期刊文献+
共找到38篇文章
< 1 2 >
每页显示 20 50 100
Effects of Future Climate and Cropland Use Changes on Rice Potential Yields in Hainan Island, China
1
作者 PU Luoman XIANG Mengjun 《Chinese Geographical Science》 2025年第3期438-453,共16页
Rapid climate and cropland use changes in recent decades have posed major challenges to food security in China.Hainan Is-land is the only tropical island in China and is blessed with natural conditions for crop produc... Rapid climate and cropland use changes in recent decades have posed major challenges to food security in China.Hainan Is-land is the only tropical island in China and is blessed with natural conditions for crop production.This study first simulates the climate scenarios of Hainan Island for 2030,2040 and 2050 under the four Socio-economic Pathways(SSPs)based on the climate models in ScenarioMIP of Coupled Model Intercomparison Project Phase 6(CMIP6),and then simulates the land use scenarios of Hainan Island for 2030,2040 and 2050 based on the Cellular Automata(CA)-Markov model.Finally,based on the Global Agro-Ecological Zones(GAEZ)model,the rice potential yield in Hainan Island for 2030,2040 and 2050 are simulated,and the effects of future climate and cropland use changes on rice potential yields are investigated.The results show that:1)from 2020 to 2050,mean maximum temperature first decreases and then increases,while mean minimum temperature increase sharply followed by a leveling off under the four SSPs.Precipitation decreases and then increases under other three SSPs except SSP2-4.5.Net solar radiation increases continuously under SSP1-2.6,2-4.5,and 5-8.5,and has the lowest simulated values under SSP3-7.0.Mean wind speed increases continuously under SSP1-2.6,fluctuates more under SSP2-4.5 and SSP5-8.5,and increases slowly and then decreases sharply under SSP3-7.0.Relative humidity basically decreases continuously under the four SSPs.2)Areas of paddy field are 302.49 thousand,302.41 thousand and 302.71 thou-sand ha for 2030,2040 and 2050,respectively,all less than that in 2020.Paddy field is mainly converted into built-up land and wood-land.As for the conversion of other land types to paddy field,woodland is the main source.3)Under the effects of future climate and cropland use changes,the mean potential productions in Hainan Island under the four SSPs increase 1.17 million,1.13 million and 1.11 million t,respectively,and the mean potential yields increase 3873.21,3766.71 and 3672.38 kg/ha,respectively for the three periods.The largest increases in mean rice potential production and mean potential yield are 1.21 million t and 4008.00 kg/ha,1.16 million t and 3846.65 kg/ha,as well as 1.13 million t and 3732.75 kg/ha,respectively under SSP 3-7.0,indicating that SSP3-7.0 is the most suitable scenario for rice growth.This study could provide scientific basis for crop planting planning and agricultural policy adjustment. 展开更多
关键词 rice potential yield climate change cropland use change Global Agro-Ecological Zones(GAEZ)model CA-Markov mod-el Hainan Island China
在线阅读 下载PDF
The Effects of Climate Change on the Planting Boundary and Potential Yield for Different Rice Cropping Systems in Southern China 被引量:6
2
作者 YE Qing YANG Xiao-guang +4 位作者 LIU Zhi-juan DAI Shu-wei LI Yong XIE Wen-juan CHEN Fu 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2014年第7期1546-1554,共9页
Based on climate data from 254 meteorological stations, this study estimated the effects of climate change on rice planting boundaries and potential yields in the southern China during 1951-2010. The results indicated... Based on climate data from 254 meteorological stations, this study estimated the effects of climate change on rice planting boundaries and potential yields in the southern China during 1951-2010. The results indicated a signiifcant northward shift and westward expansion of northern boundaries for rice planting in the southern China. Compared with the period of 1951-1980, the average temperature during rice growing season in the period of 1981-2010 increased by 0.4&#176;C, and the northern planting boundaries for single rice cropping system (SRCS), early triple cropping rice system (ETCRS), medium triple cropping rice system (MTCRS), and late triple cropping rice system (LTCRS) moved northward by 10, 30, 52 and 66 km, respectively. In addition, compared with the period of 1951-1980, the suitable planting area for SRCS was reduced by 11%during the period of 1981-2010. However, the suitable planting areas for other rice cropping systems increased, with the increasing amplitude of 3, 8, and 10%for ETCRS, MTCRS and LTCRS, respectively. In general, the light and temperature potential productivity of rice decreased by 2.5%. Without considering the change of rice cultivars, the northern planting boundaries for different rice cropping systems showed a northward shift tendency. Climate change resulted in decrease of per unit area yield for SRCS and the annual average yields of ETCRS and LTCRS. Nevertheless, the overall rice production in the entire research area showed a decreasing trend even with the increasing trend of annual average yield for MTCRS. 展开更多
关键词 climate change potential yield rice cropping system planting boundary
在线阅读 下载PDF
Genetic relationship between bacterial wilt resistance and yield components in peanut
3
作者 Jianbin Guo Nian Liu +7 位作者 Huaiyong Luo Li Huang Xiaojing Zhou Weigang Chen Bolun Yu Huifang Jiang Yong Lei Boshou Liao 《Oil Crop Science》 2025年第1期64-69,共6页
