxygen species,blood and lymphatic vessels,immune cells,and repair cells.Then,a variety of delivery platforms,including scaffolds and hydrogels,electrospun fibers,surface coatings,assisted particles,nanotubes,two-dimensional nanomaterials,and nanoparticles engineered cells,are summarized to incorporate BAPPs for effective tissue repair,modification strategies aimed at enhancing loading efficiencies and release kinetics are also reviewed.Additionally,the delivery of BAPPs can be precisely regulated by endogenous stimuli(glucose,reactive oxygen species,enzymes,pH)or exogenous stimuli(ultrasound,heat,light,magnetic field,and electric field)to achieve on-demand release tailored for specific tissue repair needs.Furthermore,this review focuses on the clinical potential of BAPPs in facilitating tissue repair across various types,including bone,cartilage,intervertebral discs,muscle,tendons,periodontal tissues,skin,myocardium,nervous system(encompassing brain,spinal cord,and peripheral nerve),endometrium,as well as ear and ocular tissue.Finally,current challenges and prospects are discussed.
文摘Eight sesquiterpenes were isolated from Ainsliaea glabra.Among them,a new guaianolide sesquiterpenoid,named ainsglaolide A(1),and seven known sesquiterpenoids 2~8 were identified.Compound 1 was a novel guaianolide sesquiterpenoid featuring a rare six-membered lactone ring formed between C-4 and C-15.The new compound structure was elucidated by HRESI-MS and NMR spectroscopy,as well as electrostatic circular dichroism(ECD)calculations were used to further confirm the absolute of 1.Anti-inflammatory activity tests were conducted on the separated compounds,indicating that compound 1 had significant inhibitory effect on NLRP3 inflammasome with an IC_(50) value of 1.86μmol/L.
基金supported by the Hubei Agricultural Research System (HBHZDZB-2020-005)the National Natural Science Foundation of China (31872328,32272990)+2 种基金the National Key Research and Development Program of China(2021YFD1800101-2)the Science and Technology Project of Guizhou Province([2020]4Y217)the "Yingzi Tech&Huazhong Agricultural University Intelligent Research Institute of Food Health"(No.IRIFH202209)。
文摘The rapid expansion of large-scale pig farming has brought about a surge in viral diseases with high morbidity rates and diverse manifestations.This widespread occurrence of multiple viral diseases in pig farms has inflicted severe economic losses on the global swine industry.Consequently,there is an urgent need for eco-friendly and efficient antivi-ral drugs that can effectively combat viruses and prevent diseases such as PEDV,PRRSV,PRV,and other viral infections.To this end,we conducted a study on the antiviral activity and cytotoxicity of eleven different Chinese herbal extracts(CHE) against PRV.In vitro testing of several extracts,namely,Echinacea,Ilex purpurea Hassk,Ganoderma lucidum Kars,Taraxacum mongolicum,and Ilex rotunda Thunb,exhibited remarkable inhibition of PRV infection without causing any cytotoxic effects.Specifically,their antiviral selectivity indexes were significantly higher,with values ranging from 6-to 144-fold.The antiviral efficacy of five CHEs was evaluated against other RNA viruses,including PRRSV and PEDV.The extracts showed substantial inhibition of PEDV and PRRSV proliferation.Echinacea and Ilex purpurea Hassk extracts exhibited the highest virus inhibitory effects.To understand the antiviral mechanisms underlying their potent activity,a time-of-addition experiment was conducted.The results indicated that these extracts effectively targeted the early infection and postinfection stages of PRV,PEDV,and PRRSV.The study found that the Chinese herbal extracts,Echinacea and Ilex purpurea Hassk,had both direct and indirect effects on virus particles and cellular targets,demonstrating broad-spectrum antiviral activity against multiple clinical strains of PRV and PEDV.These findings provide a strong foundation for the development of herbal medicines to prevent and treat infections caused by PRV,PEDV and PRRSV in the swine industry.The identified extracts show great promise for the formulation of effective and environmentally friendly antiviral interventions.
