Numerical analysis of weak optical positive feedback (OPF) controlling chaos is studied in a semiconductor laser. The physical model of controlling chaos produced via modulating the current of semiconductor laser is...Numerical analysis of weak optical positive feedback (OPF) controlling chaos is studied in a semiconductor laser. The physical model of controlling chaos produced via modulating the current of semiconductor laser is presented under the condition of OPF. We find the physical mechanism that the nonlinear gain coefficient and linewidth enhance- ment factor of the laser are affected by OPF so that the dynamical behaviour of the system can be efficiently controlled. Chaos is controlled into a single-periodic state, a dual-periodic state, a tri-periodic state, a quadr-periodic state, a pentaperiodic state, and the laser emitting powers are increased by OPF in simulations. Lastly, another chaos-control method with modulating the amplitude of the feedback light is presented and numerically simulated to control chaotic laser into multi-periodic states.展开更多
We present a scheme for symmetric controlled remote preparation of an arbitrary 2-qudit state form a sender to either of the two receivers via positive operator-valued measurement and pure entangled two-particle state...We present a scheme for symmetric controlled remote preparation of an arbitrary 2-qudit state form a sender to either of the two receivers via positive operator-valued measurement and pure entangled two-particle states. The first sender transforms the quantum channel shared by all the agents via POVM according to her knowledge of prepared state. All the senders perform singIe- or two-particle projective measurements on their entangled particles and the receiver can probabilisticaly reconstruct the original state on her entangled particles via unitary transformation and auxiliary qubit. The scheme is optimal as the probability which the receiver prepares the original state equals to the entanglement of the quantum channel. Moreover, it is more convenience in application than others as it requires only two-particle entanglements for preparing an arbitrary two-qudit state.展开更多
We propose a tripartite scheme for probabilistically teleporting an arbitrary two-qubit state with a fourqubit cluster-class state and a Bell-class state as the quantum channels. In the scheme, the sender and the cont...We propose a tripartite scheme for probabilistically teleporting an arbitrary two-qubit state with a fourqubit cluster-class state and a Bell-class state as the quantum channels. In the scheme, the sender and the controller make Bell-state measurements (BSMs) on their respective qubit pairs. With their measurement results, the receiver can reconstruct the original state probabilistically by introducing two auxiliary particles and making appropriate unitary operations and positive operator-valued measure (POVM) instead of usual projective measurement. Moreover, the total success probability and classical communication cost of the present protocol are also worked out.展开更多
In this paper, intrinsic safety and positive security distance control for an up/down elevator which extracts the materials from an underground coal mine is approached. For a better understanding of intrinsic safety a...In this paper, intrinsic safety and positive security distance control for an up/down elevator which extracts the materials from an underground coal mine is approached. For a better understanding of intrinsic safety and positive security, the first part of the paper describes the potential risk the workers are facing while working in dangerous environments like coal mining with “grisou” atmospheres and what the conditions of an unfortunate event to take place are. We presented the diagram and working principle for intrinsic safety equipment used in potential explosive areas based on which we modeled and simulated the intrinsic and positive security distance control in order to get a software solution for it. We created an algorithm and simulated the process in Matlab Simulink. The simulation results done in Matlab Simulink were then entered into a Moeller PLC using a ladder-type programming language. For protection against explosive atmospheres, the PLC is inserted into a metal housing with intrinsic protection and Positive Security.展开更多
By using a fixed point theorem on a cone to investigate the existence of two positive periodic solutions for the following delay difference system with feedback control argument of the form {△x(n)=-b(n)x(n)+f...By using a fixed point theorem on a cone to investigate the existence of two positive periodic solutions for the following delay difference system with feedback control argument of the form {△x(n)=-b(n)x(n)+f(n,x(n-τ1(n)),…,x(n-τm(n)),u(n-δ(n))),△u(n)=-η(n)u(n)+a(n)x(n-σ(n)),n∈Z.展开更多
An efficient algorithm is proposed for computing the solution to the constrained finite time optimal control (CFTOC) problem for discrete-time piecewise affine (PWA) systems with a quadratic performance index. The...An efficient algorithm is proposed for computing the solution to the constrained finite time optimal control (CFTOC) problem for discrete-time piecewise affine (PWA) systems with a quadratic performance index. The maximal positively invariant terminal set, which is feasible and invariant with respect to a feedback control law, is computed as terminal target set and an associated Lyapunov function is chosen as terminal cost. The combination of these two components guarantees constraint satisfaction and closed-loop stability for all time. The proposed algorithm combines a dynamic programming strategy with a multi-parametric quadratic programming solver and basic polyhedral manipulation. A numerical example shows that a larger stabilizable set of states can be obtained by the proposed algorithm than precious work.展开更多