Bacterial wilt(BW)caused by Ralstonia solanacearum is a wide-spread and serious disease in peanut.To date,this soilborne disease could only be effectively controlled by planting resistant peanut cultivars.However,the ... Bacterial wilt(BW)caused by Ralstonia solanacearum is a wide-spread and serious disease in peanut.To date,this soilborne disease could only be effectively controlled by planting resistant peanut cultivars.However,the relatively lower yield potential of the available BW-resistant peanut cultivars is a key reason restricting productivity in most epidemic regions naturally infested with the pathogen.Even small pods or seeds and low number per plant has been regarded as the key factor for the low yield potential both in BW-resistant peanut germplasm lines and available released cultivars,whether the resistance is closely linked with key yield components remains unclear.In this study,the relationship between pod weight and BW resistance was analyzed by using a recombinant inbred lines(RIL)population derived from a crossing combination between a high yielding cultivar Xuhua 13 and a BW-resistant cultivar Zhonghua 6.From the experiments,it was found that the BW resistance was not significantly correlated with pod number per plant(PNP),hundred pod weight(HPW)and pod weight per plant(PWP)in the RIL population.Based on linkage analysis,the quantitative trait locus(QTL)s related to PNP were identified on A06,A07,A08 and B03.The QTLs for HPW were detected on A05 and A07,and the QTLs for PWP were on A06,A07 and B03.However,the QTL for BW resistance identified on B02.These results indicated that the BW resistance and the pod number per plant as well as pod weight were inherited independently.Two recombined lines(QT0944 and QT1028)with high level BW resistance and large pods(hundred pod weight over 185g)were identified from the RILs,and they possessed the favored alleles of identified QTLs from both parents,which could be used in peanut breeding for high yield and high level disease resistance. 展开更多
关键词 PEANUT Bacterial wilt resistance QTL Pod weight yield potential
在线阅读 下载PDF
Cultivar selection can increase yield potential and resource use efficiency of spring maize to adapt to climate change in Northeast China 被引量:4
4
作者 SU Zheng-e LIU Zhi-juan +6 位作者 BAI Fan ZHANG Zhen-tao SUN Shuang HUANG Qiu-wan LIU Tao LIU Xiao-qing YANG Xiao-guang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2021年第2期371-382,共12页
Northeast China (NEC) is one of the major maize production areas in China.Agro-climatic resources have obviously changed,which will seriously affect crop growth and development in this region.It is important to invest... Northeast China (NEC) is one of the major maize production areas in China.Agro-climatic resources have obviously changed,which will seriously affect crop growth and development in this region.It is important to investigate the contribution of climate change adaptation measures to the yield and resource use efficiency to improve our understanding of how we can effectively ensure high yield and high efficiency in the future.In this study,we divided the study area into five accumulated temperature zones (ATZs) based on growing degree days (GDD).Based on the meteorological data,maize data (from agrometeorological stations) and the validated APSIM-Maize Model,we first investigated the spatial distributions and temporal trends of maize potential yield of actual planted cultivars,and revealed the radiation use efficiency (RUE) and heat resource use efficiency (HUE) from 1981 to 2017.Then according to the potential growing seasons and actual growing seasons,we identified the utilization percentages of radiation (P_R) resource and heat resource (P_H) for each ATZ under potential production from 1981 to 2017.Finally,we quantified the contributions of cultivar changings to yield,P_R and P_H of maize.The results showed that during the past 37 years,the estimated mean potential yield of actual planted cultivars was 13 649 kg ha^(–1),ranged from 11 205 to 15 257 kg ha^(–1),and increased by 140 kg ha^(–1) per decade.For potential production,the mean values of RUE and HUE for the actual planted maize cultivars were 1.22 g MJ^(–1) and 8.58 kg (℃ d)^(–1) ha^(–1).RUE showed an increasing tendency,while HUE showed a decreasing tendency.The lengths of the potential growing season and actual growing season were 158 and 123 d,and increased by 2 and 1 d per decade.P_R and P_H under potential production were 82 and 86%,respectively and showed a decreasing tendency during the past 37 years.This indicates that actual planted cultivars failed to make full use of climate resources.However,results from the adaptation assessments indicate that,adoption of cultivars with growing season increased by 2–11 d among ATZs caused increase in yield,P_R and P_H of 0.6–1.7%,1.1–7.6% and 1.5–8.9%,respectively.Therefore,introduction of cultivars with longer growing season can effectively increase the radiation and heat utilization percentages and potential yield. 展开更多
关键词 APSIM maize potential yield radiation use efficiency resource utilization percentage cultivar selection
在线阅读 下载PDF
Yield potential and nitrogen use efficiency of China's super rice 被引量:31
5
作者 WANG Fei PENG Shao-bing 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2017年第5期1000-1008,共9页