基金Project supported by the National Natural Science Foundation of China(Grant No.62275075)the Science and Technology Research Program of the Education Department of Hubei Province,China(Grant No.B2022188)+2 种基金the Natural Science Foundation of Hubei Province,China(Grant No.2023AFC042)the Training Program of Innovation and Entrepreneurship for Undergraduates of Hubei Province,China(Grant No.S202210927003)the Medical Project of Hubei University of Science and Technology(Grant No.2023YKY08)。
文摘We propose an approach for generating robust two-dimensional(2D)vortex clusters(VCs)in a Rydberg atomic system by utilizing parity-time(PT)symmetric optical Bessel potential.We show that the system supports novel multicore VCs with four and eight cores,corresponding to topological charges 2 and 4,respectively.The stability of these VCs can be dynamically adjusted through the manipulation of the gain-loss component,Kerr nonlinearities,and the degree of nonlocality inherent in the Rydberg atoms.These VCs are confined within the first lattice well of the Bessel potential,and both the power and width of lights undergo a quasi-periodic breathing phenomenon,which is attributed to the power exchange between the light fields and Bessel potential.Both self-attractive and self-repulsive Kerr interactions can sustain robust VCs within this system.The insights presented here not only facilitate the creation and manipulation of 2D VCs through PT-symmetric potentials but also pave the way for potential applications in optical information processing and transmission.
基金supported by the Ministry of Science and Innovation and the Spanish Research Agency through FEDER funds (PID2021-1261520B-100) (MICINN/AEI/FEDER, EU)CBM receives an institutional grant from the Fundación Ramón Areces, Spain。
文摘The word “senescence” comes from the Latin senescens, meaning “to begin to age”, and is characterized by a long-lasting but reversible block in proliferation, resulting from stress-induced cell cycle arrest of previously replication-competent cells.
基金supported by the Science and Technology Program of Fujian Province,China(No.2023R1014002)the National Natural Science Foundation of China(No.41471390).
文摘The toxicity of PM_(2.5)does not necessarily change synchronously with its mass concentration.In this study,the chemical composition(carbonaceous species,water-soluble ions,and metals)and oxidative potential(dithiothreitol assay,DTT)of PM_(2.5)were investigated in 2017/2018 and 2022 in Xiamen,China.The decrease rate of volume-normalized DTT(DTTv)(38%)was lower than that of PM_(2.5)(55%)between the two sampling periods.However,the mass-normalized DTT(DTTm)increased by 44%.Clear seasonal patterns with higher levels in winter were found for PM_(2.5),most chemical constituents and DTTv but not for DTTm.The large decrease in DTT activity(84%−92%)after the addition of EDTA suggested that watersoluble metals were the main contributors to DTT in Xiamen.The increased gap between the reconstructed and measured DTTv and the stronger correlations between the reconstructed/measured DTT ratio and carbonaceous species in 2022were observed.The decrease rates of the hazard index(32.5%)and lifetime cancer risk(9.1%)differed from those of PM_(2.5)and DTTv due to their different main contributors.The PMF-MLR model showed that the contributions(nmol/(min·m^(3)))of vehicle emission,coal+biomass burning,ship emission and secondary aerosol to DTTv in 2022 decreased by 63.0%,65.2%,66.5%,and 22.2%,respectively,compared to those in 2017/2018,which was consistent with the emission reduction of vehicle exhaust and coal consumption,the adoption of low-sulfur fuel oil used on board ships and the reduced production of WSOC.However,the contributions of dust+sea salt and industrial emission increased.
