BACKGROUND: The change in expression of synaptophysin (Syp) and postsynaptic density-95 (PSD-95) alters after cerebral infarction, and the plasticity of synapses contributes greatly to nerve function recovery. Ch...BACKGROUND: The change in expression of synaptophysin (Syp) and postsynaptic density-95 (PSD-95) alters after cerebral infarction, and the plasticity of synapses contributes greatly to nerve function recovery. Chinese medicinal substances may play an important role in the expression of Syp and PSD-95. OBJECTIVE: To observe the effect of Panaxtriol Saponins (PTS), an active component in Sanqi tongshu capsules, on the expression of Syp and PSD-95 after cerebral infarction at different time points in rats, so as to examine the cerebral function remodeling mechanism. DESIGN, TIME AND SETTING: A randomized and controlled observation which was performed in Dongzhimen Hospital, Beijing University of Traditional Chinese Medicine from January to March, 2007. MATERIALS: Twenty-six healthy male Sprague Dawley rats were used to establish middle cerebral artery occlusion based on the Longa method. Sanqi tongshu capsules (containing 100 mg PTS per tablet) were provided by the Chengdu Huashen Group and nimodipine tablets (30 mg) by Tianjin Zhongyang Pharmaceutical Co., Ltd. METHODS: Twenty-six rats were randomly divided into an operation group (n = 21 ) and a control group (n = 5). The operation group underwent the EZ Longa procedure to make the middle cerebral artery occlusion model. After surgery rats were randomly divided into a model group, a PTS group and a nimodipine group, with seven rats in each group. Rats were intragastrically administrated with saline (2 mL/d) in the model group, with Sanqi tongshu capsule (5.4 mg/100 g/d) in the PTS group, and with nimodipine (1.73 mg/100 g/d) in the nimodipine group. Rats in the control group did not undergo model establishment and drug administration. MAIN OUTCOME MEASURES: The expressions of Syp and PSD-95 were measured by immunohistochemical and image analysis at days 3, 7 and 28 after the operation. RESULTS: The expression of Syp and PSD-95 in the operation group was significantly lower than in the control group at days 3, 7, 28 postoperatively (P 〈 0.05). The expression of Syp and PSD-95 in the PTS group and nimodipine group was significantly higher than in the model group at day 28 postoperatively (P 〈 0.05-0.01). Additionally, after PTS and nimodipine treatment at different intervals, the expression of Syp and PSD-95 at day 28 postoperatively was significantly higher than those at days 3 and 7 postoperatively, respectively (P 〈 0.01). CONCLUSION: PTS can promote the expression of Syp and PSD-95, i.e. the remodeling process of synapses, after cerebral infarction at different time points in rats, which contributes to cerebral function remodeling.展开更多
It was confirmed that sodium ferulate (SF) could significantly improve neurologic function deficit, reduce cerebral infarct volume at 24 h after reperfusion, and weakened postsynaptic density-95 (PSD-95) activation in...It was confirmed that sodium ferulate (SF) could significantly improve neurologic function deficit, reduce cerebral infarct volume at 24 h after reperfusion, and weakened postsynaptic density-95 (PSD-95) activation in ische-mic area reacting to ischemia after transient middle cerebral artery occlusion ( MCAO) by Western immunoblot analy-展开更多
Objective: To investigate the effects of sodium ferulate (SF), an intravenous drug made from traditional Chinese herbs, on activation of postsynaptic density-95 (PSD-95) and neuroprotection after transient cerebr...Objective: To investigate the effects of sodium ferulate (SF), an intravenous drug made from traditional Chinese herbs, on activation of postsynaptic density-95 (PSD-95) and neuroprotection after transient cerebral artery occlusion in rats. Methods: Forty-six male Sprague-Dawley rats were randomized into 2 groups ( n = 23 in each group) : the control group and the SF group. After anesthesia, the middle cerebral artery occlusion (MCAO) was conducted with the intraluminal filament technique. The neurological deficit was assessed with the method devised by Bederson et al.