A gas production potential method for optimization of gas wellsite locations selection is proposed in terms of the coalbed gas resources volume and the recoverability. The method uses the actual data about reservoirs ...A gas production potential method for optimization of gas wellsite locations selection is proposed in terms of the coalbed gas resources volume and the recoverability. The method uses the actual data about reservoirs in a coalbed gas field in central China to optimize wellsite locations in the studied area in combination with the dynamic data about actual production in the coalbed gas field, selects a favorable subarea for gas wells deployment. The method is established based on the basic properties of coal reservoirs, in combination with the coalbed thickness and the gas content to make an analysis of the gas storage potential of a coal reservoir, as well as resources volume and the permeability of a coal reservoir. This method can be popularized for optimization of wellsite locations in other methane gas development areas or blocks.展开更多
This paper is intended to apply a potential method of integration to solving the equations of holonomic and nonholonomic systems. For a holonomic system, the differential equations of motion can be written as a system...This paper is intended to apply a potential method of integration to solving the equations of holonomic and nonholonomic systems. For a holonomic system, the differential equations of motion can be written as a system of differential equations of first order and its fundamental partial differential equation is solved by using the potential method of integration. For a nonholonomic system, the equations of the corresponding holonomic system are solved by using the method and then the restriction of the nonholonomic constraints on the initial conditions of motion is added.展开更多
Ion selectivity in protein binding sites is of great significance to biological functions.Although additive force fields have been successfully applied to various protein-related studies,it is difficult to well captur...Ion selectivity in protein binding sites is of great significance to biological functions.Although additive force fields have been successfully applied to various protein-related studies,it is difficult to well capture the subtle metal-protein interaction for the prediction of ion selectivity,due to the remarkable polarization and charge transfer effect between the metals and the surrounding residues.Quantum mechanics-based methods are well-suited for dealing with these systems,but they are too costly to apply in a direct manner.In this work,the reference-potential method(RPM)was used to measure the selectivity for calcium and magnesium cations in the binding pocket of parvalbumin B protein by calculating the free energy change associated with this substitution reaction at an ab initio quantum mechanics/molecular mechanics(QM/MM)level.The alchemical transformations were performed at the molecular mechanics level,and the relative binding free energy was then corrected to the QM/MM level via thermodynamic perturbation.In this way,the free energy change at the QM/MM level for the substitution reaction was obtained without running the QM/MM simulations,thus remarkably enhancing the efficiency.In the reweighting process,we found that the selection of the QM region greatly affects the accuracy of the QM/MM method.In particular,the charge transfer effect on the free energy change of a reaction cannot be neglected.展开更多
Creep-fatigue test was carried out using smooth round bar specimens of Type 304 stainless steel. Cavities and small cracks on the cross-section of the specimen were carefully observed by a scanning laser microscope. ...Creep-fatigue test was carried out using smooth round bar specimens of Type 304 stainless steel. Cavities and small cracks on the cross-section of the specimen were carefully observed by a scanning laser microscope. Moreover, direct current electrical potential method (DC-EPM) was applied in order to evaluate non-destructively the distribution of internal cracks. The distribution evaluated by DC-EPM agrees well with the actual one. (Edited author abstract) 9 Refs.展开更多
Path planning for recovery is studied on the engineering background of double unmanned surface vehicles(USVs)towing oil booms for oil spill recovery.Given the influence of obstacles on the sea,the improved artificial ...Path planning for recovery is studied on the engineering background of double unmanned surface vehicles(USVs)towing oil booms for oil spill recovery.Given the influence of obstacles on the sea,the improved artificial potential field(APF)method is used for path planning.For addressing the two problems of unreachable target and local minimum in the APF,three improved algorithms are proposed by combining the motion performance constraints of the double USV system.These algorithms are then combined as the final APF-123 algorithm for oil spill recovery.Multiple sets of simulation tests are designed according to the flaws of the APF and the process of oil spill recovery.Results show that the proposed algorithms can ensure the system’s safety in tracking oil spills in a complex environment,and the speed is increased by more than 40%compared with the APF method.展开更多