This paper investigates the positive real control problem for uncertain descriptor systems. The parametric uncertainty is assumed to be norm bounded. Firstly, for the nominal system, a new positive real characterizati...This paper investigates the positive real control problem for uncertain descriptor systems. The parametric uncertainty is assumed to be norm bounded. Firstly, for the nominal system, a new positive real characterization is given, which is expressed by a strict linear matrix mequality(LMI) without equality constraints. Secondly, for the uncertain system, necessary and sufficient conditions for the solvability of the positive real control problem are derived. Based on these conditions a state feedback law is obtained, which renders the resultant closed-loop system robustly positive real.展开更多
Recently, some researches indicate that positive feedback can benefit the control if appropriate time delay is intentionally introduced into control system. However, most work is theoretical one but few are experiment...Recently, some researches indicate that positive feedback can benefit the control if appropriate time delay is intentionally introduced into control system. However, most work is theoretical one but few are experimental. This paper presents theoretical and experimental studies of delayed positive feedback control technique using a flexible beam as research object. The positive feedback weighting coefficient is designed by using the optimal control method. The available time delay is determined by analyzing the maximal real part of characteristic roots of the system. A DSP-based experiment system is introduced. Simulation and experimental results indicate that the delayed positive feedback control may effectively reduce the beam vibration if time delay is appropriately selected.展开更多
It has been known that there are at least three regulatory regions (NCR1, NCR2 and PCR) in the 5'-flanking sequence (from -610 bp to +1bp) of human β-globin gene and that the function of PCR is unique to the huma...It has been known that there are at least three regulatory regions (NCR1, NCR2 and PCR) in the 5'-flanking sequence (from -610 bp to +1bp) of human β-globin gene and that the function of PCR is unique to the human erythroleukemia (K562) cells. Here we have detected a DNA-binding protein factor (termed NFEa) in K562 cells, which can bind specifically to the PCR of human β-globin gene. The sequence of the binding site is 5'ACTGATG3' (between -222 bp and -216 bp). The NFEa is erythroid-specific and perhaps specific for K562 cells. It seemed that this factor differed from the erythroid-specific tran-scriptional factor (NFE-1) using competition assay. The presence of the NFEa further supported that the function of the cis-acting element PCR was specific for K562 cells, and helps us to understand the mechanism of the regulation of the expression of human β-globin gene in the human K562 cells.展开更多
This paper investigates the event-triggered control of positive switched systems with randomly occurring actuator saturation and time-delay,where the actuator saturation and time-delay obey different Bernoulli distrib...This paper investigates the event-triggered control of positive switched systems with randomly occurring actuator saturation and time-delay,where the actuator saturation and time-delay obey different Bernoulli distributions.First,an event-triggering con-dition is constructed based on a 1-norm inequality.Under the presented event-triggering scheme,an interval estimation method is utilized to deal with the error term of the systems.Using a co-positive Lyapunov functional,the event-triggered controller and the cone attraction domain gain matrices are designed via matrix decomposition techniques.The positivity and stability of the resulting closed-loop systems are reached by guaranteeing the positivity of the lower bound of the systems and the stability of the upper bound of the systems,respectively.The proposed approach is developed for interval and polytopic uncertain systems,respectively.Finally,two examples are provided to illustrate the effectiveness of the theoretical findings.展开更多
This paper is concerned with the event-triggered control of positive semi-Markovian jump systems without/with input saturation.The considered systems are subject to a stochastic semi-Markovian process whose sojourn ti...This paper is concerned with the event-triggered control of positive semi-Markovian jump systems without/with input saturation.The considered systems are subject to a stochastic semi-Markovian process whose sojourn time is dependent on a non-exponential distribution.First,an event-triggering condition is introduced in a linear form for the systems.A class of event-triggered feedback controllers is proposed using matrix decomposition technique.By using a stochastic co-positive Lyapunov function,the systems’positivity and stability are guaranteed.Then,the obtained results are developed for the systems with input saturation.A cone set is chosen as the attraction domain and the corresponding attraction domain gain matrix is designed in terms of standard linear programming approach.Finally,two numerical examples are provided to verify the validity and effectiveness of the presented theoretical findings.展开更多
In this paper,a novel train positioning method considering satellite raw observation data was proposed,which aims to promote train positioning performance from an innovative perspective of the train satellite-based po...In this paper,a novel train positioning method considering satellite raw observation data was proposed,which aims to promote train positioning performance from an innovative perspective of the train satellite-based positioning error sources.The method focused on overcoming the abnormal observations in satellite observation data caused by railway environment rather than the positioning results.Specifically,the relative positioning experimental platform was built and the zero-baseline method was firstly employed to evaluate the carrier phase data quality,and then,GNSS combined observation models were adopted to construct the detection values,which were applied to judge abnormal-data through the dual-frequency observations.Further,ambiguity fixing optimization was investigated based on observation data selection in partly-blocked environments.The results show that the proposed method can effectively detect and address abnormal observations and improve positioning stability.Cycle slips and gross errors can be detected and identified based on dual-frequency global navigation satellite system data.After adopting the data selection strategy,the ambiguity fixing percentage was improved by 29.2%,and the standard deviation in the East,North,and Up components was enhanced by 12.7%,7.4%,and 12.5%,respectively.The proposed method can provide references for train positioning performance optimization in railway environments from the perspective of positioning error sources.展开更多