基金supported by the CNPC Science and Technology Major Project of the Fourteenth Five-Year Plan(2021DJ0101)the National Natural Science Foundation of China(U19B600302,41872148)。
文摘The Early Cambrian Yuertusi Formation(Є_(1)y)in the Tarim Basin of China deposits a continuously developed suite of organic-rich black mudstones,which constitute an important source of oil and gas reservoirs in the Paleozoic.However,its hydrocarbon generation and evolution characteristics and resource potential have long been constrained by deeply buried strata and previous research.In this paper,based on the newly obtained ultra-deep well drilling data,the hydrocarbon generation and expulsion model ofЄ_(1)y shale was established by using data-driven Monte Carlo simulation,upon which the hydrocarbon generation,expulsion,and retention amounts were calculated by using the diagenetic method.The research indicates that theЄ_(1)y shale reaches the hydrocarbon generation and expulsion threshold at equivalent vitrinite reflectances of 0.46%and 0.72%,respectively.The cumulative hydrocarbon generation is 68.88×10^(10)t,the cumulative hydrocarbon expulsion is 35.59×10^(10)t,and the cumulative residual hydrocarbon is 33.29×10^(10)t.This paper systematically and quantitatively calculates the hydrocarbon expulsion at various key geological periods for theЄ_(1)y source rocks in the study area for the first time,more precisely confirming that the black shale of theЄ_(1)y is the most significant source rock contributing to the marine oil and gas resources in the Tarim Basin,filling the gap in hydrocarbon expulsion calculation in the study area,and providing an important basis for the formation and distribution of Paleozoic hydrocarbon reservoirs.The prospect of deep ultra-deep oil and gas exploration in the Tarim Basin is promising.Especially,the large area of dolomite reservoirs under the Cambrian salt and source rock interiors are the key breakthrough targets for the next exploration in the Tarim Basin.
基金supported by the National Natural Science Foundation of China(42167068,22269020)the Gansu Province Higher Education Industry Support Plan Project(2023CYZC-68)the Central Guidance for Local Science and Technology Development Funds Project(YDZX20216200001007)。
文摘Rationally regulating the porosity of hard carbon(HC),especially the closed pores matching the low potential plateau and the ultra-microporous structure suitable for Na+embedding,has been shown to be the key to improving the sodium storage performance and initial coulombic efficiency(ICE).However,the preparation of such HC materials with specific pore structures still faces great challenges.Herein,a simple pre-oxidation strategy is employed to construct abundant closed ultra-microporous structures in soy protein powder-derived HC material,achieving a significant improvement in its ICE and platform capacity.The pre-oxidation process promotes the cross-linking degree of the soy protein,thereby hindering the directional growth of graphite domains during the carbonization process.The optimized HC exhibits ultra-high platform capacity(329 mAh g^(-1))and considerable energy density(148.5 Wh kg^(-1)).Based on the ex-situ Raman and X-ray photoelectron spectroscopy characterization results,the excellent sodium storage capacity of the HC material is attributed to the synergistic effect of adsorption-intercalation/filling.The presented work provides novel insights into the synthesis of other biomass-derived HC materials with abundant closed ultra-micro pores.
基金supported by National Natural Science Foundation of China (Grant Nos. 62204104, 42005138, 12274190, 12274189, 62275115)Shandong Province High Education Youth Innovation Team Program (Grant No. 2023KJ210)Science and Technology Program of Yantai (Grant No. 2023JCYJ047)。
文摘Due to advantages of high power-conversion efficiency(PCE), large power-to-weight ratio(PWR), low cost and solution processibility, flexible perovskite solar cells(f-PSCs) have attracted extensive attention in recent years. The PCE of f-PSCs has developed rapidly to over 25%, showing great application prospects in aerospace and wearable electronic devices. This review systematically sorts device structures and compositions of f-PSCs, summarizes various methods to improve its efficiency and stability recent years. In addition, the applications and potentials of f-PSCs in space vehicle and aircraft was discussed. At last, we prospect the key scientific and technological issues that need to be addressed for f-PSCs at current stage.