^ 8 The 2, 3, 4-triphenyltetrazolium chloride staining was used to assess the infarct volume. We adopted a modified six-point scale to conduct neurobehavioral evaluation. Immediately the activation of postsynaptic density-95 ( PSD- 95 ) was studied with Western blot analysis system in the cortex and striatum of rat brain. Results : The neurologic deficit score of the SF group decreased substantially compared with that of the control group ( P 〈0.05). The infarct volume of the control group (168.1 mm^3 ± 42.2 mm^3) was significantly larger than that of the SF group (61.5 mm^3 ± 28.7 mm^3 ) at 24 hours after reperfusion (P 〈 0.01 ). And the rats showed some neurological deficit. The activity of PSD-95 in the SF group at most timepoints was less than that in the control group. No upregulation of PSD-95 protein could be detected in the contralateral cortex. Conclusions : Sodium ferulate can induce a neuroproteetive effect against the transient focal cerebral isehemie injury and weaken the activation of PSD-95 in isehemie area after MCAO.展开更多
Objective Postsynaptic density protein 95 (PSD-95) plays important roles in the regulation of glutamate signaling, such as that of N-methyl-D-aspartate receptors (NMDARs). In this study, the functional roles of PS...Objective Postsynaptic density protein 95 (PSD-95) plays important roles in the regulation of glutamate signaling, such as that of N-methyl-D-aspartate receptors (NMDARs). In this study, the functional roles of PSD-95 in tyrosine phosphorylafion of NMDAR subunit 2A (NR2A) and in apoptosis-like cell death induced by oxygen-glucose de- privation (OGD) in cultured rat cortical neurons were investigated. Methods We used immunoprecipitation and immuno- blotting to detect PSD-95 protein level, tyrosine phosphorylation level of NR2A, and the interaction between PSD-95 and NR2A or Src. Apoptosis-like cells were observed by 4,6-diamidino-2-phenylindole staining. Results Tyrosine phospho- rylation of NR2A and apoptosis-like cell death were increased after recovery following 60-min OGD. The increases were attenuated by pretreatment with antisense oligonucleotides against PSD-95 before OGD, but not by missense oligonucle- otides or vehicle. PSD-95 antisense oligonucleotides also inhibited the increased interaction between PSD-95 and NR2A or Src, while NR2A expression did not change under this condition. Conclusion PSD-95 may be involved in regulating NR2A tyrosine phosphorylation by Src kinase. Inhibition of PSD-95 expression can be neuroprotective against apoptosis- like cell death after recovery from OGD.展开更多
We previously reported that postsynaptic density-93 mediates neuron-microglia crosstalk by interacting with amino acids 357–395 of C-X3-C motif chemokine ligand 1(CX3 CL1) to induce microglia polarization. More impor...We previously reported that postsynaptic density-93 mediates neuron-microglia crosstalk by interacting with amino acids 357–395 of C-X3-C motif chemokine ligand 1(CX3 CL1) to induce microglia polarization. More importantly, the peptide Tat-CX3 CL1(comprising amino acids 357–395 of CX3 CL1) disrupts the interaction between postsynaptic density-93 and CX3 CL1, reducing neurological impairment and exerting a protective effect in the context of acute ischemic stroke. However, the mechanism underlying these effects remains unclear. In the current study, we found that the pro-inflammatory M1 phenotype increased and the anti-inflammatory M2 phenotype decreased at different time points. The M1 phenotype increased at 6 hours after stroke and peaked at 24 hours after perfusion, whereas the M2 phenotype decreased at 6 and 24 hours following reperfusion. We found that the peptide Tat-CX3 CL1(357–395 aa) facilitates microglial polarization from M1 to M2 by reducing the production of soluble CX3 CL1. Furthermore, the a disintegrin and metalloprotease domain 17(ADAM17) inhibitor GW280264 x, which inhibits metalloprotease activity and prevents CX3 CL1 from being sheared into its soluble form, facilitated microglial polarization from M1 to M2 by inhibiting soluble CX3 CL1 formation. Additionally, Tat-CX3 CL1(357–395 aa) attenuated long-term cognitive deficits and improved white matter integrity as determined by the Morris water maze test at 31–34 days following surgery and immunofluorescence staining at 35 days after stroke, respectively. In conclusion, Tat-CX3 CL1(357–395 aa) facilitates functional recovery after ischemic stroke by promoting microglial polarization from M1 to M2. Therefore, the Tat-CX3 CL1(357–395 aa) is a potential therapeutic agent for ischemic stroke.展开更多