Electric double layer(EDL)is a critical topic in electrochemistry and largely determines the working performance of lithium batteries.However,atomic insights into the EDL structures on heteroatom-modified graphite ano...Electric double layer(EDL)is a critical topic in electrochemistry and largely determines the working performance of lithium batteries.However,atomic insights into the EDL structures on heteroatom-modified graphite anodes and EDL evolution with electrode potential are very lacking.Herein,a constant-potential molecular dynamics(CPMD)method is proposed to probe the EDL structure under working conditions,taking N-doped graphite electrodes and carbonate electrolytes as an example.An interface model was developed,incorporating the electrode potential and atom electronegativities.As a result,an insightful atomic scenario for the EDL structure under varied electrode potentials has been established,which unveils the important role of doping sites in regulating both the EDL structures and the following electrochemical reactions at the atomic level.Specifically,the negatively charged N atoms repel the anions and adsorb Li~+at high and low potentials,respectively.Such preferential adsorption suggests that Ndoped graphite can promote Li~+desolvation and regulate the location of Li~+deposition.This CPMD method not only unveils the mysterious function of N-doping from the viewpoint of EDL at the atomic level but also applies to probe the interfacial structure on other complicated electrodes.展开更多
Focusing on revealing the origin of high ammonia yield rate on Cu via nitrate reduction(NO3RR),we herein applied constant potential method via grand-canonical density functional theory(GC-DFT)with implicit continuum s...Focusing on revealing the origin of high ammonia yield rate on Cu via nitrate reduction(NO3RR),we herein applied constant potential method via grand-canonical density functional theory(GC-DFT)with implicit continuum solvation model to predict the reaction energetics of NO3RR on pure copper surface in alkaline media.The potential-dependent mechanism on the most prevailing Cu(111)and the minor(100)and(110)facets were established,in consideration of NO_(2)_(−),NO,NH_(3),NH_(2)OH,N_(2),and N_(2)O as the main products.The computational results show that the major Cu(111)is the ideal surface to produce ammonia with the highest onset potential at 0.06 V(until−0.37 V)and the highest optimal potential at−0.31 V for ammonia production without kinetic obstacles in activation energies at critical steps.For other minor facets,the secondary Cu(100)shows activity to ammonia from−0.03 to−0.54 V with the ideal potential at−0.50 V,which requires larger overpotential to overcome kinetic activation energy barriers.The least Cu(110)possesses the longest potential range for ammonia yield from−0.27 to−1.12 V due to the higher adsorption coverage of nitrate,but also with higher tendency to generate di-nitrogen species.Experimental evaluations on commercial Cu/C electrocatalyst validated the accuracy of our proposed mechanism.The most influential(111)surface with highest percentage in electrocatalyst determined the trend of ammonia production.In specific,the onset potential of ammonia production at 0.1 V and emergence of yield rate peak at−0.3 V in experiments precisely located in the predicted potentials on Cu(111).Four critical factors for the high ammonia yield and selectivity on Cu surface via NO3RR are summarized,including high NO3RR activity towards ammonia on the dominant Cu(111)facet,more possibilities to produce ammonia along different pathways on each facet,excellent ability for HER inhibition and suitable surface size to suppress di-nitrogen species formation at high nitrate coverage.Overall,our work provides comprehensive potential-dependent insights into the reaction details of NO3RR to ammonia,which can serve as references for the future development of NO3RR electrocatalysts,achieving higher activity and selectivity by maximizing these characteristics of copper-based materials.展开更多
This paper is intended to apply the potential integration method to the differential equations of the Birkhoffian system. The method is that, for a given Birkhoffian system, its differential equations are first rewrit...This paper is intended to apply the potential integration method to the differential equations of the Birkhoffian system. The method is that, for a given Birkhoffian system, its differential equations are first rewritten as 2n first-order differential equations. Secondly, the corresponding partial differential equations are obtained by potential integration method and the solution is expressed as a complete integral. Finally, the integral of the system is obtained.展开更多
This paper presents an overview of the recent progress of potential theory method in the analysis of mixed boundary value problems mainly stemming from three-dimensional crack or contact problems of multi-field couple...This paper presents an overview of the recent progress of potential theory method in the analysis of mixed boundary value problems mainly stemming from three-dimensional crack or contact problems of multi-field coupled media. This method was used to derive a series of exact three dimensional solutions which should be of great theoretical significance because most of them usually cannot be derived by other methods such as the transform method and the trial-and-error method. Further, many solutions are obtained in terms of elementary functions that enable us to treat more complicated problems easily. It is pointed out here that the method is usually only applicable to media characterizing transverse isotropy, from which, however, the results for the isotropic case can be readily obtained.展开更多