Global Navigation Satellite Systems(GNSSs)are vulnerable to both unintentional interference and intentional attacks,making it difficult to meet the stringent safety requirements of railway train control systems.The gr...Global Navigation Satellite Systems(GNSSs)are vulnerable to both unintentional interference and intentional attacks,making it difficult to meet the stringent safety requirements of railway train control systems.The growing threat to information security posed by spoofing attacks has received limited attention.This study investigates the impact of GNSS spoofing attacks on train positioning,emphasizing their detrimental effects on the accuracy and availability of train location report functions for train operation control.To explore the antispoofing performance of typical GNSS-based train positioning schemes,specific approaches,and system architectures are designed under two GNSS-alone and two GNSS-integrated train positioning schemes.Field data are utilized to establish spoofing attack scenarios for GNSS-based train positioning,with which the anti-spoofing capabilities of different train positioning schemes are evaluated.Experimental results indicate that under specific conditions,the GNSS-integrated positioning schemes demonstrate superior GNSS spoofing suppression capabilities.Results of the tests present valuable guidance for designers and manufacturers in developing more advanced and resilient train positioning solutions and equipment for the next generation of train control systems,thereby promoting the applications of GNSS technology in railway systems.展开更多
Tendon-driven robots have distinct advantages in high-dynamic performance motion and high-degree-of-freedom manipulation.However,these robots face challenges related to control complexity,intricate tendon drive paths,...Tendon-driven robots have distinct advantages in high-dynamic performance motion and high-degree-of-freedom manipulation.However,these robots face challenges related to control complexity,intricate tendon drive paths,and tendon slackness.In this study,the authors present a novel modular tendon-driven actuator design that integrates a series elastic element.The actuator incorporates a unique magnetic position sensing technology that enables observation of the length and tension of the tendon and features an exceptionally compact design.The modular architecture of the tendon-driven actuator addresses the complexity of tendon drive paths,while the tension observation functionality mitigates slackness issues.The design and modeling of the actuator are described in this paper,and a series of tests are conducted to validate the simulation model and to test the performance of the proposed actuator.The model can be used for training robot control neural networks based on simulation,thereby overcoming the challenges associated with controlling tendon-driven robots.展开更多
It is crucial for implementing force/position control of robotic manipulator under the constraint of unknown environment to determine the force control and the position control directions. This paper presents an on l...It is crucial for implementing force/position control of robotic manipulator under the constraint of unknown environment to determine the force control and the position control directions. This paper presents an on line algorithm to real timely estimate the tangent and the normal vectors of the constraint surface based on the measured contact force under the consideration of frictional force. A fuzzy synthesis policy is proposed to coordinate the conflict between the compliant force control and the stiff position control. An experimental study on an AdeptThree, a SCARA type robotic manipulator, is conducted. The experimental results show that the policy presented in the paper is effective.展开更多
Aim To analyse the influence of knowledge base on the performance of the fuzzy controller of the electrohydraulic position control system,and to determine their selection cri- teria. Methods Experiments based on diffe...Aim To analyse the influence of knowledge base on the performance of the fuzzy controller of the electrohydraulic position control system,and to determine their selection cri- teria. Methods Experiments based on different membership functions,scaling factors and con-trol rules were done separately.The experiment results and the influence of different know- ledge base on the control performance were analysed in theory so that criteria of selcting knowledge base can be summarized correctly.Results Knowledge base,including membershipfunctions, scaling factors and control rules,has a crucial effect on the fuzzy control system.Suitably selected knowledge base can lead to good control performance of fuzzy control sys-tem. Conclusion Being symmetric,having an intersection ratio of 1 and satisfying width con- dition are three necessities for selecting membership functions.Selecting scaling factors dependson both the system requirement and a comprehensive analysis in the overshoot,oscillation, rising time and stability. Integrity and continuity must be guaranteed when determining control rules.展开更多