In 1996, a mega project that aimed to develop rice varieties with super-high yield potential (super rice) was launched by the Ministry of Agriculture (MOA) in China using a combination of the ideotype approach and... In 1996, a mega project that aimed to develop rice varieties with super-high yield potential (super rice) was launched by the Ministry of Agriculture (MOA) in China using a combination of the ideotype approach and intersubspecific heterosis. Significant progress has been made in the last two decades, with a large number of super rice varieties being approved by the MOA and the national average grain yield being increased from 6.21 t ha^-1 in 1996 to 6.89 t ha^-1 in 2015. The increase in yield potential of super rice was mainly due to the larger sink size which resulted from larger panicles. Moreover, higher photosynthetic capacity and improved root physiological traits before heading contributed to the increase in sink size. However, the poor grain filling of the later-flowering inferior spikelets and the quickly decreased root activity of super rice during grain filling period restrict the achievement of high yield potential of super rice. Furthermore, it is widely accepted that the high yield potential of super rice requires a large amount of N fertilizer input, which has resulted in an increase in N consumption and a decrease in nitrogen use efficiency (NUE), although it remains unclear whether super rice per se is responsible for the latter. In the present paper, we review the history and success of China's Super Rice Breeding Pro- gram, summarize the advances in agronomic and physiological mechanisms underlying the high yield potential of super rice, and examine NUE differences between super rice and ordinary rice varieties. We also provide a brief introduction to the Green Super Rice Project, which aims to diversify breeding targets beyond yield improvement alone to address global concerns around resource use and environmental change. It is hoped that this review will facilitate further improvement of rice production into the future. 展开更多
关键词 super rice yield potential nitrogen use efficiency Green Super Rice
在线阅读 下载PDF
Production potential and yield gaps of summer maize in the Beijing-Tianjin-Hebei Region 被引量:14
6
作者 WANG Tao LU Changhe YU Bohua 《Journal of Geographical Sciences》 SCIE CSCD 2011年第4期677-688,共12页
Crop potential productivity is a key index of scientifically appraising crop production and land population-supporting capacity. This study firstly simulated the potential and waterlimited yield of summer maize in the... Crop potential productivity is a key index of scientifically appraising crop production and land population-supporting capacity. This study firstly simulated the potential and waterlimited yield of summer maize in the Beijing-Tianjin-Hebei (BTH) region using WOFOST model with meteorological data of 40 years, and then analyzed yield gaps between the actual and potential yield based on statistical data at county level. The potential and water-limited yield of summer maize in the BTH region is 6854–8789 kg/hm2 and 6434–8741 kg/hm2, and the weighted average for whole region is 7861 kg/hm2 and 7185 kg/hm2, respectively. The simulated yields gradually decrease from northeast to southwest with changes in climatic conditions particularly temperature and precipitation. Annual variation of potential yield is higher in the central and southern parts than the northeastern part. Compared to potential yield, the water-limited yield has higher coefficient of variation (CV), because of precipitation effects. The actual yield of summer maize was 2537–8730 kg/hm2, regionally averaged at 5582 kg/hm2, about 70% of the potential yield, implying that the region has room to increase the yield by improving crop management and irrigation systems. 展开更多
关键词 WOFOST summer maize yield potential yield gap the Beijing-Tianjin-Hebei region
原文传递
Yield potential and stability in super hybrid rice and its production strategies 被引量:15
7
作者 HUANG Min TANG Qi-yuan +1 位作者 AO He-jun ZOU Ying-bin 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2017年第5期1009-1017,共9页
China's Super Hybrid Rice Breeding Program has made significant progress over the past two decades. In this paper, we reviewed our studies on the yield potential and stability in super hybrid rice and discussed the s... China's Super Hybrid Rice Breeding Program has made significant progress over the past two decades. In this paper, we reviewed our studies on the yield potential and stability in super hybrid rice and discussed the strategies for super hybrid rice production. The results of our studies show that rice yield potential has been increased by 12% in super hybrid cultivars as compared with ordinary hybrid and inbred cultivars. The higher grain yields in super hybrid rice cultivars are attributed to larger panicle size coupled with higher biomass production or higher harvest index. However, grain yields in super hybrid rice cultivars vary widely among locations depending on soil and climatic factors. Therefore, it is important to tailor target yield to local conditions in super hybrid rice production. The target yield for super hybrid rice production can be determined by the average yield method or the regression model method. Improving soil quality is critical to achieving the target yield in super hybrid rice production. Favorable crop rotations such as rice-oilseed rape and novel soil management practices, such as biochar addition, are effective approaches to improve soil quality. It is needed to develop simplified cultivation tech- nologies for super hybrid rice to meet the changes in socioeconomic environments during the period of transition. There are such technologies as no-tillage direct seeding and mechanized transplanting at high hill density with single seedling per hill. 展开更多
