Mathematical geophone (MG) and equal-time stacking (ETS) principles are used to implement seismic prestack forward modeling with irregular surfaces using the oneway acoustic wave-equation. This method receives sei...Mathematical geophone (MG) and equal-time stacking (ETS) principles are used to implement seismic prestack forward modeling with irregular surfaces using the oneway acoustic wave-equation. This method receives seismic primary reflections from the subsurface using a set of virtual MGs. The receivers can be located anywhere on an irregular observing surface. Moreover, the ETS method utilizes the one-way acoustic wave equation to easily and quickly image and extrapolate seismic reflection data. The method is illustrated using high single-noise ratio common shot gathers computed by numerical forward modeling of two simple models, one with a flat surface and one with an irregular surface, and a complex normal fault model. A prestack depth migration method for irregular surface topography was used to reoroduce the normal fault model with high accuracy.展开更多
From June 2008 to August 2013,approximately 67 kt of CO_(2) was injected into a deep saline formation at the Ketzin pilot CO_(2) storage site.During injection,3D seismic surveys have been performed to monitor the migr...From June 2008 to August 2013,approximately 67 kt of CO_(2) was injected into a deep saline formation at the Ketzin pilot CO_(2) storage site.During injection,3D seismic surveys have been performed to monitor the migration of sequestered CO_(2).Seismic monitoring results are limited by the acquisition and signal-to-noise ratio of the acquired data.The multiphysical reservoir simulation provides information regarding the CO_(2) fluid behavior,and the approximated model should be calibrated with the monitoring results.In this work,property models are delivered from the multiphysical model during 3D repeated seismic surveys.The simulated seismic data based on the models are compared with the real data,and the results validate the effectiveness of the multiphysical inversion method.Time-lapse analysis shows the trend of CO_(2) migration during and after injection.展开更多
Existing studies indicate that gas hydrate-bearing formations exhibit notable seismic velocity dispersion and attenuation. The Shenhu area of the South China Sea hold significant gas hydrate resource potential;however...Existing studies indicate that gas hydrate-bearing formations exhibit notable seismic velocity dispersion and attenuation. The Shenhu area of the South China Sea hold significant gas hydrate resource potential;however, the relationship between seismic velocity dispersion, attenuation properties, and gas-hydrate saturation remains insufficiently understood. Furthermore, a significant mismatch exists between the real seismic angle gather near a well and the synthetic angle gather generated using the convolution method, and this discrepancy may arise from the seismic velocity dispersion and attenuation characteristics of the gas hydrate-bearing formations. In this paper, we develop a rock physics model that integrates White's and Dvorkin's models, accounting for varied types of gas-hydrate occurrence states,specifically tailored to the gas hydrate-bearing formations in the Shenhu area. This model is calibrated with well log data and employed to investigate how gas-hydrate saturation influences seismic velocity dispersion and attenuation. Numerical analysis reveals the coexistence of two types of gas-hydrate occurrence states in the region: high gas-hydrate saturation formations are dominated by loadbearing-type gas hydrate, and formations containing both gas hydrate and free gas may exhibit either load-bearing or pore-filling types. The seismic velocity dispersion and attenuation properties vary significantly depending on the gas-hydrate occurrence state. We further apply the proposed model to generate seismic velocity and attenuation logs at various frequencies. These logs are used in seismic forward modeling employing both the convolution method and the propagator matrix method. Well tie analysis indicates that the synthetic angle gather incorporating attenuation via the propagator matrix method aligns more closely with the real seismic angle gather than the convolution method. This study provides valuable insights into frequency-dependent amplitude versus offset(AVO) analysis and the seismic interpretation of gas hydrate-bearing formations in the South China Sea.展开更多