In this paper, we made a new breakthrough, which proposes a new recursion–transform(RT) method with potential parameters to evaluate the nodal potential in arbitrary resistor networks. For the first time, we found ...In this paper, we made a new breakthrough, which proposes a new recursion–transform(RT) method with potential parameters to evaluate the nodal potential in arbitrary resistor networks. For the first time, we found the exact potential formulae of arbitrary m × n cobweb and fan networks by the RT method, and the potential formulae of infinite and semi-infinite networks are derived. As applications, a series of interesting corollaries of potential formulae are given by using the general formula, the equivalent resistance formula is deduced by using the potential formula, and we find a new trigonometric identity by comparing two equivalence results with different forms.展开更多
This paper presents the dimension split element-free Galerkin (DSEFG) method for three-dimensional potential problems, and the corresponding formulae are obtained. The main idea of the DSEFG method is that a three-d...This paper presents the dimension split element-free Galerkin (DSEFG) method for three-dimensional potential problems, and the corresponding formulae are obtained. The main idea of the DSEFG method is that a three-dimensional potential problem can be transformed into a series of two-dimensional problems. For these two-dimensional problems, the improved moving least-squares (IMLS) approximation is applied to construct the shape function, which uses an orthogonal function system with a weight function as the basis functions. The Galerkin weak form is applied to obtain a discretized system equation, and the penalty method is employed to impose the essential boundary condition. The finite difference method is selected in the splitting direction. For the purposes of demonstration, some selected numerical examples are solved using the DSEFG method. The convergence study and error analysis of the DSEFG method are presented. The numerical examples show that the DSEFG method has greater computational precision and computational efficiency than the IEFG method.展开更多
The method of artificial potential field has obvious advantages among the robot path planning methods including simple structure,small amount of calculation and relatively mature in theory.This paper puts forward the&...The method of artificial potential field has obvious advantages among the robot path planning methods including simple structure,small amount of calculation and relatively mature in theory.This paper puts forward the"Integral method"focusing on solving the problem of local minimization.The method analyses the distribution of obstructions in a given environment and regards adjacent obstacles as a whole,By changing the parameters of the repulsive force field,robots can quickly get out of the minimum point and move to the target point.This paper uses the Simurosot platform to carry on the simulation experiment on the improved artificial potential field method,which projects a feasible path successfully and verifies this method.展开更多
Surface potential decay of polymers for electrical insulation can help to determine the dark conductivity for spacecraft charging analysis. Due to the existence of radiation-induced conductivity, it decays fast in the...Surface potential decay of polymers for electrical insulation can help to determine the dark conductivity for spacecraft charging analysis. Due to the existence of radiation-induced conductivity, it decays fast in the first few hours after irradiation and exponentially slowly for the remaining time. The measurement of dark conductivity with this method usually takes the slow part and needs a couple of days. Integrating the Fowler formula into the deep dielectric charging equations, we obtain a new expression for the fast decay part. The experimental data of different materials, dose rates and temperatures are fitted by the new expression. Both the dark conductivity and the radiation-induced conductivity are derived and compared with other methods. The result shows a good estimation of dark conductivity and radiation-induced conductivity in high-resistivity polymers, which enables a fast measurement of dielectric conductivity within about 600 rain after irradiation.展开更多
Using the asymptotic iteration method, we obtain the S-wave solution for a short-range three-parameter central potential with 1/r singularity and with a non-orbital barrier. To the best of our knowledge, this is the f...Using the asymptotic iteration method, we obtain the S-wave solution for a short-range three-parameter central potential with 1/r singularity and with a non-orbital barrier. To the best of our knowledge, this is the first attempt at calculating the energy spectrum for this potential, which was introduced by H. Bahlouli and A. D. Alhaidari and for which they obtained the “potential parameter spectrum”. Our results are also independently verified using a direct method of diagonalizing the Hamiltonian matrix in the J-matrix basis.展开更多
We investigate the phenomena of spontaneous symmetry breaking for φ^4 model on a square lattice in the parameter space by using the potential importance samplingmethod, which was proposed by Milchev, Heermann, and Bi...We investigate the phenomena of spontaneous symmetry breaking for φ^4 model on a square lattice in the parameter space by using the potential importance samplingmethod, which was proposed by Milchev, Heermann, and Binder [J. Star. Phys. 44 (1986) 749]. The critical values of the parameters allow us to determine the phase diagram of the model. At the same time, some relevant quantifies such as susceptibility and specific heat are also obtained.展开更多