关键词 mechanized transplanting no-tillage direct seeding super hybrid rice target yield yield potential yield stability
在线阅读 下载PDF
Suitable growing zone and yield potential for late-maturity type of Yongyou japonica/indica hybrid rice in the lower reaches of Yangtze River, China 被引量:15
8
作者 WEI Huan-he 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2016年第1期50-62,共13页
Late-maturity type of Yongyou japonica/indica hybrids series (LMYS) have shown great yield potential, and are being widely planted in the lower reaches of Yangtze River, China. Knowledge about suitable growing zone ... Late-maturity type of Yongyou japonica/indica hybrids series (LMYS) have shown great yield potential, and are being widely planted in the lower reaches of Yangtze River, China. Knowledge about suitable growing zone and evaluation of yield advantage is of practicall importance for LMYS in this region. Fifteen LMYS, two high-yielding inbred japonica check varieties (CK-J) and two high-yielding hybrid indica check varieties (CK-I) were grown at Xinghua (119.57°E, 33.05°N) of Lixiahe region, Yangzhou (119.25°E, 32.30°N)of Yanjiang region, Changshu (120.46°E, 31.41°N)of Taihu Lake region, and Ningbo (121.31°E, 29.45°N) of Ningshao Plain in 2013 and 2014. The results showed that maturity dates of the 15 were later than the secure maturity date at Xinghua and 6, 14 and 15 LMYS were mature before the secure maturity date at Yangzhou, Changshu and Ningbo, respectively. One variety was identified as high-yielding variety among LMYS (HYYS) at Yangzhou, 8 HYYS in 201:3 and 9 HYYS in 2014 at Changshu, 9 HYYS at Ningbo. HYYS here referred to the variety among LMYS that was mature before the secure maturity date and had at least 8% higher grain yield than both CK-J and CK-I at each experimental site. Grain yield of HYYS at each experimental site was about 12.0 t ha-1 or higher, and was significantly higher than CK varieties. High yield of HYYS was mainly attributed to larger sink size due to more spikelets per panicle. Plant height of HYYS was about 140 cm, and was significantly higher than check varieties. Significant positive correlations were recorded between duration from heading to maturity stage and grain yield, and also between whole growth periods and grain yield. HYYS had obvious advantage over check varieties in biomass accumulation and leaf area duration from heading to maturity stage. Comprehensive consideration about safe matudty and yield performance of LMYS at each experimental site, Taihu Lake region (representative site Changshu) and Ningshao Plain (representative site Ningbo) were thought suitable growing zones for LMYS in the lower reaches of Yangtze River. The main factors underlying high yield ofHYYS were larger sink size, higher plant height, longer duration from heading to maturity stage and whole growth periods, and higher biomass accumulation and leaf area duration during grain filling stage. 展开更多
关键词 japonica/indica hybrid rice Yongyou series late-maturity type suitable growing zone yield potential
在线阅读 下载PDF
Heat units-based potential yield assessment for cotton production in Uzbekistan 被引量:1
9
作者 Gianni Montanaro Vinay Nangia +5 位作者 Prasanna Gowda Shukhrat Mukhamedjanov Azamat Mukhamedjanov Mira Haddad Tulkun Yuldashev Weicheng Wu 《International Journal of Agricultural and Biological Engineering》 SCIE EI CAS 2021年第6期137-144,共8页
Cotton yields in Uzbekistan are significantly lower than those in similar agro-climatic regions,requiring the estimation of crop potential and baseline yield to track progress of production enhancement efforts.The cur... Cotton yields in Uzbekistan are significantly lower than those in similar agro-climatic regions,requiring the estimation of crop potential and baseline yield to track progress of production enhancement efforts.The current study estimated potential cotton development and baseline yield(maximum given no production constraints)using total heat units(THU)and potential cotton yield(PCY),respectively.Calculations were based on heat units(HU)for a 30-year(1984-2013)period.Long-term average THU and PCY,as well as PCY at three different exceedance probabilities(p=0.99,p=0.80,and p=0.75),were calculated for 21 selected weather stations across cotton-growing areas of Uzbekistan.After confirmation that the current planting date(April 15)is optimal,a comparison of THU with the accepted cotton production cutoff threshold(1444°C)suggested that areas with lower elevations and latitudes are more appropriate for cotton production.Yield gap analysis(relative difference between long-term average PCY and actual yields)confirmed that Uzbekistan cotton production is below potential,while the spatial distribution of yield gaps outlined where efforts should be targeted.Areas near the stations of Nukus,Kungrad,Chimbay,and Syrdarya should be further investigated as benefit/cost ratio is highest in these areas.A comparison between state-set yield targets and PCY values,taking into account climatic variability,suggested that all areas except Jaslyk,Nurata,and Samarkand have safe,appropriate targets.These results present a starting-point to aid in strategic actions for Uzbekistan cotton production improvement. 展开更多
关键词 COTTON potential cotton yield yield gap heat unit Uzbekistan AGRICULTURE climatic variability TARGET
原文传递
A novel Effective Panicle Number per Plant 4 haplotype enhances grain yield by coordinating panicle number and grain number in rice
10
作者 Yun Wang Xiaoqian Wang +6 位作者 Laiyuan Zhai Sundus Zafar Congcong Shen Shuangbing Zhu Kai Chen Yun Wang Jianlong Xu 《The Crop Journal》 SCIE CSCD 2024年第1期202-212,共11页