Fracture and cavern hydrocarbon reservoirs in carbonates are an important pool type worldwide. The karst cavern reservoirs are easiest to identify on seismic reflection data. The prediction, exploration, and developme...Fracture and cavern hydrocarbon reservoirs in carbonates are an important pool type worldwide. The karst cavern reservoirs are easiest to identify on seismic reflection data. The prediction, exploration, and development of this type of reservoir require theoretical research on seismic wave fields reflected from complex inhomogeneous media. We compute synthetic seismic sections for fluidfilled cavern reservoirs of various heights and widths using random media models and inhomogeneous media elastic wave equations. Results indicate that even caverns significantly smaller than 1/ 4 wavelength are detectible on conventional band-width seismic sections as diffractions migrated into bead-type events. Diffraction amplitude is a function of cavern height and width. We introduce a width-amplitude factor which can be used to calculate the diffraction amplitude of a cavern with a limited width from the diffraction amplitude computed for an infinitely wide cavern.展开更多
With the improvement of seismic observation system, more and more observations indicate that earthquakes may cause seismic velocity change. However, the amplitude and spatial distribution of the velocity variation rem...With the improvement of seismic observation system, more and more observations indicate that earthquakes may cause seismic velocity change. However, the amplitude and spatial distribution of the velocity variation remains a controversial issue. Recent active source monitoring carried out adjacent to Wenchuan Fault Scientific Drilling (WFSD) revealed unambiguous coseismic velocity change associated with a local M8 5.5 earthquake. Here, we carry out forward modeling using two-dimensional spectral element method to further investigate the amplitude and spatial distribution of observed velocity change. The model is well constrained by results from seismic reflection and WFSD coring. Our model strongly suggests that the observed coseismic velocity change is localized within the fault zone with width of ~ 120 m rather than dynamic strong ground shaking. And a velocity decrease of -2.0 % within the fault zone is required to fit the observed travel time delay distribution, which coincides with rock mechanical experiment and theoretical modeling.展开更多
To improve the accuracy of microseismic inversion,seismic anisotropy and moment tensor source should be carefully considered in the forward modelling stage.In this study,3D microseismic anisotropy wave forward modelli...To improve the accuracy of microseismic inversion,seismic anisotropy and moment tensor source should be carefully considered in the forward modelling stage.In this study,3D microseismic anisotropy wave forward modelling with a moment tensor source was proposed.The modelling was carried out based on a rotated-staggered-grid(RSG)scheme.In contrast to staggered-grids,the RSG scheme defines the velocity components and densities at the same grid,as do the stress components and elastic parameters.Therefore,the elastic moduli do not need to be interpolated.In addition,the detailed formulation and implementation of moment-tensor source loaded on the RSG was presented by equating the source to the stress increments.Meanwhile,the RSG-based 3D wave equation forward modelling was performed in parallel using compute unified device architecture(CUDA)programming on a graphics processing unit(GPU)to improve its efficiency.Numerical simulations including homogeneous and anisotropic models were carried out using the method proposed in this paper,and compared with other methods to prove the reliability of this method.Furthermore,the high efficiency of the proposed approach was evaluated.The results show that the computational efficiency of proposed method can be improved by about two orders of magnitude compared with traditional central processing unit(CPU)computing methods.It could not only help the analysis of microseismic full wavefield records,but also provide support for passive source inversion,including location and focal mechanism inversion,and velocities inversion.展开更多
The pattern of the subtle traps, in which oil and gas accumulated, in the buried-hill faulted zone in the Jiyang sag is very complicated, and very hard to prospect. The paper analyses the main difficulties in explorin...The pattern of the subtle traps, in which oil and gas accumulated, in the buried-hill faulted zone in the Jiyang sag is very complicated, and very hard to prospect. The paper analyses the main difficulties in exploring the complicated buried-hill faulted zone of the area from a point of geology.The typical pattern of the buried-hill zone in the Jiyang sag is studied using the forward modeling.Target-orient layout design and full 3-D seismic technology, which are useful for oil and gas exploration on the zone, are put forward. Taking the exploration for oil and gas traps on the zone as an example, certain technologies and the effect of their applications about the design for target acquisition,acquisition on a wide-azimuth, point sources and point receivers are discussed.展开更多