Tropomyosin receptor kinase B(TrkB)signaling plays a pivotal role in dendritic growth and dendritic spine formation to promote learning and memory.The activity-dependent release of brain-derived neurotrophic factor at...Tropomyosin receptor kinase B(TrkB)signaling plays a pivotal role in dendritic growth and dendritic spine formation to promote learning and memory.The activity-dependent release of brain-derived neurotrophic factor at synapses binds to pre-or postsynaptic TrkB resulting in the strengthening of synapses,reflected by long-term potentiation.Postsynaptically,the association of postsynaptic density protein-95 with TrkB enhances phospholipase Cγ-Ca^(2+)/calmodulin-dependent protein kinaseⅡand phosphatidylinositol 3-kinase-mechanistic target of rapamycin signaling required for long-term potentiation.In this review,we discuss TrkB-postsynaptic density protein-95 coupling as a promising strategy to magnify brain-derived neurotrophic factor signaling towards the development of novel therapeutics for specific neurological disorders.A reduction of TrkB signaling has been observed in neurodegenerative disorders,such as Alzheimer's disease and Huntington's disease,and enhancement of postsynaptic density protein-95 association with TrkB signaling could mitigate the observed deficiency of neuronal connectivity in schizophrenia and depression.Treatment with brain-derived neurotrophic factor is problematic,due to poor pharmacokinetics,low brain penetration,and side effects resulting from activation of the p75 neurotrophin receptor or the truncated TrkB.T1 isoform.Although TrkB agonists and antibodies that activate TrkB are being intensively investigated,they cannot distinguish the multiple human TrkB splicing isoforms or cell type-specific functions.Targeting TrkB–postsynaptic density protein-95 coupling provides an alternative approach to specifically boost TrkB signaling at localized synaptic sites versus global stimulation that risks many adverse side effects.展开更多
BACKGROUND: Previous studies have demonstrated that postsynaptic density protein-95 (PSD-95) is widely distributed in the central nervous system and is related to the development of the CNS and sensory signal trans...BACKGROUND: Previous studies have demonstrated that postsynaptic density protein-95 (PSD-95) is widely distributed in the central nervous system and is related to the development of the CNS and sensory signal transmission as well as acute or chronic nerve cell death following ischemic brain injury. OBJECTIVE: To semi-quantitatively determine the pathological changes of apoptotic facial neurons and the expression of PSD-95 in the facial nucleus following facial nerve injury of varying extents using immunohistochemical staining methods. DESIGN, TIME AND SETTING: Randomized, controlled animal experiments were performed in the Ultrasonic Institute of the Second Affiliated Hospital of Chongqing University of Medical Sciences from September to December 2007. MATERIALS: Sixty-five healthy, adult, Sprague-Dawley (SD) rats, both male and female, were used for this study. Rabbit anti-rat PSD-95 polyclonal antibody was purchased from Beijing Biosynthesis Biotechnology Co., Ltd. METHODS: SD rats were randomly assigned into a control group with five rats and three injured groups with 20 rats per group. Exposure, clamp and cut for bilateral facial nerve trunks were performed in the rats of the injury groups, and no injury was inflicted on the rats of the control group. MAIN OUTCOME MEASURES; The brainstems of all the rats were excised on days 1, 3, 7, and 14 post injury, and then the facial nuclei were stained with hematoxylin-eosin to observe any pathological changes due to apoptosis in facial neurons. PSD-95 expression in facial nuclei was detected by immunohistochemistry and the number of PSD-95 positive cells was counted under a light microscope. RESULTS: The expression of PSD-95 in the facial nucleus and morphology of the facial neuron within the exposure group had no obvious changes at various points in time tested (P 〉 0.05). However, the expressions of PSD-95 in the facial nucleus of the clamp group and cut group increased on day 1 post injury (P 〈 0.05), and showed further increase on day 7 post injury (P 〈 0.01 ). This did not decrease until day 14 post injury. Facial neuron apoptosis was detected on day 3 post injury and this was even more obvious on day 7 and was maintained to day 14 post injury. The number of cells expressing PSD-95 and displaying severe degrees of facial neuron apoptosis were as follows: cut group 〉 clamp group 〉 exposure group. CONCLUSION: The apoptotic extent of facial neurons and the expression of PSD-95 in apoptotic facial neurons increased with the degree of aggravation of injured severity of facial nerve.展开更多
