The Zhuanglang river and Baiyin Baiyangshu river faults are late Quaternary faults near Lanzhou city, which pose a threat to the safety of the city. However, the cause of medium- strong earthquakes along the fault is ...The Zhuanglang river and Baiyin Baiyangshu river faults are late Quaternary faults near Lanzhou city, which pose a threat to the safety of the city. However, the cause of medium- strong earthquakes along the fault is rather complicated and even uncertain. It is important for us how to assess the magnitudes of maximum potential earthquakes and the seismic risk of the faults. The authors make reference to the method that Wen Xueze, et ai. (2007) developed to assess the magnitudes of maximum potential earthquakes in sub-areas of moderately and weakly active faults in the eastern Chinese Mainland, and brought forward an empirical relationship between the maximum magnitudes Mmax and the at/b values of the sub-areas' frequency- magnitude relationships in the Lanzhou area. By using this empirical relationship, the authors have estimated the upper-limits Mu of the Zhuanglang river and Baiyin Baiyangshu river active faults near Lanzhou city as Ms6.9 and 6.3, respectively. In addition, they have assessed the average interval recurrence time and the probabilities of destructive earthquakes on the faults.展开更多
Temperature sensitivity of soil respiration is essential to predict possible changes in terrestrial carbon budget on various scenarios about atmospheric and soil climates. Although it is often evaluated by using respi...Temperature sensitivity of soil respiration is essential to predict possible changes in terrestrial carbon budget on various scenarios about atmospheric and soil climates. Although it is often evaluated by using respiratory quotient “Q<sub>10</sub>”, Q<sub>10</sub> values of soil respiration seem to vary depending on methods or scales of evaluation. Aiming at probing how Q<sub>10</sub> values of soil respiration are evaluated differently for a field, this study used a model of soil respiration rate, and numerically evaluated soil respiration rates along depth by fitting the model to depth distributions of CO<sub>2</sub> concentration measured in a field. And temperature sensitivity of soil respiration rate was evaluated by comparing the determined soil respiration rates with atmospheric and soil temperatures measured in the field. The results showed that the relation between surface CO<sub>2</sub> emission rates and atmospheric temperatures was represented by lower Q<sub>10</sub> values than that between soil respiration rates and soil temperatures, presumably because the top soil layers had acclimatized in more extent to the existing thermal regime than the underlying deeper layers. Thus, for evaluating effects of long-term rise in atmospheric temperature on soil respiration, it is necessary to precisely predict the long-term change in depth distribution of soil temperature as well as to quantify temperature sensitivity of soil respiration along depth. The evaluated sensitivity of surface CO<sub>2</sub> emission rate to atmospheric temperature showed hysteresis, implying the needs for more knowledge about temperature sensitivity of soil respiration evaluated in both warming and cooling processes for better understandings and predictions about terrestrial carbon cycling.展开更多
Different strategies of deficit irrigation based on water stress dynamics were applied in an 11-year old citrus trees (Citrus sinensis L. Osb. cv. Navelina) grafted on carrizo citrange (Citrus sinensis L. Osb.×...Different strategies of deficit irrigation based on water stress dynamics were applied in an 11-year old citrus trees (Citrus sinensis L. Osb. cv. Navelina) grafted on carrizo citrange (Citrus sinensis L. Osb.×Poncirus Trifoliata L. Osb.). The trees were subjected to two irrigation treatments: (1) sustainable deficit irrigation (SDI) established with water supplied at 60% of the crop evapotranspiration (ETc) and (2) low frequency deficit irrigation (LFDI) irrigated according to the plant water status. In addition, a treatment irrigated at 100% of ETc was included as a control (C). Midday stem-water potential (ψUstem), stomatal conductance (gs), and micrometric trunk diameter fluctuations were measured during the maximum evapotranspirative demand period to evaluate the plant-water status, and establish the main relationships among them. The seasonal pattern of the studied variables had a behavior consistent with the contributions made by the volumes of applied irrigation water. Especially significant close relationships of ψstem with gs, and with the maximum daily shrinkage (MDS) were found. The lowest ψstem and gs values were registered in the treatments with lowest irrigations levels (SDI and LFDI), being the MDS was significative higher than in the C treatment. The LFDI showed an oscillating behavior in these parameters, which was on line with the supplied irrigation restrictions cycles. Thus, according to the results of the present experiment the physiological stress indexes based in MDS or ψstem allow establishing different irrigation restriction cycles, encouraging important water saving without significant impact on yield and the fruit quality parameters.展开更多