We give a detailed examination of potential energy curves of the singlet and triplet states of CFC1 correlated with the lowest three dissociation limits. The calculations are carried out at the internally contracted m...We give a detailed examination of potential energy curves of the singlet and triplet states of CFC1 correlated with the lowest three dissociation limits. The calculations are carried out at the internally contracted multi- reference configuration interaction/cc-pV(T+d)Z level with the other two geometric parameters fixed at the state equilibrium conformation. The vertical transition energy, the oscillator strength, the main configuration and the electron transition are also investigated at the same level.展开更多
The determination of the gravitational potential of a prism plays an important role in physical geodesy and geophysics. However, there are few literatures that provide accurate approaches for determining the gravitati...The determination of the gravitational potential of a prism plays an important role in physical geodesy and geophysics. However, there are few literatures that provide accurate approaches for determining the gravitational potential of a prism. Discrete element method can be used to determine the gravitational potential of a prism, and can approximate the true gravitational potential values with sufficient accuracy (the smaller each element is, the more accurate the result is). Although Nagy's approach provided a closed expression, one does not know whether it is valid, due to the fact that this approach has not been confirmed in literatures. In this paper, a study on the comparison of Nagy's approach with discrete element method is presented. The results show that Nagy's formulas for determining the gravitational potential of a prism are valid in the domain both inside and outside the prism.展开更多
This paper presents a new non-linear formulation of the classical Vortex Lattice Method (VLM) approach for calculating the aerodynamic properties of lifting surfaces. The method accounts for the effects of viscosity...This paper presents a new non-linear formulation of the classical Vortex Lattice Method (VLM) approach for calculating the aerodynamic properties of lifting surfaces. The method accounts for the effects of viscosity, and due to its low computational cost, it represents a very good tool to perform rapid and accurate wing design and optimization procedures. The mathematical model is constructed by using two-dimensional viscous analyses of the wing span-wise sections, according to strip theory, and then coupling the strip viscous forces with the forces generated by the vortex rings distributed on the wing camber surface, calculated with a fully three-dimensional vortex lifting law. The numerical results obtained with the proposed method are validated with experimental data and show good agreement in predicting both the lift and pitching moment, as well as in predicting the wing drag. The method is applied to modifying the wing of an Unmanned Aerial System to increase its aerodynamic efficiency and to calculate the drag reductions obtained by an upper surface morphing technique for an adaptable regional aircraft wing.展开更多
In this paper, a modified direct product method of scattering matrix (DPSM) was presented and the cal- culation formulawas derived as follows: φ(z)=∑n1/n!(Mz)nφ(O)and φ(z+εj)=∑n1/n!(Mεj)nφ(z),...In this paper, a modified direct product method of scattering matrix (DPSM) was presented and the cal- culation formulawas derived as follows: φ(z)=∑n1/n!(Mz)nφ(O)and φ(z+εj)=∑n1/n!(Mεj)nφ(z),whereM is the scattering matrix of which the dimension can be reduced by 'Bethe potential method' drastically and therefore the calculation speed can be increased tremendously without losing accuracy very much. The results calculated with the DPSM method are in almost exact agreement with those calculated with BW method. However, the calculation speed for the modified DPSM method is approximately three times faster than that for the BW method. Furthermore, the DPSM is suitable for computing all types of ma- trices without requiring symmetry or conjugate symmetry.展开更多
文摘A gas production potential method for optimization of gas wellsite locations selection is proposed in terms of the coalbed gas resources volume and the recoverability. The method uses the actual data about reservoirs in a coalbed gas field in central China to optimize wellsite locations in the studied area in combination with the dynamic data about actual production in the coalbed gas field, selects a favorable subarea for gas wells deployment. The method is established based on the basic properties of coal reservoirs, in combination with the coalbed thickness and the gas content to make an analysis of the gas storage potential of a coal reservoir, as well as resources volume and the permeability of a coal reservoir. This method can be popularized for optimization of wellsite locations in other methane gas development areas or blocks.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10272021 and 10572021 and the Doctoral Program Foundation of Institutions of Higher Education of China (Grant No 20040007022).