目的:研究三七通舒胶囊有效成分三七三醇皂苷对大鼠脑梗死后不同时点Syp和PSD-95表达的影响,为探讨脑功能重塑的机理提供理论依据。方法:健康雄性SD大鼠,分为手术和正常组,手术组采用改良的Longa方法制备大鼠大脑中动脉阻塞模型,分为模...目的:研究三七通舒胶囊有效成分三七三醇皂苷对大鼠脑梗死后不同时点Syp和PSD-95表达的影响,为探讨脑功能重塑的机理提供理论依据。方法:健康雄性SD大鼠,分为手术和正常组,手术组采用改良的Longa方法制备大鼠大脑中动脉阻塞模型,分为模型组、三七三醇皂苷组和尼莫地平组,于术后3 d、7 d和28 d 3个时间点利用免疫组化及图像分析测定大鼠脑内Syp和PSD-95的表达。结果:术后28 d三七三醇皂苷组和尼莫地平组较模型组的Syp表达上升显著(P<0.01),PSD-95表达上升亦显著(P<0.05和P<0.01),且前两者较自身3 d、7 d Syp和PSD-95表达均有显著升高(P<0.01)。结论:三七三醇皂苷可以促进大鼠脑梗死后不同时点Syp和PSD-95表达,即突触的重塑过程,对大脑功能重塑有积极作用。展开更多
目的检测脑挫伤修复过程中突触后致密蛋白(postsynaptic density protein 95,PSD-95)的表达,探讨其变化规律与损伤时间的相关性。方法雄性SD大鼠50只,随机分为8个实验组,1个对照组,每组5只。制作大鼠脑挫伤模型,于伤后3、6、12h和3、5、...目的检测脑挫伤修复过程中突触后致密蛋白(postsynaptic density protein 95,PSD-95)的表达,探讨其变化规律与损伤时间的相关性。方法雄性SD大鼠50只,随机分为8个实验组,1个对照组,每组5只。制作大鼠脑挫伤模型,于伤后3、6、12h和3、5、7、10d取脑组织,应用免疫组织化学技术和免疫蛋白印迹(Western blot)方法检测脑挫伤后不同时间脑组织中PSD-95的表达变化。结果对照组脑组织仅有少量PSD-95阳性细胞;实验组中,伤后3h、6h组脑组织出现较多PSD-95阳性细胞,12h组阳性细胞数量持续升高,伤后1d阳性细胞数下降,5d后又升高并达到高峰,7d、10d恢复;计算阳性率,统计分析结果显示,阳性细胞数与相邻上组比较,存在显著性差异。Western blot结果:挫伤后,3~12h表达量上升,1d下降,随后又逐步上升,5d达到高峰,7d、10d下降;应用Fluorchem V2.0 Stand Alone软件获取感光条带的平均灰度值,经统计分析,各组与相邻上组比较,存在显著性差异。结论大鼠脑损伤后损伤周边区PSD-95呈现升高→下降→再升高→再下降的表达规律,对损伤时间推断有一定的参考意义。展开更多
基金the National Natural Science Foundation of China,No.30472214
文摘BACKGROUND: The change in expression of synaptophysin (Syp) and postsynaptic density-95 (PSD-95) alters after cerebral infarction, and the plasticity of synapses contributes greatly to nerve function recovery. Chinese medicinal substances may play an important role in the expression of Syp and PSD-95. OBJECTIVE: To observe the effect of Panaxtriol Saponins (PTS), an active component in Sanqi tongshu capsules, on the expression of Syp and PSD-95 after cerebral infarction at different time points in rats, so as to examine the cerebral function remodeling mechanism. DESIGN, TIME AND SETTING: A randomized and controlled observation which was performed in Dongzhimen Hospital, Beijing University of Traditional Chinese Medicine from January to March, 2007. MATERIALS: Twenty-six healthy male Sprague Dawley rats were used to establish middle cerebral artery occlusion based on the Longa method. Sanqi tongshu capsules (containing 100 mg PTS per tablet) were provided by the Chengdu Huashen Group and nimodipine tablets (30 mg) by Tianjin Zhongyang Pharmaceutical Co., Ltd. METHODS: Twenty-six rats were randomly divided into an operation group (n = 21 ) and a control group (n = 5). The operation group underwent the EZ Longa procedure to make the middle cerebral artery occlusion model. After surgery rats were randomly divided into a model group, a PTS group and a nimodipine group, with seven rats in each group. Rats were intragastrically administrated with saline (2 mL/d) in the model group, with Sanqi tongshu capsule (5.4 mg/100 g/d) in the PTS group, and with nimodipine (1.73 mg/100 g/d) in the nimodipine group. Rats in the control group did not undergo model establishment and drug administration. MAIN OUTCOME MEASURES: The expressions of Syp and PSD-95 were measured by immunohistochemical and image analysis at days 3, 7 and 28 after the operation. RESULTS: The expression of Syp and PSD-95 in the operation group was significantly lower than in the control group at days 3, 7, 28 postoperatively (P 〈 0.05). The expression of Syp and PSD-95 in the PTS group and nimodipine group was significantly higher than in the model group at day 28 postoperatively (P 〈 0.05-0.01). Additionally, after PTS and nimodipine treatment at different intervals, the expression of Syp and PSD-95 at day 28 postoperatively was significantly higher than those at days 3 and 7 postoperatively, respectively (P 〈 0.01). CONCLUSION: PTS can promote the expression of Syp and PSD-95, i.e. the remodeling process of synapses, after cerebral infarction at different time points in rats, which contributes to cerebral function remodeling.