In this paper,we study the existence and concentration behavior of the semiclassical states with L2-constraints for the following saturable nonlinear Schr?dinger equation:-ε2Δv+Γ(I(x)+v^(2))/(1+I(x)+v^(2))v=λv fo...In this paper,we study the existence and concentration behavior of the semiclassical states with L2-constraints for the following saturable nonlinear Schr?dinger equation:-ε2Δv+Γ(I(x)+v^(2))/(1+I(x)+v^(2))v=λv for x∈R2.For a negatively large coupling constantΓ,we show that there exists a family of normalized positive solutions(i.e.,with the L2-constraint)whenεis small,which concentrate around local maxima of the intensity function I(x)asε→0.We also consider the case where I(x)may tend to-1 at infinity and the existence of multiple solutions.The proof of our results is variational and the novelty of the work lies in the development of a new truncation-type method for the construction of the desired solutions.展开更多
The occurrence of first hurricane in early summer signifies the onset of an active Atlantic hurricane season.The interannual variation of this hurricane onset date is examined for the period 1979-2013.It is found that...The occurrence of first hurricane in early summer signifies the onset of an active Atlantic hurricane season.The interannual variation of this hurricane onset date is examined for the period 1979-2013.It is found that the onset date has a marked interannual variation.The standard deviation of the interannual variation of the onset day is 17.5 days,with the climatological mean onset happening on July 23.A diagnosis of tropical cyclone(TC) genesis potential index(GPI) indicates that the major difference between an early and a late onset group lies in the maximum potential intensity(MPI).A further diagnosis of the MPI shows that it is primarily controlled by the local SST anomaly(SSTA).Besides the SSTA,vertical shear and mid-tropospheric relative humidity anomalies also contribute significantly to the GPI difference between the early and late onset groups.It is found that the anomalous warm(cold) SST over the tropical Atlantic,while uncorrected with the Nino3 index,persists from the preceding winter to concurrent summer in the early(late) onset group.The net surface heat flux anomaly always tends to damp the SSTA,which suggests that ocean dynamics may play a role in maintaining the SSTA in the tropical Atlantic.The SSTA pattern with a maximum center in northeastern tropical Atlantic appears responsible for generating the observed wind and moisture anomalies over the main TC development region.A further study is needed to understand the initiation mechanism of the SSTA in the Atlantic.展开更多
基金funded by the sub-project of National Science and Technology Support Program(2006BAC13B01-0102)the State Key Project of National 10th Five-year Programentitled"Active fault exploration and seismic risk assessment of Lanzhou city"(Grant No.1-4-28)Contribution No.LZ2008020 for Lanzhou Institute of Seismology,CEA
文摘The Zhuanglang river and Baiyin Baiyangshu river faults are late Quaternary faults near Lanzhou city, which pose a threat to the safety of the city. However, the cause of medium- strong earthquakes along the fault is rather complicated and even uncertain. It is important for us how to assess the magnitudes of maximum potential earthquakes and the seismic risk of the faults. The authors make reference to the method that Wen Xueze, et ai. (2007) developed to assess the magnitudes of maximum potential earthquakes in sub-areas of moderately and weakly active faults in the eastern Chinese Mainland, and brought forward an empirical relationship between the maximum magnitudes Mmax and the at/b values of the sub-areas' frequency- magnitude relationships in the Lanzhou area. By using this empirical relationship, the authors have estimated the upper-limits Mu of the Zhuanglang river and Baiyin Baiyangshu river active faults near Lanzhou city as Ms6.9 and 6.3, respectively. In addition, they have assessed the average interval recurrence time and the probabilities of destructive earthquakes on the faults.
文摘Temperature sensitivity of soil respiration is essential to predict possible changes in terrestrial carbon budget on various scenarios about atmospheric and soil climates. Although it is often evaluated by using respiratory quotient “Q<sub>10</sub>”, Q<sub>10</sub> values of soil respiration seem to vary depending on methods or scales of evaluation. Aiming at probing how Q<sub>10</sub> values of soil respiration are evaluated differently for a field, this study used a model of soil respiration rate, and numerically evaluated soil respiration rates along depth by fitting the model to depth distributions of CO<sub>2</sub> concentration measured in a field. And temperature sensitivity of soil respiration rate was evaluated by comparing the determined soil respiration rates with atmospheric and soil temperatures measured in the field. The results showed that the relation between surface CO<sub>2</sub> emission rates and atmospheric temperatures was represented by lower Q<sub>10</sub> values than that between soil respiration rates and soil temperatures, presumably because the top soil layers had acclimatized in more extent to the existing thermal regime than the underlying deeper layers. Thus, for evaluating effects of long-term rise in atmospheric temperature on soil respiration, it is necessary to precisely predict the long-term change in depth distribution of soil temperature as well as to quantify temperature sensitivity of soil respiration along depth. The evaluated sensitivity of surface CO<sub>2</sub> emission rate to atmospheric temperature showed hysteresis, implying the needs for more knowledge about temperature sensitivity of soil respiration evaluated in both warming and cooling processes for better understandings and predictions about terrestrial carbon cycling.