基金National Key Research and Development Program of China (2022YFB2402200)National Natural Science Foundation of China (22225201,22379028)+2 种基金Fundamental Research Funds for the Central Universities (20720220010)Shanghai Pilot Program for Basic Research–Fudan University 21TQ1400100 (21TQ009)Key Basic Research Program of Science and Technology Commission of Shanghai Municipality (23520750400)。
文摘Sodium-ion batteries (SIBs) with organic electrodes are an emerging research direction due to the sustainability of organic materials based on elements like C,H,O,and sodium ions.Currently,organic electrode materials for SIBs are mainly used as cathodes because of their relatively high redox potentials(>1 V).Organic electrodes with low redox potential that can be used as anode are rare.Herein,a novel organic anode material (tetrasodium 1,4,5,8-naphthalenetetracarboxylate,Na_(4)TDC) has been developed with low redox potential (<0.7 V) and excellent cyclic stability.Its three-sodium storage mechanism was demonstrated with various in-situ/ex-situ spectroscopy and theoretical calculations,showing a high capacity of 208 mAh/g and an average decay rate of merely 0.022%per cycle.Moreover,the Na_(4)TDC-hard carbon composite can further acquire improved capacity and cycling stability for 1200 cycles even with a high mass loading of up to 20 mg cm^(-2).By pairing with a thick Na_(3)V_(2)(PO_(4))_(3)cathode (20.6 mg cm^(-2)),the as-fabricated full cell exhibited high operating voltage (2.8 V),excellent rate performance and cycling stability with a high capacity retention of 88.7% after 200 cycles,well highlighting the Na_(4)TDC anode material for SIBs.
基金supported by the Key Research and Development Program of Shandong Province,China(No 2021CXGC010803)Pan’an County Chinese Medicine Industry Project(No.PZYF202103).
文摘Reductive soil disinfestation(RSD)is commonly employed for soil remediation in greenhouse cultivation.However,its influence on antibiotic resistance genes(ARGs)in soil remains uncertain.This study investigated the dynamic changes in soil communities,potential bacterial pathogens,and ARG profiles under various organicmaterial treatments during RSD,including distillers’grains,potato peel,peanut vine,and peanut vine combined with charcoal.Results revealed that applying diverse organic materials in RSD significantly altered bacterial community composition and diminished the relative abundance of potential bacterial pathogens(P<0.05).The relative abundance of high-risk ARGs decreased by 10.7%-30.6%after RSD treatments,the main decreased ARG subtypeswere AAC(3)_Via,dfrA1,ErmB,lnuB,aadA.Actinobacteria was the primary host of ARGs and was suppressed by RSD.Soil physicochemical properties,such as total nitrogen,soil pH,total carbon,were crucial factors affecting ARG profiles.Our findings demonstrated that RSD treatment inhibited pathogenic bacteria and could be an option for reducing high-risk ARG proliferation in soil.
基金Supported by the National Natural Science Foundation of China(11671403,11671236,12101192)Henan Provincial General Natural Science Foundation Project(232300420113)。
文摘In this paper,we mainly focus on a type of nonlinear Choquard equations with nonconstant potential.Under appropriate hypotheses on potential function and nonlinear terms,we prove that the above Choquard equation with prescribed 2-norm has some normalized solutions by introducing variational methods.
基金supported by the Fundamental Research Funds for the Central Public Welfare Research Institutes,China(Grant Nos.:ZZ16-YQ-037,JIPY2023003,and JJPY2022022)China Academy of Chinese Medical Sciences(CACMS)Innovation Fund(Grant No.:CI2021A00601).