文摘This paper is intended to apply a potential method of integration to solving the equations of holonomic and nonholonomic systems. For a holonomic system, the differential equations of motion can be written as a system of differential equations of first order and its fundamental partial differential equation is solved by using the potential method of integration. For a nonholonomic system, the equations of the corresponding holonomic system are solved by using the method and then the restriction of the nonholonomic constraints on the initial conditions of motion is added.
基金supported by the Ministry of Science and Technology of China(No.2016YFA0501700)the National Natural Science Foundation of China(No.22073030)supported by the Supercomputer Center of East China Normal University(ECNU Public Platform for Innovation No.001)。
文摘Ion selectivity in protein binding sites is of great significance to biological functions.Although additive force fields have been successfully applied to various protein-related studies,it is difficult to well capture the subtle metal-protein interaction for the prediction of ion selectivity,due to the remarkable polarization and charge transfer effect between the metals and the surrounding residues.Quantum mechanics-based methods are well-suited for dealing with these systems,but they are too costly to apply in a direct manner.In this work,the reference-potential method(RPM)was used to measure the selectivity for calcium and magnesium cations in the binding pocket of parvalbumin B protein by calculating the free energy change associated with this substitution reaction at an ab initio quantum mechanics/molecular mechanics(QM/MM)level.The alchemical transformations were performed at the molecular mechanics level,and the relative binding free energy was then corrected to the QM/MM level via thermodynamic perturbation.In this way,the free energy change at the QM/MM level for the substitution reaction was obtained without running the QM/MM simulations,thus remarkably enhancing the efficiency.In the reweighting process,we found that the selection of the QM region greatly affects the accuracy of the QM/MM method.In particular,the charge transfer effect on the free energy change of a reaction cannot be neglected.
文摘Creep-fatigue test was carried out using smooth round bar specimens of Type 304 stainless steel. Cavities and small cracks on the cross-section of the specimen were carefully observed by a scanning laser microscope. Moreover, direct current electrical potential method (DC-EPM) was applied in order to evaluate non-destructively the distribution of internal cracks. The distribution evaluated by DC-EPM agrees well with the actual one. (Edited author abstract) 9 Refs.
基金Supported by the National Natural Science Foundation of China (Grant No. 52071097)Hainan Provincial Natural Science Foundation of China (Grant No. 522MS162)Research Fund from Science and Technology on Underwater Vehicle Technology Laboratory (Grant No. 2021JCJQ-SYSJJ-LB06910)。
文摘Path planning for recovery is studied on the engineering background of double unmanned surface vehicles(USVs)towing oil booms for oil spill recovery.Given the influence of obstacles on the sea,the improved artificial potential field(APF)method is used for path planning.For addressing the two problems of unreachable target and local minimum in the APF,three improved algorithms are proposed by combining the motion performance constraints of the double USV system.These algorithms are then combined as the final APF-123 algorithm for oil spill recovery.Multiple sets of simulation tests are designed according to the flaws of the APF and the process of oil spill recovery.Results show that the proposed algorithms can ensure the system’s safety in tracking oil spills in a complex environment,and the speed is increased by more than 40%compared with the APF method.