文摘Different strategies of deficit irrigation based on water stress dynamics were applied in an 11-year old citrus trees (Citrus sinensis L. Osb. cv. Navelina) grafted on carrizo citrange (Citrus sinensis L. Osb.×Poncirus Trifoliata L. Osb.). The trees were subjected to two irrigation treatments: (1) sustainable deficit irrigation (SDI) established with water supplied at 60% of the crop evapotranspiration (ETc) and (2) low frequency deficit irrigation (LFDI) irrigated according to the plant water status. In addition, a treatment irrigated at 100% of ETc was included as a control (C). Midday stem-water potential (ψUstem), stomatal conductance (gs), and micrometric trunk diameter fluctuations were measured during the maximum evapotranspirative demand period to evaluate the plant-water status, and establish the main relationships among them. The seasonal pattern of the studied variables had a behavior consistent with the contributions made by the volumes of applied irrigation water. Especially significant close relationships of ψstem with gs, and with the maximum daily shrinkage (MDS) were found. The lowest ψstem and gs values were registered in the treatments with lowest irrigations levels (SDI and LFDI), being the MDS was significative higher than in the C treatment. The LFDI showed an oscillating behavior in these parameters, which was on line with the supplied irrigation restrictions cycles. Thus, according to the results of the present experiment the physiological stress indexes based in MDS or ψstem allow establishing different irrigation restriction cycles, encouraging important water saving without significant impact on yield and the fruit quality parameters.
基金supported by National Natural Science Foundation of China(Grant No.11861053)supported by National Natural Science Foundation of China(Grant No.11831009)supported by National Natural Science Foundation of China(Grant No.11901582)。
文摘In this paper,we study the existence and concentration behavior of the semiclassical states with L2-constraints for the following saturable nonlinear Schr?dinger equation:-ε2Δv+Γ(I(x)+v^(2))/(1+I(x)+v^(2))v=λv for x∈R2.For a negatively large coupling constantΓ,we show that there exists a family of normalized positive solutions(i.e.,with the L2-constraint)whenεis small,which concentrate around local maxima of the intensity function I(x)asε→0.We also consider the case where I(x)may tend to-1 at infinity and the existence of multiple solutions.The proof of our results is variational and the novelty of the work lies in the development of a new truncation-type method for the construction of the desired solutions.
基金Supported by the National(Key)Basic Research and Development(973)Program of China(2015CB453200)National Natural Science Foundation of China(41475084)+10 种基金ONR Grant(N00014-16-12260)NRL Grant(N00173-13-1-G902)Jiangsu Natural Science Key Project(BK20150062)Jiangsu Shuang-Chuang Team(R2014SCT001)Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD),Natural Science Foundation of the Higher Education Institutions of Jiangsu Province(14KJB170015)the Startup Foundation for Introducing Talent of NUIST(2013x018)Civil Aviation Center Program(KDQC1302)The International Pacific Research Center is partially sponsored by the Japan Agency for Marine-Earth Science and Technology(JAMSTEC)SOEST contribution number 9619IPRC contribution number 1186ESMC number 103
文摘The occurrence of first hurricane in early summer signifies the onset of an active Atlantic hurricane season.The interannual variation of this hurricane onset date is examined for the period 1979-2013.It is found that the onset date has a marked interannual variation.The standard deviation of the interannual variation of the onset day is 17.5 days,with the climatological mean onset happening on July 23.A diagnosis of tropical cyclone(TC) genesis potential index(GPI) indicates that the major difference between an early and a late onset group lies in the maximum potential intensity(MPI).A further diagnosis of the MPI shows that it is primarily controlled by the local SST anomaly(SSTA).Besides the SSTA,vertical shear and mid-tropospheric relative humidity anomalies also contribute significantly to the GPI difference between the early and late onset groups.It is found that the anomalous warm(cold) SST over the tropical Atlantic,while uncorrected with the Nino3 index,persists from the preceding winter to concurrent summer in the early(late) onset group.The net surface heat flux anomaly always tends to damp the SSTA,which suggests that ocean dynamics may play a role in maintaining the SSTA in the tropical Atlantic.The SSTA pattern with a maximum center in northeastern tropical Atlantic appears responsible for generating the observed wind and moisture anomalies over the main TC development region.A further study is needed to understand the initiation mechanism of the SSTA in the Atlantic.