The modified embedded atom method (MEAM) is an empirical extension of the embedded atom method (EAM) that includes angular forces. By fitted to the lattice constants, the cohesive energy, the APE (anti-phase boundary)...The modified embedded atom method (MEAM) is an empirical extension of the embedded atom method (EAM) that includes angular forces. By fitted to the lattice constants, the cohesive energy, the APE (anti-phase boundary) energy, and the vacancy formation energy of TiAl, an accurate MEAM potential is obtained for the TiAl system with L10 structure. The calculation results of the properties of TiAl are in good agreement with experiments and the results of first principle (F.P.) calculations.展开更多
Based on the rainbow approximation of Dyson-Schwinger equation and the assumption that the full inverse quark propagator at finite chemical potential is analytic in the neighborhood of μ = 1, it is proved that the dr...Based on the rainbow approximation of Dyson-Schwinger equation and the assumption that the full inverse quark propagator at finite chemical potential is analytic in the neighborhood of μ = 1, it is proved that the dressed quark propagator at finite chemical potential μ can be written as G0^-1 [μ] =iγ·p↑-A(p↑-^2) +B(p↑-^2) with p↑-μ= (p↑-p4 +iμ). From the dressed quark propagator at finite chemical potential in Munczek model the bag constant of a baryon and the scalar quark condensate are evaluated. A comparison with previous results is given.展开更多
The nature and origin of the photon and elementary rest masses are some of the challeng-ing problems that physics face. The approaches used to solve these problems are complex and time-consuming. Specifically, the pho...The nature and origin of the photon and elementary rest masses are some of the challeng-ing problems that physics face. The approaches used to solve these problems are complex and time-consuming. Specifically, the photon rest mass pays attention to theoretical physi-cists. Many experimental works show that the photon rest mass is non zero. This problem can be solved using generalized potential dependent special relativity, which has been de-rived using simple arguments, and Maxwell’s equations, besides the conventional Einstein energy-momentum relation. The results obtained show that the rest mass of photons and elementary particles are strongly dependent on the vacuum energy and a universal con-stant. This result conforms with the models that predict time decaying vacuum energy as-sociated with production of smaller rest mass particles followed by larger masses. The two potential dependent mass expressions conform with the cosmological models that suggest the photon is generated first by assuming the universe consisting of total constant vacuum with decaying cosmological part and mass generating part. Using Maxwell’s equations, beside plank and De Broglie hypothesis together with special relativity energy-momentum relation the photon rest mass is estimated. It was shown that the photon rest mass is ex-tremely small compared to the electron mass.展开更多
The properties of phase time taken for particles to pass through a quantum potential well are investigated. It is found in a 1 dimensional quantum mechanical problem that the phase time is negative when the incident e...The properties of phase time taken for particles to pass through a quantum potential well are investigated. It is found in a 1 dimensional quantum mechanical problem that the phase time is negative when the incident energy and the thickness of potential well satisfy certain conditions. Similar results are also found in a 2 dimensional fully relativistic optical analog. It is shown that the expression of the la teral shift of transmitted optical waves is similar to that of the phase time in the 1 dimensional quantum mechanical problem. The phase time in the 2 dimensional optical problem is also shown to be negative under certain conditions.展开更多
This study presents the deduction of time domain mathematical equations to simulate the curve of the charging process of a symmetrical electrochemical supercapacitor with activated carbon electrodes fed by a source of...This study presents the deduction of time domain mathematical equations to simulate the curve of the charging process of a symmetrical electrochemical supercapacitor with activated carbon electrodes fed by a source of constant electric potential in time ε and the curve of the discharge process through two fixed resistors. The first resistor R<sub>Co</sub> is a control that aims to prevent sudden variations in the intensity of the electric current i<sub>1</sub>(t) present at the terminals of the electrochemical supercapacitor at the beginning of the charging process. The second resistor is the internal resistance R<sub>A</sub> of the ammeter used in the calculation of the intensity of the electric current i<sub>1</sub>(t) over time in the charging and discharging processes. The mathematical equations generated were based on a 2R(C + kU<sub>C</sub>(t)) electrical circuit model and allowed to simulate the effects of the potential-dependent capacitance (kU<sub>C</sub>(t)) on the charge and discharge curves and hence on the calculated values of the fixed capacitance C, the equivalent series resistance (ESR), the equivalent parallel resistance (EPR) and the electrical potential dependent capacitance index k.展开更多