Increasing effective panicle number per plant(EPN)is one approach to increase yield potential in rice.However,molecular mechanisms underlying EPN remain unclear.In this study,we integrated mapbased cloning and genome-... Increasing effective panicle number per plant(EPN)is one approach to increase yield potential in rice.However,molecular mechanisms underlying EPN remain unclear.In this study,we integrated mapbased cloning and genome-wide association analysis to identify the EPN4 gene,which is allelic to NARROW LEAF1(NAL1).Overexpression lines containing the Teqing allele(TQ)of EPN4 had significantly increased EPN.NIL-EPN4^(TQ) in japonica(geng)cultivar Lemont(LT)exhibited significantly improved EPN but decreased grain number and flag leaf size relative to LT.Haplotype analysis indicated that accessions with EPN4-1 had medium EPN,medium grain number,and medium grain weight,but had the highest grain yield among seven haplotypes,indicating that EPN4-1 is an elite haplotype of EPN4 for positive coordination of the three components of grain yield.Furthermore,accessions carrying the combination of EPN4-1 and haplotype GNP1-6 of GNP1 for grain number per panicle showed higher grain yield than those with other allele combinations.Therefore,pyramiding of EPN4-1 and GNP1-6 could be a preferred approach to obtain high yield potential in breeding. 展开更多
关键词 RICE Effective panicle number per plant Grain number per panicle HAPLOTYPE Grain yield potential
在线阅读 下载PDF
Assessment of Future Cotton Production in the Tarim River Basin under Climate Model Projections and Water Management 被引量:1
11
作者 Shengru Yue Lunche Wang +1 位作者 Qian Cao Jia Sun 《Journal of Earth Science》 2025年第4期1780-1792,共13页
Climate change is significantly impacting cotton production in the Tarim River Basin.The study investigated the climate change characteristics from 2021 to 2100 using climate change datasets simulated per the coupled ... Climate change is significantly impacting cotton production in the Tarim River Basin.The study investigated the climate change characteristics from 2021 to 2100 using climate change datasets simulated per the coupled model inter-comparison project phase six(CMIP6)climatic patterns under the shared socioeconomic pathways SSP2-4.5 and SSP5-8.5.The DSSAT-CROPGROCotton model,along with stepwise multiple regression analyses,was used to simulate changes in the potential yield of seed cotton due to climate change.The results show that while future temperatures in the Tarim River Basin will rise significantly,changes in precipitation and radiation during the cotton-growing season are minimal.Seed cotton yields are more sensitive to low temperatures than to precipitation and radiation.The potential yield of seed cotton under the SSP2-4.5 scenario would increase by 14.8%,23.7%,29.0%,and 29.4%in the 2030S,2050S,2070S,and 2090S,respectively.In contrast,under the SSP5-8.5 scenario,the potential yield of seed cotton would see increases of 17.5%,27.1%,30.1%,and 22.6%,respectively.Except for the 2090s under the SSP5-8.5 scenario,future seed cotton production can withstand a 10%to 20%deficit in irrigation.These findings will help develop climate change adaptation strategies for cotton cultivation. 展开更多
关键词 climate change Tarim River Basin potential yield of seed cotton DSSAT CMIP6 future cotton production
原文传递
Towards sustainable intensification of apple production in China—Yield gaps and nutrient use effi ciency in apple farming systems 被引量:24
12
作者 WANG Na Joost Wolf ZHANG Fu-suo 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2016年第4期716-725,共10页
China is in a dominant position in apple production globally with both the largest apple growing area and the largest export of fresh apple fruits. However, the annual productivity of China's apple is significantly l... China is in a dominant position in apple production globally with both the largest apple growing area and the largest export of fresh apple fruits. However, the annual productivity of China's apple is significantly lower than that of other dominant apple producing countries. In addition, apple production is based on excessive application of chemical fertilizers and the nutrient use efficiency (especially nitrogen) is therefore low and the nutrient emissions to the environment are high. Apple production in China is considerably contributes to farmers' incomes and is important as export product. There is an urgent need to enhance apple productivity and improve nutrient use efficiencies in intensive apple production systems in the country. These can be attained by improved understanding of production potential, yield gaps, nutrient use and best management in apple orchards. To the end, priorities in research on apple production systems and required political support are described which may lead to more sustainable and environmental-friendly intensification of apple production in China. 展开更多
关键词 apple production China environmental problems nutrient use efficiency potential yield sustainableintensification yield gaps
在线阅读 下载PDF
Optimizing water management practice to increase potato yield and water use efficiency in North China 被引量:2
13
作者 LI Yang WANG Jing +7 位作者 FANG Quan-xiao HU Qi HUANG Ming-xia CHEN Ren-wei ZHANG Jun HUANG Bin-xiang PAN Zhi-hua PAN Xue-biao 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2023年第10期3182-3192,共11页