文摘In clinical practice,antibiotics have historically been utilized for the treatment of pathogenic bacteria.However,the gradual emergence of antibiotic resistance among bacterial strains has posed a significant challenge to this approach.In 2022,Escherichia coli,a Gram-negative bacterium renowned for its widespread pathogenicity and high virulence,emerged as the predominant pathogenic bacterium in China.The rapid emergence of antibiotic-resistant E.coli strains has rendered antibiotics insufficient to fight E.coli infections.Traditional Chinese medicine(TCM)has made remarkable contributions to the health of Chinese people for thousands of years,and its significant therapeutic effects have been proven in clinical practice.In this paper,we provide a comprehensive review of the advances and mechanisms of TCM and its active ingredients against antibiotic-resistant E.coli infections.First of all,this review introduces the classification,antibiotic resistance characteristics and mechanisms of E.coli.Then,the TCM formulas and extracts are listed along with their active ingredients against E.coli,including extraction solution,minimum inhibitory concentration(MIC),and the antibacterial mechanisms.In addition,there is growing evidence supporting the synergistic therapeutic strategy of combining TCM with antibiotics for the treatment of antibiotic-resistant E.coli infections,and we provide a summary of this evidence and its underlying mechanisms.In conclusion,we present a comprehensive review of TCM and highlight its potential and advantages in the prevention and treatment of E.coli infections.We hold the opinion that TCM will play an important role in global health,pharmaceutical development,and livestock farming in the future.
基金supported by NSFC(Grant No.52202265,52302004,52472010,62434010)the Taishan Scholars Program of Shandong Province(tsqn202306330)+1 种基金Shenzhen Science and Technology Program(JCYJ20230807094009018)Xiaomi Young Talents Program(2023XM06).
文摘Gallium nitride(GaN)single crystal with prominent electron mobility and heat resistance have great potential in the high temperature integrate electric power systems.However,the sluggish charge storage kinetics and inadequate energy densities are bottlenecks to its practical application.Herein,the self-supported GaN/Mn_(3)O_(4) integrated electrode is developed for both energy harvesting and storage under the high temperature environment.The experimental and theoretical calculations results reveal that such integrated structures with Mn-N heterointerface bring abundant active sites and reconstruct low-energy barrier channels for efficient charge transferring,reasonably optimizing the ions adsorption ability and strengthening the structural stability.Consequently,the assembled GaN based supercapacitors deliver the power density of 34.0 mW cm^(-2) with capacitance retention of 81.3%after 10000 cycles at 130℃.This work innovatively correlates the centimeter scale GaN single crystal with ideal theoretical capacity Mn_(3)O_(4) and provides an effective avenue for the follow-up energy storage applications of the wide bandgap semiconductor.
基金financially supported by the National Key R &D Program of China (No.2022YFB3709300)。
文摘The local structure and thermophysical behavior of Mg-La liquid alloys were in-depth understood using deep potential molecular dynamic(DPMD) simulation driven via machine learning to promote the development of Mg-La alloys. The robustness of the trained deep potential(DP) model was thoroughly evaluated through several aspects, including root-mean-square errors(RMSEs), energy and force data, and structural information comparison results;the results indicate the carefully trained DP model is reliable. The component and temperature dependence of the local structure in the Mg-La liquid alloy was analyzed. The effect of Mg content in the system on the first coordination shell of the atomic pairs is the same as that of temperature. The pre-peak demonstrated in the structure factor indicates the presence of a medium-range ordered structure in the Mg-La liquid alloy, which is particularly pronounced in the 80at% Mg system and disappears at elevated temperatures. The density, self-diffusion coefficient, and shear viscosity for the Mg-La liquid alloy were predicted via DPMD simulation, the evolution patterns with Mg content and temperature were subsequently discussed, and a database was established accordingly. Finally, the mixing enthalpy and elemental activity of the Mg-La liquid alloy at 1200 K were reliably evaluated,which provides new guidance for related studies.
基金supported by the National Natural Science Foundation of China(Grant No.12374253,12074053,12004064)J.G.thanks the Foreign talents project(G2022127004L),The authors also acknowledge computer support from the Shanghai Supercomputer Center,the DUT Supercomputing Center,and the Tianhe supercomputer of Tianjin Center.