基金supported by the National Natural Science Foundation of China(T2322015,22209094,22209093,and 22109086)the National Key Research and Development Program(2021YFB2500300)+2 种基金the Open Research Fund of CNMGE Platform&NSCC-TJOrdos-Tsinghua Innovative&Collaborative Research Program in Carbon Neutralitythe Tsinghua University Initiative Scientific Research Program。
文摘Electric double layer(EDL)is a critical topic in electrochemistry and largely determines the working performance of lithium batteries.However,atomic insights into the EDL structures on heteroatom-modified graphite anodes and EDL evolution with electrode potential are very lacking.Herein,a constant-potential molecular dynamics(CPMD)method is proposed to probe the EDL structure under working conditions,taking N-doped graphite electrodes and carbonate electrolytes as an example.An interface model was developed,incorporating the electrode potential and atom electronegativities.As a result,an insightful atomic scenario for the EDL structure under varied electrode potentials has been established,which unveils the important role of doping sites in regulating both the EDL structures and the following electrochemical reactions at the atomic level.Specifically,the negatively charged N atoms repel the anions and adsorb Li~+at high and low potentials,respectively.Such preferential adsorption suggests that Ndoped graphite can promote Li~+desolvation and regulate the location of Li~+deposition.This CPMD method not only unveils the mysterious function of N-doping from the viewpoint of EDL at the atomic level but also applies to probe the interfacial structure on other complicated electrodes.
基金supported by is supported by the Shanghai Municipal Science and Technology Major Projectthe support from Shanghai Super Postdoctoral Incentive Program
文摘Focusing on revealing the origin of high ammonia yield rate on Cu via nitrate reduction(NO3RR),we herein applied constant potential method via grand-canonical density functional theory(GC-DFT)with implicit continuum solvation model to predict the reaction energetics of NO3RR on pure copper surface in alkaline media.The potential-dependent mechanism on the most prevailing Cu(111)and the minor(100)and(110)facets were established,in consideration of NO_(2)_(−),NO,NH_(3),NH_(2)OH,N_(2),and N_(2)O as the main products.The computational results show that the major Cu(111)is the ideal surface to produce ammonia with the highest onset potential at 0.06 V(until−0.37 V)and the highest optimal potential at−0.31 V for ammonia production without kinetic obstacles in activation energies at critical steps.For other minor facets,the secondary Cu(100)shows activity to ammonia from−0.03 to−0.54 V with the ideal potential at−0.50 V,which requires larger overpotential to overcome kinetic activation energy barriers.The least Cu(110)possesses the longest potential range for ammonia yield from−0.27 to−1.12 V due to the higher adsorption coverage of nitrate,but also with higher tendency to generate di-nitrogen species.Experimental evaluations on commercial Cu/C electrocatalyst validated the accuracy of our proposed mechanism.The most influential(111)surface with highest percentage in electrocatalyst determined the trend of ammonia production.In specific,the onset potential of ammonia production at 0.1 V and emergence of yield rate peak at−0.3 V in experiments precisely located in the predicted potentials on Cu(111).Four critical factors for the high ammonia yield and selectivity on Cu surface via NO3RR are summarized,including high NO3RR activity towards ammonia on the dominant Cu(111)facet,more possibilities to produce ammonia along different pathways on each facet,excellent ability for HER inhibition and suitable surface size to suppress di-nitrogen species formation at high nitrate coverage.Overall,our work provides comprehensive potential-dependent insights into the reaction details of NO3RR to ammonia,which can serve as references for the future development of NO3RR electrocatalysts,achieving higher activity and selectivity by maximizing these characteristics of copper-based materials.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10572021 and 10772025)
文摘This paper is intended to apply the potential integration method to the differential equations of the Birkhoffian system. The method is that, for a given Birkhoffian system, its differential equations are first rewritten as 2n first-order differential equations. Secondly, the corresponding partial differential equations are obtained by potential integration method and the solution is expressed as a complete integral. Finally, the integral of the system is obtained.