This paper presents the integration of seismic refraction and multichannel analysis of surface wave(MASW)measurements to investigate the anisotropy of P-and S-wave velocities.Additionally,synthetic forward modelling i...This paper presents the integration of seismic refraction and multichannel analysis of surface wave(MASW)measurements to investigate the anisotropy of P-and S-wave velocities.Additionally,synthetic forward modelling is presented as a tool for supporting seismic anisotropy studies.The geophysical measurements of cracks allowed to recognise the fracturing of a granite rock mass in a Paleozoic granite quarry(Strzegom,Poland)and a dolomite rock mass in a Triassic dolomite quarry(Podlesna,Poland).Application of the forward modelling supports the interpretation of seismic methods,simplifying data processing and verifying the final results based on data from difficult seismic conditions.As a result of direct measurements,two crack systems were determined in granite rock mass:NNE-SSW and NNW-SSE,and two in dolomite rock mass:NNE-SSW and NW-SE.Furthermore,the numerical results show the relationship between the highest values of P-and S-wave velocities and separated crack systems which allowed an unequivocal interpretation of the direction of stress,resulting in the deformations.The obtained information is promising to be helpful in mining exploration for optimising excavation works.展开更多
The theoretical and practical analysis of reservoir thickness and oil-bearing information of thin reservoirs is performed by using seismic attributes and forward modelling. The results show that thin reservoir can be ...The theoretical and practical analysis of reservoir thickness and oil-bearing information of thin reservoirs is performed by using seismic attributes and forward modelling. The results show that thin reservoir can be recognized using seismic attributes technique when its thickness is less than 1/4 of wavelength. Through analyzing the influence of tuning effect, the relationship between thin layer thickness and tuning amplitude is well revealed. A precise structure interpretation is conducted using relative amplitude preserved high-resolution seismic data. By taking the geologic condition and well data into account, the distribution of oil and gas of HD4 oilfield is analyzed and predicted. based on seismic attributes. The result is helpful to promote the exploration and development in this oilfield.展开更多
基金This work was funded by National Natural Science Foundation of China (No. 40474044).
文摘Mathematical geophone (MG) and equal-time stacking (ETS) principles are used to implement seismic prestack forward modeling with irregular surfaces using the oneway acoustic wave-equation. This method receives seismic primary reflections from the subsurface using a set of virtual MGs. The receivers can be located anywhere on an irregular observing surface. Moreover, the ETS method utilizes the one-way acoustic wave equation to easily and quickly image and extrapolate seismic reflection data. The method is illustrated using high single-noise ratio common shot gathers computed by numerical forward modeling of two simple models, one with a flat surface and one with an irregular surface, and a complex normal fault model. A prestack depth migration method for irregular surface topography was used to reoroduce the normal fault model with high accuracy.
基金supported by the National Natural Science Foundation of China(Grant No.42025403)the Youth Innovation Promotion Association,Chinese Academy of Sciences(Grant No.2023074).
文摘From June 2008 to August 2013,approximately 67 kt of CO_(2) was injected into a deep saline formation at the Ketzin pilot CO_(2) storage site.During injection,3D seismic surveys have been performed to monitor the migration of sequestered CO_(2).Seismic monitoring results are limited by the acquisition and signal-to-noise ratio of the acquired data.The multiphysical reservoir simulation provides information regarding the CO_(2) fluid behavior,and the approximated model should be calibrated with the monitoring results.In this work,property models are delivered from the multiphysical model during 3D repeated seismic surveys.The simulated seismic data based on the models are compared with the real data,and the results validate the effectiveness of the multiphysical inversion method.Time-lapse analysis shows the trend of CO_(2) migration during and after injection.