Excellent fits were obtained by Talantsev (MPLB 33, 1950195, 2019) to the temperature (T)-dependent upper critical field (H<sub>c</sub><sub>2</sub>(T)) data of H<sub>3</sub>S report...Excellent fits were obtained by Talantsev (MPLB 33, 1950195, 2019) to the temperature (T)-dependent upper critical field (H<sub>c</sub><sub>2</sub>(T)) data of H<sub>3</sub>S reported by Mozaffari et al. [Nature Communications 10, 2522 (2019)] by employing four alternative phenomenological models, each of which invoked two or more properties from its sample-specific set S<sub>1</sub> = {T<sub>c</sub>, gap, coherence length, penetration depth, jump in sp.ht.} and a single value of the effective mass (m*) of an electron. Based on the premise that the variation of H<sub>c</sub><sub>2</sub>(T) is due to the variation of the chemical potential μ(T), we report here fits to the same data by employing a T-, μ- and m*-dependent equation for H<sub>c</sub><sub>2</sub>(T) and three models of μ(T), viz. the linear, the parabolic and the concave-upward model. For temperatures up to which the data are available, each of these provides a good fit. However, for lower values of T, their predictions differ. Notably, the predicted values of H<sub>c</sub><sub>2</sub>(0) are much higher than in any of the models dealt with by Talantsev. In sum, we show here that the addressed data are explicable in a framework comprising the set S<sub>2</sub> = {μ, m*, interaction parameter λ<sub>m</sub>, Landau index N<sub>L</sub>}, which is altogether different from S<sub>1</sub>.展开更多
We improve the isospin dependent quantum molecular dynamical model by including isospin effects in the Skyrme potential and the momentum dependent interaction to obtain an isospin dependent Skyrme potential and an iso...We improve the isospin dependent quantum molecular dynamical model by including isospin effects in the Skyrme potential and the momentum dependent interaction to obtain an isospin dependent Skyrme potential and an isospin dependent momentum interaction. We investigate the isospin effects of Skyrme potential and momentum dependent interaction on the isospin fractionation ratio and the dynamical mechanism in intermediate energy heavy ion collisions. It is found that the isospin dependent Skyrme potential and the isospin dependent momentum interaction produce some important isospin effects in the isospin fractionation ratio.展开更多
We propose a hierarchy of novel absorbing boundary conditions for the onedimensional stationary Schr¨odinger equation with general(linear and nonlinear)potential.The accuracy of the new absorbing boundary conditi...We propose a hierarchy of novel absorbing boundary conditions for the onedimensional stationary Schr¨odinger equation with general(linear and nonlinear)potential.The accuracy of the new absorbing boundary conditions is investigated numerically for the computation of energies and ground-states for linear and nonlinear Schr¨odinger equations.It turns out that these absorbing boundary conditions and their variants lead to a higher accuracy than the usual Dirichlet boundary condition.Finally,we give the extension of these ABCs to N-dimensional stationary Schr¨odinger equations.展开更多
In this paper we investigate the initial boundary value problem of Cahn-Hilliard equation with concentration dependent mobility and gradient dependent potential.By the energy method and the theory of Campanato spaces,...In this paper we investigate the initial boundary value problem of Cahn-Hilliard equation with concentration dependent mobility and gradient dependent potential.By the energy method and the theory of Campanato spaces,we prove the existence and the uniqueness of classical solutions in 3-dimensional space.展开更多
Ni-Mn-Ti Heusler alloys have great potential for elastocaloric refrigeration due to the colossal caloric effect and good mechanical properties. However, theoretical calculations on the characterization of the elastoca...Ni-Mn-Ti Heusler alloys have great potential for elastocaloric refrigeration due to the colossal caloric effect and good mechanical properties. However, theoretical calculations on the characterization of the elastocaloric effect are rare. An important parameter to evaluate the elastocaloric effect is the transformation entropy change, whose main source is the vibrational entropy change (ΔS_(vib)). Unfortunately, the widely used quasiharmonic approximation method fails in the prediction of the vibrational entropy for high-temperature austenite due to its dynamical instability at 0 K. To solve this problem, the temperature dependent effective potential method was used considering the temperature and anharmonic effect. Sc, V, and Zr doping at the Ti sites in B2 disordered Ni_(8)Mn_(5)Ti_(3) were studied about phase stability, martensitic transformation, and elastocaloric properties. The results revealed the austenitic structures of all the doping systems exhibit antiferromagnetic coupling characteristics at 300 K due to the temperature effect. Sc and Zr doping at the Ti sites decreased the ΔS_(vib) value, whereas V doping at the Ti site increased the ΔS_(vib) value. Further analysis proved the important evaluation criterion that the ΔS_(vib) value increases with the tetragonal distortion ratio and volume change, which has important guiding significance for improving the elastocaloric effect. Besides, the calculations of elastic constants presented all the doping systems maintain outstanding ductility evaluated from the B/G ratio. This work provides an effective strategy for designing excellent elastocaloric material with large vibrational entropy change and good mechanical properties.展开更多
We study spectral properties of a quantum Hamiltonian with a complex-valued energy-dependent potential related to a model introduced in physics of nuclear reactions[30]and we prove that the principle of limiting absor...We study spectral properties of a quantum Hamiltonian with a complex-valued energy-dependent potential related to a model introduced in physics of nuclear reactions[30]and we prove that the principle of limiting absorption holds at any point of a large subset of the essential spectrum.When an additional dissipative or smallness hypothesis is assumed on the potential,we show that the principle of limiting absorption holds at any point of the essential spectrum.展开更多
基金the National Natural Science Foundation of China.