基金Project (No. 10372088) supported by the National Natural Science Foundation of China
文摘This paper presents an overview of the recent progress of potential theory method in the analysis of mixed boundary value problems mainly stemming from three-dimensional crack or contact problems of multi-field coupled media. This method was used to derive a series of exact three dimensional solutions which should be of great theoretical significance because most of them usually cannot be derived by other methods such as the transform method and the trial-and-error method. Further, many solutions are obtained in terms of elementary functions that enable us to treat more complicated problems easily. It is pointed out here that the method is usually only applicable to media characterizing transverse isotropy, from which, however, the results for the isotropic case can be readily obtained.
基金Project supported by the Natural Science Foundation of Jiangsu Province,China(Grant No.BK20161278)
文摘In this paper, we made a new breakthrough, which proposes a new recursion–transform(RT) method with potential parameters to evaluate the nodal potential in arbitrary resistor networks. For the first time, we found the exact potential formulae of arbitrary m × n cobweb and fan networks by the RT method, and the potential formulae of infinite and semi-infinite networks are derived. As applications, a series of interesting corollaries of potential formulae are given by using the general formula, the equivalent resistance formula is deduced by using the potential formula, and we find a new trigonometric identity by comparing two equivalence results with different forms.
基金supported by the National Natural Science Foundation of China (Grants 11571223, 51404160)Shanxi Province Science Foundation for Youths (Grant 2014021025-1)
文摘This paper presents the dimension split element-free Galerkin (DSEFG) method for three-dimensional potential problems, and the corresponding formulae are obtained. The main idea of the DSEFG method is that a three-dimensional potential problem can be transformed into a series of two-dimensional problems. For these two-dimensional problems, the improved moving least-squares (IMLS) approximation is applied to construct the shape function, which uses an orthogonal function system with a weight function as the basis functions. The Galerkin weak form is applied to obtain a discretized system equation, and the penalty method is employed to impose the essential boundary condition. The finite difference method is selected in the splitting direction. For the purposes of demonstration, some selected numerical examples are solved using the DSEFG method. The convergence study and error analysis of the DSEFG method are presented. The numerical examples show that the DSEFG method has greater computational precision and computational efficiency than the IEFG method.
文摘The method of artificial potential field has obvious advantages among the robot path planning methods including simple structure,small amount of calculation and relatively mature in theory.This paper puts forward the"Integral method"focusing on solving the problem of local minimization.The method analyses the distribution of obstructions in a given environment and regards adjacent obstacles as a whole,By changing the parameters of the repulsive force field,robots can quickly get out of the minimum point and move to the target point.This paper uses the Simurosot platform to carry on the simulation experiment on the improved artificial potential field method,which projects a feasible path successfully and verifies this method.
基金Supported by the Fundamental Research Funds for the Central Universities in Nanjing University of Aeronautics and Astronautics under Grant No NS2014089
文摘Surface potential decay of polymers for electrical insulation can help to determine the dark conductivity for spacecraft charging analysis. Due to the existence of radiation-induced conductivity, it decays fast in the first few hours after irradiation and exponentially slowly for the remaining time. The measurement of dark conductivity with this method usually takes the slow part and needs a couple of days. Integrating the Fowler formula into the deep dielectric charging equations, we obtain a new expression for the fast decay part. The experimental data of different materials, dose rates and temperatures are fitted by the new expression. Both the dark conductivity and the radiation-induced conductivity are derived and compared with other methods. The result shows a good estimation of dark conductivity and radiation-induced conductivity in high-resistivity polymers, which enables a fast measurement of dielectric conductivity within about 600 rain after irradiation.