基金supported by National Natural Science Foundation of China(W2431028,42122029)SINOPEC Fundamental Research Program(P24258)CNPC Investigations on fundamental experiments and advanced theoretical methods in geophysical prospecting applications(2022DQ0604-02).
文摘Existing studies indicate that gas hydrate-bearing formations exhibit notable seismic velocity dispersion and attenuation. The Shenhu area of the South China Sea hold significant gas hydrate resource potential;however, the relationship between seismic velocity dispersion, attenuation properties, and gas-hydrate saturation remains insufficiently understood. Furthermore, a significant mismatch exists between the real seismic angle gather near a well and the synthetic angle gather generated using the convolution method, and this discrepancy may arise from the seismic velocity dispersion and attenuation characteristics of the gas hydrate-bearing formations. In this paper, we develop a rock physics model that integrates White's and Dvorkin's models, accounting for varied types of gas-hydrate occurrence states,specifically tailored to the gas hydrate-bearing formations in the Shenhu area. This model is calibrated with well log data and employed to investigate how gas-hydrate saturation influences seismic velocity dispersion and attenuation. Numerical analysis reveals the coexistence of two types of gas-hydrate occurrence states in the region: high gas-hydrate saturation formations are dominated by loadbearing-type gas hydrate, and formations containing both gas hydrate and free gas may exhibit either load-bearing or pore-filling types. The seismic velocity dispersion and attenuation properties vary significantly depending on the gas-hydrate occurrence state. We further apply the proposed model to generate seismic velocity and attenuation logs at various frequencies. These logs are used in seismic forward modeling employing both the convolution method and the propagator matrix method. Well tie analysis indicates that the synthetic angle gather incorporating attenuation via the propagator matrix method aligns more closely with the real seismic angle gather than the convolution method. This study provides valuable insights into frequency-dependent amplitude versus offset(AVO) analysis and the seismic interpretation of gas hydrate-bearing formations in the South China Sea.
基金This research project is sponsored by Nation’s Natural Science Found of China (No. 40174034 and 40274038) as well as theOpening Found Projects of the CNPC geophysical exploration key laboratory (No. GPKL0207).
文摘Fracture and cavern hydrocarbon reservoirs in carbonates are an important pool type worldwide. The karst cavern reservoirs are easiest to identify on seismic reflection data. The prediction, exploration, and development of this type of reservoir require theoretical research on seismic wave fields reflected from complex inhomogeneous media. We compute synthetic seismic sections for fluidfilled cavern reservoirs of various heights and widths using random media models and inhomogeneous media elastic wave equations. Results indicate that even caverns significantly smaller than 1/ 4 wavelength are detectible on conventional band-width seismic sections as diffractions migrated into bead-type events. Diffraction amplitude is a function of cavern height and width. We introduce a width-amplitude factor which can be used to calculate the diffraction amplitude of a cavern with a limited width from the diffraction amplitude computed for an infinitely wide cavern.
基金supported by China Natural Scientific and Technological Support Projects(Wenchuan Fault Scientific Drilling)National Natural Scientific Foundation of China(Grant No.41204047)
文摘With the improvement of seismic observation system, more and more observations indicate that earthquakes may cause seismic velocity change. However, the amplitude and spatial distribution of the velocity variation remains a controversial issue. Recent active source monitoring carried out adjacent to Wenchuan Fault Scientific Drilling (WFSD) revealed unambiguous coseismic velocity change associated with a local M8 5.5 earthquake. Here, we carry out forward modeling using two-dimensional spectral element method to further investigate the amplitude and spatial distribution of observed velocity change. The model is well constrained by results from seismic reflection and WFSD coring. Our model strongly suggests that the observed coseismic velocity change is localized within the fault zone with width of ~ 120 m rather than dynamic strong ground shaking. And a velocity decrease of -2.0 % within the fault zone is required to fit the observed travel time delay distribution, which coincides with rock mechanical experiment and theoretical modeling.