基金Supported by the"Tenth five-year-plan"Medical Science Foundation of PLA(No.01M118).
文摘It was confirmed that sodium ferulate (SF) could significantly improve neurologic function deficit, reduce cerebral infarct volume at 24 h after reperfusion, and weakened postsynaptic density-95 (PSD-95) activation in ische-mic area reacting to ischemia after transient middle cerebral artery occlusion ( MCAO) by Western immunoblot analy-
文摘Objective: To investigate the effects of sodium ferulate (SF), an intravenous drug made from traditional Chinese herbs, on activation of postsynaptic density-95 (PSD-95) and neuroprotection after transient cerebral artery occlusion in rats. Methods: Forty-six male Sprague-Dawley rats were randomized into 2 groups ( n = 23 in each group) : the control group and the SF group. After anesthesia, the middle cerebral artery occlusion (MCAO) was conducted with the intraluminal filament technique. The neurological deficit was assessed with the method devised by Bederson et al.^ 8 The 2, 3, 4-triphenyltetrazolium chloride staining was used to assess the infarct volume. We adopted a modified six-point scale to conduct neurobehavioral evaluation. Immediately the activation of postsynaptic density-95 ( PSD- 95 ) was studied with Western blot analysis system in the cortex and striatum of rat brain. Results : The neurologic deficit score of the SF group decreased substantially compared with that of the control group ( P 〈0.05). The infarct volume of the control group (168.1 mm^3 ± 42.2 mm^3) was significantly larger than that of the SF group (61.5 mm^3 ± 28.7 mm^3 ) at 24 hours after reperfusion (P 〈 0.01 ). And the rats showed some neurological deficit. The activity of PSD-95 in the SF group at most timepoints was less than that in the control group. No upregulation of PSD-95 protein could be detected in the contralateral cortex. Conclusions : Sodium ferulate can induce a neuroproteetive effect against the transient focal cerebral isehemie injury and weaken the activation of PSD-95 in isehemie area after MCAO.
基金supported by the National Natural Science Foundation of China (30170220)Xuzhou Science and Technology Bureau of China (XZZD1157)+1 种基金Xuzhou Medical College (2011KJZ03)A Project Funded by the Priority Academic Program Development of Jingsu Higher Education Institutions
文摘Objective Postsynaptic density protein 95 (PSD-95) plays important roles in the regulation of glutamate signaling, such as that of N-methyl-D-aspartate receptors (NMDARs). In this study, the functional roles of PSD-95 in tyrosine phosphorylafion of NMDAR subunit 2A (NR2A) and in apoptosis-like cell death induced by oxygen-glucose de- privation (OGD) in cultured rat cortical neurons were investigated. Methods We used immunoprecipitation and immuno- blotting to detect PSD-95 protein level, tyrosine phosphorylation level of NR2A, and the interaction between PSD-95 and NR2A or Src. Apoptosis-like cells were observed by 4,6-diamidino-2-phenylindole staining. Results Tyrosine phospho- rylation of NR2A and apoptosis-like cell death were increased after recovery following 60-min OGD. The increases were attenuated by pretreatment with antisense oligonucleotides against PSD-95 before OGD, but not by missense oligonucle- otides or vehicle. PSD-95 antisense oligonucleotides also inhibited the increased interaction between PSD-95 and NR2A or Src, while NR2A expression did not change under this condition. Conclusion PSD-95 may be involved in regulating NR2A tyrosine phosphorylation by Src kinase. Inhibition of PSD-95 expression can be neuroprotective against apoptosis- like cell death after recovery from OGD.