Potato is one of the staple food crops in North China.However,potato production in this region is threatened by the low amount and high spatial-temporal variation of precipitation.Increasing yield and water use effici... Potato is one of the staple food crops in North China.However,potato production in this region is threatened by the low amount and high spatial-temporal variation of precipitation.Increasing yield and water use efficiency(WUE)of potato by various water management practices under water resource limitation is of great importance for ensuring food security in China.However,the contributions of different water management practices to yield and WUE of potato have been rarely investigated across North China’s potato planting region.Based on meta-analysis of field experiments from the literature and model simulation,this study quantified the potential yields of potatoes without water and fertilizer limitation,and yield under irrigated and rainfed conditions,and the corresponding WUEs across four potato planting regions including the Da Hinggan Mountains(DH),the Foothills of Yanshan hilly(YH),the North foot of the Yinshan Mountains(YM),and the Loess Plateau(LP)in North China.Simulated average potential potato tuber dry weight yield by the APSIM-Potato Model was 12.4 t ha^(–1)for the YH region,11.4 t ha^(–1)for the YM region,11.2 t ha^(–1)for the DH region,and 10.7 t ha^(–1)for the LP region,respectively.Observed rainfed potato tuber dry weight yield accounted for 61,30,28 and 24%of the potential yield in the DH,YH,YM,and LP regions.The maximum WUE of 2.2 kg m^(–3)in the YH region,2.1 kg m^(–3)in the DH region,1.9 kg m^(–3)in the YM region and 1.9 kg m^(–3)in the LP region was achieved under the potential yield level.Ridge-furrow planting could boost yield by 8–49%and WUE by 2–36%while ridge-furrow planting with film mulching could boost yield by 35–89%and WUE by 7–57%across North China.Our study demonstrates that there is a large potential to increase yield and WUE simultaneously by combining ridge-furrow planting with film mulching and supplemental irrigation in different potato planting regions with limited water resources. 展开更多
关键词 potential yield irrigated yield rainfed yield ridge-furrow film mulching APSIM
在线阅读 下载PDF
Crop Yield Forecasted Model Based on Time Series Techniques
14
作者 Li Hong-ying Hou Yan-lin +1 位作者 Zhou Yong-juan Zhao Hui-ming 《Journal of Northeast Agricultural University(English Edition)》 CAS 2012年第1期73-77,共5页
Traditional studies on potential yield mainly referred to attainable yield: the maximum yield which could be reached by a crop in a given environment. The new concept of crop yield under average climate conditions wa... Traditional studies on potential yield mainly referred to attainable yield: the maximum yield which could be reached by a crop in a given environment. The new concept of crop yield under average climate conditions was defined in this paper, which was affected by advancement of science and technology. Based on the new concept of crop yield, the time series techniques relying on past yield data was employed to set up a forecasting model. The model was tested by using average grain yields of Liaoning Province in China from 1949 to 2005. The testing combined dynamic n-choosing and micro tendency rectification, and an average forecasting error was 1.24%. In the trend line of yield change, and then a yield turning point might occur, in which case the inflexion model was used to solve the problem of yield turn point. 展开更多
关键词 potential yield forecasting model time series technique yield turning point yield channel
在线阅读 下载PDF
Optimizing management strategies to enhance wheat productivity in the North China Plain under climate change
15
作者 Baohua Liu Ganqiong Li +7 位作者 Yongen Zhang Ling Zhang Dianjun Lu Peng Yan Shanchao Yue Gerrit Hoogenboom Qingfeng Meng Xinping Chen 《Journal of Integrative Agriculture》 2025年第8期2989-3003,共15页
Accurately estimating the wheat yield potential under climate changes is essential for assessing food production capacity. However, studies based on crop modeling and imperfect management experiment data frequently un... Accurately estimating the wheat yield potential under climate changes is essential for assessing food production capacity. However, studies based on crop modeling and imperfect management experiment data frequently underestimate the wheat yield potential. In this study, we evaluated wheat yield potential based on the CERES-Wheat model and a well-managed 10-year(2008–2017) field study in the North China Plain(NCP), and further identified the critical climate and management yield-limiting factors for improving wheat yield potential and closing the wheat yield gap. Our results revealed that wheat yield potential averaged 10.8 t ha–1in the recent decade. The low growing degree days(GDD) in the pre-winter growing season(592℃ d) and solar radiation in the whole growth season(3,036 MJ m–2) are the most critical climatic factors limiting wheat yield potential in the current production system. Nonetheless, wheat yield potential in the NCP is projected to decline during 2040–2059 by 1.8 and 5.1% under the representative concentration pathway(RCP) 4.5 and RCP8.5 scenarios, respectively, without considering the elevated CO_(2) concentration. However, the positive influence of CO_(2) fertilization will be sufficient to offset these negative impacts from climatic warming and solar dimming, ultimately leading to an enhancement in wheat yield potential during 2040–2059 by 7.5 and 9.8% compared to the baseline under RCP4.5 and RCP8.5, respectively. To improve the wheat yield potential, we recommend selecting an appropriate planting date(5 October) and planting density(400 plants m–2) that align with light and temperature conditions during the wheat growing season. In addition, optimizing the timing and rate of water application(three times, 270 mm) and fertilizer use(based on inseason root zone nitrogen management) is crucial for closing the wheat yield gap. This study underscores the importance of adopting multiple management practices that account for complex climate–crop–soil interconnections to enhance the wheat yield based on a long-term field experiment under the changing climate. 展开更多