基金financially supported by the National Natural Science Foundation of China(No.42272204)the National Key Research and Development Program of China(No.2018YFB0605503)the Fundamental Research Funds for the Central Universities(No.2021JCCXDC02)。
文摘To improve the accuracy of microseismic inversion,seismic anisotropy and moment tensor source should be carefully considered in the forward modelling stage.In this study,3D microseismic anisotropy wave forward modelling with a moment tensor source was proposed.The modelling was carried out based on a rotated-staggered-grid(RSG)scheme.In contrast to staggered-grids,the RSG scheme defines the velocity components and densities at the same grid,as do the stress components and elastic parameters.Therefore,the elastic moduli do not need to be interpolated.In addition,the detailed formulation and implementation of moment-tensor source loaded on the RSG was presented by equating the source to the stress increments.Meanwhile,the RSG-based 3D wave equation forward modelling was performed in parallel using compute unified device architecture(CUDA)programming on a graphics processing unit(GPU)to improve its efficiency.Numerical simulations including homogeneous and anisotropic models were carried out using the method proposed in this paper,and compared with other methods to prove the reliability of this method.Furthermore,the high efficiency of the proposed approach was evaluated.The results show that the computational efficiency of proposed method can be improved by about two orders of magnitude compared with traditional central processing unit(CPU)computing methods.It could not only help the analysis of microseismic full wavefield records,but also provide support for passive source inversion,including location and focal mechanism inversion,and velocities inversion.
文摘The pattern of the subtle traps, in which oil and gas accumulated, in the buried-hill faulted zone in the Jiyang sag is very complicated, and very hard to prospect. The paper analyses the main difficulties in exploring the complicated buried-hill faulted zone of the area from a point of geology.The typical pattern of the buried-hill zone in the Jiyang sag is studied using the forward modeling.Target-orient layout design and full 3-D seismic technology, which are useful for oil and gas exploration on the zone, are put forward. Taking the exploration for oil and gas traps on the zone as an example, certain technologies and the effect of their applications about the design for target acquisition,acquisition on a wide-azimuth, point sources and point receivers are discussed.
基金funded by the National Science Centre,Poland(NCN)(Grant No.2020/37/N/ST10/01486).
文摘This paper presents the integration of seismic refraction and multichannel analysis of surface wave(MASW)measurements to investigate the anisotropy of P-and S-wave velocities.Additionally,synthetic forward modelling is presented as a tool for supporting seismic anisotropy studies.The geophysical measurements of cracks allowed to recognise the fracturing of a granite rock mass in a Paleozoic granite quarry(Strzegom,Poland)and a dolomite rock mass in a Triassic dolomite quarry(Podlesna,Poland).Application of the forward modelling supports the interpretation of seismic methods,simplifying data processing and verifying the final results based on data from difficult seismic conditions.As a result of direct measurements,two crack systems were determined in granite rock mass:NNE-SSW and NNW-SSE,and two in dolomite rock mass:NNE-SSW and NW-SE.Furthermore,the numerical results show the relationship between the highest values of P-and S-wave velocities and separated crack systems which allowed an unequivocal interpretation of the direction of stress,resulting in the deformations.The obtained information is promising to be helpful in mining exploration for optimising excavation works.
文摘The theoretical and practical analysis of reservoir thickness and oil-bearing information of thin reservoirs is performed by using seismic attributes and forward modelling. The results show that thin reservoir can be recognized using seismic attributes technique when its thickness is less than 1/4 of wavelength. Through analyzing the influence of tuning effect, the relationship between thin layer thickness and tuning amplitude is well revealed. A precise structure interpretation is conducted using relative amplitude preserved high-resolution seismic data. By taking the geologic condition and well data into account, the distribution of oil and gas of HD4 oilfield is analyzed and predicted. based on seismic attributes. The result is helpful to promote the exploration and development in this oilfield.