基金supported by the National Natural Science Foundation of China,Nos. 82071304 (to QXZ), 81671149 (to QXZ),and 81971179 (to XML)the Natural Science Foundation of Jiangsu Province,Nos. BK20191463 (to XML) and BK20161167 (to QXZ)。
文摘We previously reported that postsynaptic density-93 mediates neuron-microglia crosstalk by interacting with amino acids 357–395 of C-X3-C motif chemokine ligand 1(CX3 CL1) to induce microglia polarization. More importantly, the peptide Tat-CX3 CL1(comprising amino acids 357–395 of CX3 CL1) disrupts the interaction between postsynaptic density-93 and CX3 CL1, reducing neurological impairment and exerting a protective effect in the context of acute ischemic stroke. However, the mechanism underlying these effects remains unclear. In the current study, we found that the pro-inflammatory M1 phenotype increased and the anti-inflammatory M2 phenotype decreased at different time points. The M1 phenotype increased at 6 hours after stroke and peaked at 24 hours after perfusion, whereas the M2 phenotype decreased at 6 and 24 hours following reperfusion. We found that the peptide Tat-CX3 CL1(357–395 aa) facilitates microglial polarization from M1 to M2 by reducing the production of soluble CX3 CL1. Furthermore, the a disintegrin and metalloprotease domain 17(ADAM17) inhibitor GW280264 x, which inhibits metalloprotease activity and prevents CX3 CL1 from being sheared into its soluble form, facilitated microglial polarization from M1 to M2 by inhibiting soluble CX3 CL1 formation. Additionally, Tat-CX3 CL1(357–395 aa) attenuated long-term cognitive deficits and improved white matter integrity as determined by the Morris water maze test at 31–34 days following surgery and immunofluorescence staining at 35 days after stroke, respectively. In conclusion, Tat-CX3 CL1(357–395 aa) facilitates functional recovery after ischemic stroke by promoting microglial polarization from M1 to M2. Therefore, the Tat-CX3 CL1(357–395 aa) is a potential therapeutic agent for ischemic stroke.
基金supported by Postdoc Fellowship from the Foundation for Angelman Syndrome Therapeutics(FT2022-005 to JM,PD2023-001 to XY,and FT2024-001 to YAH)STTR R41 MH118747(to JM)。
文摘Tropomyosin receptor kinase B(TrkB)signaling plays a pivotal role in dendritic growth and dendritic spine formation to promote learning and memory.The activity-dependent release of brain-derived neurotrophic factor at synapses binds to pre-or postsynaptic TrkB resulting in the strengthening of synapses,reflected by long-term potentiation.Postsynaptically,the association of postsynaptic density protein-95 with TrkB enhances phospholipase Cγ-Ca^(2+)/calmodulin-dependent protein kinaseⅡand phosphatidylinositol 3-kinase-mechanistic target of rapamycin signaling required for long-term potentiation.In this review,we discuss TrkB-postsynaptic density protein-95 coupling as a promising strategy to magnify brain-derived neurotrophic factor signaling towards the development of novel therapeutics for specific neurological disorders.A reduction of TrkB signaling has been observed in neurodegenerative disorders,such as Alzheimer's disease and Huntington's disease,and enhancement of postsynaptic density protein-95 association with TrkB signaling could mitigate the observed deficiency of neuronal connectivity in schizophrenia and depression.Treatment with brain-derived neurotrophic factor is problematic,due to poor pharmacokinetics,low brain penetration,and side effects resulting from activation of the p75 neurotrophin receptor or the truncated TrkB.T1 isoform.Although TrkB agonists and antibodies that activate TrkB are being intensively investigated,they cannot distinguish the multiple human TrkB splicing isoforms or cell type-specific functions.Targeting TrkB–postsynaptic density protein-95 coupling provides an alternative approach to specifically boost TrkB signaling at localized synaptic sites versus global stimulation that risks many adverse side effects.