关键词 CERES-Wheat climate change field observation management strategy yield potential
在线阅读 下载PDF
Reducing maize yield gap by matching plant density and solar radiation 被引量:10
16
作者 LIU Guang-zhou LIU Wan-mao +6 位作者 HOU Peng MING Bo YANG Yun-shan GUO Xiao-xia XIE Ruizhi WANG Ke-ru LI Shao-kun 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2021年第2期363-370,共8页
Yield gap exists because the current attained actual grain yield cannot yet achieve the estimated yield potential. Chinese high yield maize belt has a wide span from east to west which results in different solar radia... Yield gap exists because the current attained actual grain yield cannot yet achieve the estimated yield potential. Chinese high yield maize belt has a wide span from east to west which results in different solar radiations between different regions and thus different grain yields. We used multi-site experimental data, surveyed farmer yield data, the highest recorded yield data in the literatures, and simulations with Hybrid-Maize Model to assess the yield gap and tried to reduce the yield gap by matching the solar radiation and plant density. The maize belt was divided into five regions from east to west according to distribution of accumulated solar radiation. The results showed that there were more than 5.8 Mg ha^(–1) yield gaps between surveyed farmer yield and the yield potential in different regions of China from east to west, which just achieved less than 65% of the yield potential. By analyzing the multi-site density experimental data, we found that the accumulated solar radiation was significantly correlated to optimum plant density which is the density with the highest yield in the multi-site density experiment(y=0.09895 x–32.49, P<0.01), according to which the optimum plant densities in different regions from east to west were calculated. It showed that the optimum plant density could be increased by 60.0, 55.2, 47.3, 84.8, and 59.6% compared to the actual density, the grain yield could be increased by 20.2, 18.3, 10.9, 18.1, and 15.3% through increasing plant density, which could reduce the yield gaps of 33.7, 23.0, 13.4, 17.3, and 10.4% in R(region)-1, R-2, R-3, R-4, and R-5, respectively. This study indicates that matching maize plant density and solar radiation is an effective approach to reduce yield gaps in different regions of China. 展开更多
关键词 MAIZE yield gap yield potential matching density and radiation
在线阅读 下载PDF
The CCT domain-containing gene family has large impacts on heading date, regional adaptation, and grain yield in rice 被引量:7
17
作者 ZHANG Jia HU Yong +3 位作者 XU Li-he HE Qin FAN Xiao-wei XING Yong-zhong 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2017年第12期2686-2697,共12页
There are 41 members of the CCT(CO, CO-like, and TOC1) domain-containing gene family in rice, which are divided into three subfamilies: COL(CONSTANS-like), CMF(CCT motif family), and PRR(pseudoresponse regula... There are 41 members of the CCT(CO, CO-like, and TOC1) domain-containing gene family in rice, which are divided into three subfamilies: COL(CONSTANS-like), CMF(CCT motif family), and PRR(pseudoresponse regulator). The first flowering gene to be isolated by map-based cloning, Heading date 1(Hd1), which is the orthologue of CO in rice, belongs to COL. The central regulator of plant development, Ghd7, belongs to CMF. The major role in controlling rice distribution to high latitudes, Ghd7.1/PRR37, belongs to PRR. Both of Hd1, Ghd7 and Ghd7.1 simultaneously control grain number, plant height, and the heading date. To date, 13 CCT family genes from these three subfamilies have been shown to regulate flowering. Some of them have pleiotropic effects on grain yield, plant height, and abiotic stresses, and others function as circadian oscillators. There are two independent photoperiod flowering pathways that are mediated by GI-Hd1-Hd3 a/RFT and GI-Ehd1-Hd3 a/RFT in rice. CCT family genes are involved in both pathways. The latest study reveals that protein interaction between Hd1 and Ghd7 integrates the two pathways. CCT family genes are rich in natural variation because rice cultivars have been subjected to natural and artificial selection for different day lengths in the process of domestication and improvement. Alleles of several crucial CCT family genes such as Hd1, Ghd7, and Ghd7.1 exhibit geographic distribution patterns and are highly associated with yield potentials. In addition, CCT family genes are probably involved in the responses to abiotic stress, which should be emphasized in future work. In general, CCT family genes play important roles in regulating flowering, plant growth, and grain yield. The functional identification and elucidation of the molecular mechanisms of CCT family genes would help construct a flowering regulatory network and maximize their contribution to rice production. 展开更多
关键词 photoperiod sensitivity protein interaction yield potential geographic distribution abiotic stress
在线阅读 下载PDF
Breaking wheat yield barriers requires integrated efforts in developing countries 被引量:2