文摘Using the asymptotic iteration method, we obtain the S-wave solution for a short-range three-parameter central potential with 1/r singularity and with a non-orbital barrier. To the best of our knowledge, this is the first attempt at calculating the energy spectrum for this potential, which was introduced by H. Bahlouli and A. D. Alhaidari and for which they obtained the “potential parameter spectrum”. Our results are also independently verified using a direct method of diagonalizing the Hamiltonian matrix in the J-matrix basis.
文摘We investigate the phenomena of spontaneous symmetry breaking for φ^4 model on a square lattice in the parameter space by using the potential importance samplingmethod, which was proposed by Milchev, Heermann, and Binder [J. Star. Phys. 44 (1986) 749]. The critical values of the parameters allow us to determine the phase diagram of the model. At the same time, some relevant quantifies such as susceptibility and specific heat are also obtained.
基金Supported by the National Natural Science Foundation of China under Grant No 11447148
文摘We give a detailed examination of potential energy curves of the singlet and triplet states of CFC1 correlated with the lowest three dissociation limits. The calculations are carried out at the internally contracted multi- reference configuration interaction/cc-pV(T+d)Z level with the other two geometric parameters fixed at the state equilibrium conformation. The vertical transition energy, the oscillator strength, the main configuration and the electron transition are also investigated at the same level.
基金Supported by the National Natural Science Foundation of China (No.40637034, 40974015)the National 863 Program of China (No.2006AA12Z211)
文摘The determination of the gravitational potential of a prism plays an important role in physical geodesy and geophysics. However, there are few literatures that provide accurate approaches for determining the gravitational potential of a prism. Discrete element method can be used to determine the gravitational potential of a prism, and can approximate the true gravitational potential values with sufficient accuracy (the smaller each element is, the more accurate the result is). Although Nagy's approach provided a closed expression, one does not know whether it is valid, due to the fact that this approach has not been confirmed in literatures. In this paper, a study on the comparison of Nagy's approach with discrete element method is presented. The results show that Nagy's formulas for determining the gravitational potential of a prism are valid in the domain both inside and outside the prism.
基金the Natural Sciences and Engineering Research Council of Canada (NSERC) for the funding of the Canada Research Chair in Aircraft Modeling and Simulation Technologiesthe Canada Foundation of Innovation (CFI), the Ministerèdu Développement économique, de l’Innovation et de l’Exportation (MDEIE) and Hydra Technologies for the acquisition of the UAS-S4 using the Leaders Opportunity Funds+2 种基金the financial support obtained in the framework of the CRIAQ MDO-505 projectthe implication of our industrial partners Bombardier Aerospace and Thales CanadaNSERC for their support
文摘This paper presents a new non-linear formulation of the classical Vortex Lattice Method (VLM) approach for calculating the aerodynamic properties of lifting surfaces. The method accounts for the effects of viscosity, and due to its low computational cost, it represents a very good tool to perform rapid and accurate wing design and optimization procedures. The mathematical model is constructed by using two-dimensional viscous analyses of the wing span-wise sections, according to strip theory, and then coupling the strip viscous forces with the forces generated by the vortex rings distributed on the wing camber surface, calculated with a fully three-dimensional vortex lifting law. The numerical results obtained with the proposed method are validated with experimental data and show good agreement in predicting both the lift and pitching moment, as well as in predicting the wing drag. The method is applied to modifying the wing of an Unmanned Aerial System to increase its aerodynamic efficiency and to calculate the drag reductions obtained by an upper surface morphing technique for an adaptable regional aircraft wing.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11274263 and 11274264)
文摘In this paper, a modified direct product method of scattering matrix (DPSM) was presented and the cal- culation formulawas derived as follows: φ(z)=∑n1/n!(Mz)nφ(O)and φ(z+εj)=∑n1/n!(Mεj)nφ(z),whereM is the scattering matrix of which the dimension can be reduced by 'Bethe potential method' drastically and therefore the calculation speed can be increased tremendously without losing accuracy very much. The results calculated with the DPSM method are in almost exact agreement with those calculated with BW method. However, the calculation speed for the modified DPSM method is approximately three times faster than that for the BW method. Furthermore, the DPSM is suitable for computing all types of ma- trices without requiring symmetry or conjugate symmetry.