文摘BACKGROUND: Previous studies have demonstrated that postsynaptic density protein-95 (PSD-95) is widely distributed in the central nervous system and is related to the development of the CNS and sensory signal transmission as well as acute or chronic nerve cell death following ischemic brain injury. OBJECTIVE: To semi-quantitatively determine the pathological changes of apoptotic facial neurons and the expression of PSD-95 in the facial nucleus following facial nerve injury of varying extents using immunohistochemical staining methods. DESIGN, TIME AND SETTING: Randomized, controlled animal experiments were performed in the Ultrasonic Institute of the Second Affiliated Hospital of Chongqing University of Medical Sciences from September to December 2007. MATERIALS: Sixty-five healthy, adult, Sprague-Dawley (SD) rats, both male and female, were used for this study. Rabbit anti-rat PSD-95 polyclonal antibody was purchased from Beijing Biosynthesis Biotechnology Co., Ltd. METHODS: SD rats were randomly assigned into a control group with five rats and three injured groups with 20 rats per group. Exposure, clamp and cut for bilateral facial nerve trunks were performed in the rats of the injury groups, and no injury was inflicted on the rats of the control group. MAIN OUTCOME MEASURES; The brainstems of all the rats were excised on days 1, 3, 7, and 14 post injury, and then the facial nuclei were stained with hematoxylin-eosin to observe any pathological changes due to apoptosis in facial neurons. PSD-95 expression in facial nuclei was detected by immunohistochemistry and the number of PSD-95 positive cells was counted under a light microscope. RESULTS: The expression of PSD-95 in the facial nucleus and morphology of the facial neuron within the exposure group had no obvious changes at various points in time tested (P 〉 0.05). However, the expressions of PSD-95 in the facial nucleus of the clamp group and cut group increased on day 1 post injury (P 〈 0.05), and showed further increase on day 7 post injury (P 〈 0.01 ). This did not decrease until day 14 post injury. Facial neuron apoptosis was detected on day 3 post injury and this was even more obvious on day 7 and was maintained to day 14 post injury. The number of cells expressing PSD-95 and displaying severe degrees of facial neuron apoptosis were as follows: cut group 〉 clamp group 〉 exposure group. CONCLUSION: The apoptotic extent of facial neurons and the expression of PSD-95 in apoptotic facial neurons increased with the degree of aggravation of injured severity of facial nerve.
文摘目的:研究三七通舒胶囊有效成分三七三醇皂苷对大鼠脑梗死后不同时点Syp和PSD-95表达的影响,为探讨脑功能重塑的机理提供理论依据。方法:健康雄性SD大鼠,分为手术和正常组,手术组采用改良的Longa方法制备大鼠大脑中动脉阻塞模型,分为模型组、三七三醇皂苷组和尼莫地平组,于术后3 d、7 d和28 d 3个时间点利用免疫组化及图像分析测定大鼠脑内Syp和PSD-95的表达。结果:术后28 d三七三醇皂苷组和尼莫地平组较模型组的Syp表达上升显著(P<0.01),PSD-95表达上升亦显著(P<0.05和P<0.01),且前两者较自身3 d、7 d Syp和PSD-95表达均有显著升高(P<0.01)。结论:三七三醇皂苷可以促进大鼠脑梗死后不同时点Syp和PSD-95表达,即突触的重塑过程,对大脑功能重塑有积极作用。
文摘目的检测脑挫伤修复过程中突触后致密蛋白(postsynaptic density protein 95,PSD-95)的表达,探讨其变化规律与损伤时间的相关性。方法雄性SD大鼠50只,随机分为8个实验组,1个对照组,每组5只。制作大鼠脑挫伤模型,于伤后3、6、12h和3、5、7、10d取脑组织,应用免疫组织化学技术和免疫蛋白印迹(Western blot)方法检测脑挫伤后不同时间脑组织中PSD-95的表达变化。结果对照组脑组织仅有少量PSD-95阳性细胞;实验组中,伤后3h、6h组脑组织出现较多PSD-95阳性细胞,12h组阳性细胞数量持续升高,伤后1d阳性细胞数下降,5d后又升高并达到高峰,7d、10d恢复;计算阳性率,统计分析结果显示,阳性细胞数与相邻上组比较,存在显著性差异。Western blot结果:挫伤后,3~12h表达量上升,1d下降,随后又逐步上升,5d达到高峰,7d、10d下降;应用Fluorchem V2.0 Stand Alone软件获取感光条带的平均灰度值,经统计分析,各组与相邻上组比较,存在显著性差异。结论大鼠脑损伤后损伤周边区PSD-95呈现升高→下降→再升高→再下降的表达规律,对损伤时间推断有一定的参考意义。