文摘Surface-supported clusters forming by aggregation of excessive adatoms could be the main defects of 2D materials after chemical vapor deposition.They will significantly impact the electronic/magnetic properties.Moreover,surface supported atoms are also widely explored for high active and selecting catalysts.Severe deformation,even dipping into the surface,of these clusters can be expected because of the very active edge of clusters and strong interaction between supported clusters and surfaces.However,most models of these clusters are supposed to simply float on the top of the surface because ab initio simulations cannot afford the complex reconstructions.Here,we develop an accurate graph neural network machine learning potential(MLP)from ab initio data by active learning architecture through fine-tuning pre-trained models,and then employ the MLP into Monte Carlo to explore the structural evolutions of Mo and S clusters(1-8 atoms)on perfect and various defective MoS2 monolayers.Interestingly,Mo clusters can always sink and embed themselves into MoS2 layers.In contrast,S clusters float on perfect surfaces.On the defective surface,a few S atoms will fill the vacancy and rest S clusters float on the top.Such significant structural reconstructions should be carefully taken into account.
基金supports of the National Natural Science Foundation of China(Grant Nos.12304245,12374205,12475031,and 12364029)the Science Foundation of China University of Petroleum,Beijing(Grant Nos.2462023YJRC031 and 2462024BJRC010)+4 种基金the National Key Laboratory of Petroleum Resources and Engineering(Grant No.PRE/DX-2407)the Natural Science Foundation of Shandong Province(Grant No.ZR2024YQ017)the Young Elite Scientist Sponsorship Program by BAST(Grant No.BYESS2023300)the Beijing Institute of Technology Research Fund Program for Young ScholarsThis work was also supported by Beijing National Laboratory for Condensed Matter Physics(Grant Nos.2023BNLCMPKF014 and 2024BNLCMPKF009).
文摘We conduct optical-tweezers experiments to investigate the average potential energies of passive plates harmonically trapped in bacterial suspensions.Our results show that the mean potential energies along both the major and minor axes increase with bacterial concentration but decrease with trap stiffness.Notably,the average potential energy along the major axis consistently exceeds that along the minor axis.This discrepancy from equilibrium systems is primarily attributed to the distinct bacterial flow fields and direct bacterium–plate collisions near the major and minor axes,as evidenced by the higher orientational order around the plate along the major compared to the minor axis,despite identical bacterial densities in these regions.Our findings highlight the critical role of hydrodynamic interactions in determining the potential energy of passive objects immersed in an active bath.
基金Supported by National Natural Science Foundation of China(12275354,11805272)the College Students'Innovative Entrepreneurial Training Plan Program of Civil Aviation University of China(202210059080)。
文摘For the magnetized complex plasma,dependences of modified Yukawa potential on the gov-erning parameters,viz.,mass ratio md/mi,number ratio nd/ne0,charge magnitude Q/e,and temperature ratio Te/Ti are investigated.It is found that md/mi,nd/ne0 and Q/e contribute to the coupling strength of the system,and Te/Ti contributes to the shielding cloud surrounding the charged dust particles.Further analysis shows that the modified Yukawa potential depends on Te/Ti.The consequent structure changes of the system are discussed based on the Langevin dynamics simulation.It is found that the variation of Ham-iltonian contributes to the equilibrium structure of the system.
基金supported by the National Natural Science Foundation of China(Nos.52177059 and 52407064).
文摘Permanent magnet synchronous motor based electro-mechanical actuation servo drives have widespread applications in the aviation field,such as unmanned aerial vehicle electric servos,electric cabin doors,and mechanical arms.The performance of the servo drive,which encompasses the response to the torque,efficiency,control bandwidth and the steady-state positioning accuracy,significantly influences the performance of the aviation actuation.Consequently,enhancing the control bandwidth and refining the positioning accuracy of aviation electro-mechanical actuation servo drives have emerged as a focal point of research.This paper investigates the multi-source disturbances present in aviation electro-mechanical actuation servo systems and summarizes recent research on high-performance servo control methods based on active disturbance rejection control(ADRC).We present a comprehensive overview of the research status pertaining to servo control architecture,strategies for suppressing disturbances in the current loop,and ADRC-based strategies for the position loop.We delineate the research challenges and difficulties encountered by aviation electro-mechanical actuation servo drive control technology.