文摘The modified embedded atom method (MEAM) is an empirical extension of the embedded atom method (EAM) that includes angular forces. By fitted to the lattice constants, the cohesive energy, the APE (anti-phase boundary) energy, and the vacancy formation energy of TiAl, an accurate MEAM potential is obtained for the TiAl system with L10 structure. The calculation results of the properties of TiAl are in good agreement with experiments and the results of first principle (F.P.) calculations.
文摘Based on the rainbow approximation of Dyson-Schwinger equation and the assumption that the full inverse quark propagator at finite chemical potential is analytic in the neighborhood of μ = 1, it is proved that the dressed quark propagator at finite chemical potential μ can be written as G0^-1 [μ] =iγ·p↑-A(p↑-^2) +B(p↑-^2) with p↑-μ= (p↑-p4 +iμ). From the dressed quark propagator at finite chemical potential in Munczek model the bag constant of a baryon and the scalar quark condensate are evaluated. A comparison with previous results is given.
文摘The nature and origin of the photon and elementary rest masses are some of the challeng-ing problems that physics face. The approaches used to solve these problems are complex and time-consuming. Specifically, the photon rest mass pays attention to theoretical physi-cists. Many experimental works show that the photon rest mass is non zero. This problem can be solved using generalized potential dependent special relativity, which has been de-rived using simple arguments, and Maxwell’s equations, besides the conventional Einstein energy-momentum relation. The results obtained show that the rest mass of photons and elementary particles are strongly dependent on the vacuum energy and a universal con-stant. This result conforms with the models that predict time decaying vacuum energy as-sociated with production of smaller rest mass particles followed by larger masses. The two potential dependent mass expressions conform with the cosmological models that suggest the photon is generated first by assuming the universe consisting of total constant vacuum with decaying cosmological part and mass generating part. Using Maxwell’s equations, beside plank and De Broglie hypothesis together with special relativity energy-momentum relation the photon rest mass is estimated. It was shown that the photon rest mass is ex-tremely small compared to the electron mass.
基金Supported by the National Natural Science Foundation of China!( 6 9870 0 9)by the Science Foundation of Shanghai Municipal
文摘The properties of phase time taken for particles to pass through a quantum potential well are investigated. It is found in a 1 dimensional quantum mechanical problem that the phase time is negative when the incident energy and the thickness of potential well satisfy certain conditions. Similar results are also found in a 2 dimensional fully relativistic optical analog. It is shown that the expression of the la teral shift of transmitted optical waves is similar to that of the phase time in the 1 dimensional quantum mechanical problem. The phase time in the 2 dimensional optical problem is also shown to be negative under certain conditions.
文摘This study presents the deduction of time domain mathematical equations to simulate the curve of the charging process of a symmetrical electrochemical supercapacitor with activated carbon electrodes fed by a source of constant electric potential in time ε and the curve of the discharge process through two fixed resistors. The first resistor R<sub>Co</sub> is a control that aims to prevent sudden variations in the intensity of the electric current i<sub>1</sub>(t) present at the terminals of the electrochemical supercapacitor at the beginning of the charging process. The second resistor is the internal resistance R<sub>A</sub> of the ammeter used in the calculation of the intensity of the electric current i<sub>1</sub>(t) over time in the charging and discharging processes. The mathematical equations generated were based on a 2R(C + kU<sub>C</sub>(t)) electrical circuit model and allowed to simulate the effects of the potential-dependent capacitance (kU<sub>C</sub>(t)) on the charge and discharge curves and hence on the calculated values of the fixed capacitance C, the equivalent series resistance (ESR), the equivalent parallel resistance (EPR) and the electrical potential dependent capacitance index k.
文摘Excellent fits were obtained by Talantsev (MPLB 33, 1950195, 2019) to the temperature (T)-dependent upper critical field (H<sub>c</sub><sub>2</sub>(T)) data of H<sub>3</sub>S reported by Mozaffari et al. [Nature Communications 10, 2522 (2019)] by employing four alternative phenomenological models, each of which invoked two or more properties from its sample-specific set S<sub>1</sub> = {T<sub>c</sub>, gap, coherence length, penetration depth, jump in sp.ht.} and a single value of the effective mass (m*) of an electron. Based on the premise that the variation of H<sub>c</sub><sub>2</sub>(T) is due to the variation of the chemical potential μ(T), we report here fits to the same data by employing a T-, μ- and m*-dependent equation for H<sub>c</sub><sub>2</sub>(T) and three models of μ(T), viz. the linear, the parabolic and the concave-upward model. For temperatures up to which the data are available, each of these provides a good fit. However, for lower values of T, their predictions differ. Notably, the predicted values of H<sub>c</sub><sub>2</sub>(0) are much higher than in any of the models dealt with by Talantsev. In sum, we show here that the addressed data are explicable in a framework comprising the set S<sub>2</sub> = {μ, m*, interaction parameter λ<sub>m</sub>, Landau index N<sub>L</sub>}, which is altogether different from S<sub>1</sub>.