18
作者 Saeed Rauf Maria Zaharieva +5 位作者 Marilyn L Warburton ZHANG Ping-zhi Abdullah M AL-Sadi Farghama Khalil Marcin Kozak Sultan A Tariq 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2015年第8期1447-1474,共28页
Most yield progress obtained through the so called "Green Revolution", particularly in the irrigated areas of Asia, has reached a limit, and major resistance genes are quickly overcome by the appearance of new strai... Most yield progress obtained through the so called "Green Revolution", particularly in the irrigated areas of Asia, has reached a limit, and major resistance genes are quickly overcome by the appearance of new strains of disease causing organisms.New plant stresses due to a changing environment are difficult to breed for as quickly as the changes occur.There is consequently a continual need for new research programs and breeding strategies aimed at improving yield potential, abiotic stress tolerance and resistance to new, major pests and diseases.Recent advances in plant breeding encompass novel methods of expanding genetic variability and selecting for recombinants, including the development of synthetic hexaploid, hybrid and transgenic wheats.In addition, the use of molecular approaches such as quantitative trait locus(QTL) and association mapping may increase the possibility of directly selecting positive chromosomal regions linked with natural variation for grain yield and stress resistance.The present article reviews the potential contribution of these new approaches and tools to the improvement of wheat yield in farmer's fields, with a special emphasis on the Asian countries, which are major wheat producers, and contain the highest concentration of resource-poor wheat farmers. 展开更多
关键词 genetic diversity HETEROSIS hybrid wheat synthetic hexaploid wheat yield potential
在线阅读 下载PDF
Analysis of Precipitation Resource and Weather Modification Potential in Anyang
19
作者 Ma Jing 《Meteorological and Environmental Research》 CAS 2016年第2期12-14,共3页
Using ground water vapor pressure and precipitation data at four times of one day during 1985- 2014 in each county( city) of Anyang,precipitable water at each station was calculated,and temporal-spatial distribution... Using ground water vapor pressure and precipitation data at four times of one day during 1985- 2014 in each county( city) of Anyang,precipitable water at each station was calculated,and temporal-spatial distribution of atmospheric maximum precipitable water and its change trend over the years in the city were analyzed. Results showed that atmospheric maximum precipitable water in Anyang City had the characteristics of summer far more than winter,autumn slightly higher than spring,west and south more,and east and north less,and presented the increasing trend year by year. We further analyzed the characteristic of monthly rainfall enhancement potential in each county,and mean in whole year was 80%. In spring and winter,rainfall enhancement potential in the west was bigger than east,while rainfall enhancement potential in the east was bigger than west in summer and autumn. The research provides reference basis for rationally carrying out artificial rainfall work,which could effectively ease uneven temporal-spatial distribution problem of water resource in Anyang City. 展开更多
关键词 Water vapor pressure Atmospheric precipitable water Natural precipitation yield ratio Rainfall enhancement potential China
在线阅读 下载PDF
Optimizing Sorghum Productivity Using Balanced Fertilizers on Dryland
20
作者 Samijan Samijan Endah Nurwahyuni +7 位作者 Sri Minarsih Agus Supriyo Sodiq Jauhari Yulis Hindarwati Meinarti Norma Setiapermas Raden Heru Praptana Endah Winarni Vina Eka Aristya 《Phyton-International Journal of Experimental Botany》 SCIE 2024年第7期1403-1420,共18页
Sorghum is thefifth most required cereal crop globally.Sorghum bicolor has the advantage of being adaptive to both lowland and dryland,with drought-tolerant and wide adaptability.The low nutrient availability in drylan... Sorghum is thefifth most required cereal crop globally.Sorghum bicolor has the advantage of being adaptive to both lowland and dryland,with drought-tolerant and wide adaptability.The low nutrient availability in dryland requires additional effective fertilizers to increase sorghum productivity.The research aimed to assess the appli-cation of organic,inorganic,and biofertilizers for sorghum productivity on dryland.Research in Central Java,Indonesia as dryland sorghum areas,from November 2022 to February 2023.The experiment cooperates with the farmers in a split-plot design,the main plot was two varieties and subplots of four fertilizers.The enhanced sorghum yield(21.38%–36.06%)with combined fertilizer was greater than the existing fertilization.Nutrient con-trol does not rely on inorganic fertilizers but also on applying biofertilizers.The sorghum farming economic value farming indicated that combinations of fertilizer treatments and varieties provide benefits of USD 929.81–1955.81 with a revenue-cost ratio(R/C)value>1.Sorghum is an essential food commodity that faces the threat of the global crisis and an unfavorable environment.This study indicated balanced fertilizers could provide suffi-cient nutrients to the soil and increase nutrient absorption availability for sorghum growth and productivity.Balanced fertilization increases the uptake of N,P,and K nutrients correlates with an increase in yield of 21.38%–36.06%. 展开更多
关键词 BIOFERTILIZER dryland adaptability economic value SORGHUM potential yield
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部