基金Supported by National Natural Science Foundation of China(10435080,10447006,10575075)CAS Knowledge Innovation Project(KJCX2-SW-N02)+2 种基金Major State Basic Research Development Program in China(G2000077400)the Scientific Research Funds for the Doctor,University of Shanghai for Science and Technologythe Science and Technological Fund of Shanghai Municipal Education Commission for Selecting and Cultivating Excellent University Young Teachers
文摘We improve the isospin dependent quantum molecular dynamical model by including isospin effects in the Skyrme potential and the momentum dependent interaction to obtain an isospin dependent Skyrme potential and an isospin dependent momentum interaction. We investigate the isospin effects of Skyrme potential and momentum dependent interaction on the isospin fractionation ratio and the dynamical mechanism in intermediate energy heavy ion collisions. It is found that the isospin dependent Skyrme potential and the isospin dependent momentum interaction produce some important isospin effects in the isospin fractionation ratio.
基金supported by the French ANR fundings under the project MicroWave NT09_460489.
文摘We propose a hierarchy of novel absorbing boundary conditions for the onedimensional stationary Schr¨odinger equation with general(linear and nonlinear)potential.The accuracy of the new absorbing boundary conditions is investigated numerically for the computation of energies and ground-states for linear and nonlinear Schr¨odinger equations.It turns out that these absorbing boundary conditions and their variants lead to a higher accuracy than the usual Dirichlet boundary condition.Finally,we give the extension of these ABCs to N-dimensional stationary Schr¨odinger equations.
基金Supported by the National Natural Science Foundation of China (Grant No.11001103)the Specialized Research Fund for the Doctoral Program of Higher Education (Grant No.200801831002)+1 种基金the China Postdoctoral Science Foundation (Grant No.20100481229)the Fundamental Research Funds for the Central Universities
文摘In this paper we investigate the initial boundary value problem of Cahn-Hilliard equation with concentration dependent mobility and gradient dependent potential.By the energy method and the theory of Campanato spaces,we prove the existence and the uniqueness of classical solutions in 3-dimensional space.
基金supported by the National Natural Science Foundation of China(Nos.52271172,and 51971085).
文摘Ni-Mn-Ti Heusler alloys have great potential for elastocaloric refrigeration due to the colossal caloric effect and good mechanical properties. However, theoretical calculations on the characterization of the elastocaloric effect are rare. An important parameter to evaluate the elastocaloric effect is the transformation entropy change, whose main source is the vibrational entropy change (ΔS_(vib)). Unfortunately, the widely used quasiharmonic approximation method fails in the prediction of the vibrational entropy for high-temperature austenite due to its dynamical instability at 0 K. To solve this problem, the temperature dependent effective potential method was used considering the temperature and anharmonic effect. Sc, V, and Zr doping at the Ti sites in B2 disordered Ni_(8)Mn_(5)Ti_(3) were studied about phase stability, martensitic transformation, and elastocaloric properties. The results revealed the austenitic structures of all the doping systems exhibit antiferromagnetic coupling characteristics at 300 K due to the temperature effect. Sc and Zr doping at the Ti sites decreased the ΔS_(vib) value, whereas V doping at the Ti site increased the ΔS_(vib) value. Further analysis proved the important evaluation criterion that the ΔS_(vib) value increases with the tetragonal distortion ratio and volume change, which has important guiding significance for improving the elastocaloric effect. Besides, the calculations of elastic constants presented all the doping systems maintain outstanding ductility evaluated from the B/G ratio. This work provides an effective strategy for designing excellent elastocaloric material with large vibrational entropy change and good mechanical properties.
基金supported by Beijing Natural Science Foundation(JQ22003)the National Natural Science Foundation of China(21978147 and 21935001)Beijing Municipal Natural Science Foundation(2214063)。
文摘We study spectral properties of a quantum Hamiltonian with a complex-valued energy-dependent potential related to a model introduced in physics of nuclear reactions[30]and we prove that the principle of limiting absorption holds at any point of a large subset of the essential spectrum.When an additional dissipative or smallness hypothesis is assumed on the potential,we show that the principle of limiting absorption holds at any point of the essential spectrum.