A force control strategy for position controlled robotic manipulators is presented. On line force feedback data are employed to estimate the local shape of the unknown constraint. The estimated vectors are used to ge...A force control strategy for position controlled robotic manipulators is presented. On line force feedback data are employed to estimate the local shape of the unknown constraint. The estimated vectors are used to generate the virtual reference trajectory for the target impedance model that is driven by the force error to produce command position. By following the command position trajectory the robotic manipulator can follow the unknown constraint surface while keeping an acceptable force error in a manner depicted by the target impedance model. Computer simulation on a 3 linked planar manipulator and experimental studies on an Adept 3, an SCARA type robotic manipulator, are conducted to verify the force tracking capability of the proposed control strategy.展开更多
Electrohydrostatic actuator(EHA) is a type of power-by-wire actuator that is widely implemented in the aerospace industry for flight control, landing gears, thrust reversers, thrust vector control, and space robots....Electrohydrostatic actuator(EHA) is a type of power-by-wire actuator that is widely implemented in the aerospace industry for flight control, landing gears, thrust reversers, thrust vector control, and space robots. This paper presents the development and evaluation of positionbased impedance control(PBIC) for an EHA. Impedance control provides the actuator with compliance and facilitates the interaction with the environment. Most impedance control applications utilize electrical or valve-controlled hydraulic actuators, whereas this work realizes impedance control via a compact and efficient EHA. The structures of the EHA and PBIC are firstly introduced. A mathematical model of the actuation system is established, and values of its coefficients are identified by particle swarm optimization. This model facilitates the development of a position controller and the selection of target impedance parameters. A nonlinear proportional-integral position controller is developed for the EHA to achieve the accurate positioning requirement of PBIC. The controller compensates for the adverse effect of stiction, and a position accuracy of 0.08 mm is attained.Various experimental results are presented to verify the applicability of PBIC to the EHA. The compliance of the actuator is demonstrated in an impact test.展开更多
The position control system of an electro-hydraulic actuator system (EHAS) is investigated in this paper. The EHAS is developed by taking into consideration the nonlinearities of the system: the friction and the in...The position control system of an electro-hydraulic actuator system (EHAS) is investigated in this paper. The EHAS is developed by taking into consideration the nonlinearities of the system: the friction and the internal leakage. A variable load that simulates a realistic load in robotic excavator is taken as the trajectory reference. A method of control strategy that is implemented by employing a fuzzy logic controller (FLC) whose parameters are optimized using particle swarm optimization (PSO) is proposed. The scaling factors of the fuzzy inference system are tuned to obtain the optimal values which yield the best system performance. The simulation results show that the FLC is able to track the trajectory reference accurately for a range of values of orifice opening. Beyond that range, the orifice opening may introduce chattering, which the FLC alone is not sufficient to overcome. The PSO optimized FLC can reduce the chattering significantly. This result justifies the implementation of the proposed method in position control of EHAS.展开更多
基金The project supported by Education Department of Jiangsu Province of China under Grant No. 06KJD140111
文摘Numerical analysis of weak optical positive feedback (OPF) controlling chaos is studied in a semiconductor laser. The physical model of controlling chaos produced via modulating the current of semiconductor laser is presented under the condition of OPF. We find the physical mechanism that the nonlinear gain coefficient and linewidth enhance- ment factor of the laser are affected by OPF so that the dynamical behaviour of the system can be efficiently controlled. Chaos is controlled into a single-periodic state, a dual-periodic state, a tri-periodic state, a quadr-periodic state, a pentaperiodic state, and the laser emitting powers are increased by OPF in simulations. Lastly, another chaos-control method with modulating the amplitude of the feedback light is presented and numerically simulated to control chaotic laser into multi-periodic states.
基金Supported by Program for Natural Science Foundation of Guangxi under Grant No. 2011GxNSFB018062, Excellent Talents in Guangxi Higher Education Institutions under Grant No. [2012]41, Key program of Cuangxi University for Nationalities under Grant No. [2011]317 and the Bagui Scholarship Project
文摘We present a scheme for symmetric controlled remote preparation of an arbitrary 2-qudit state form a sender to either of the two receivers via positive operator-valued measurement and pure entangled two-particle states. The first sender transforms the quantum channel shared by all the agents via POVM according to her knowledge of prepared state. All the senders perform singIe- or two-particle projective measurements on their entangled particles and the receiver can probabilisticaly reconstruct the original state on her entangled particles via unitary transformation and auxiliary qubit. The scheme is optimal as the probability which the receiver prepares the original state equals to the entanglement of the quantum channel. Moreover, it is more convenience in application than others as it requires only two-particle entanglements for preparing an arbitrary two-qudit state.
基金Supported by the Foundation for College Excellent Young Talents of Anhui Province under Grant Nos.2012SQRL205 and 2012SQRL206the Foundation for Academic Youth of Anhui Universitythe Higher Education Natural Science Foundation of Anhui Province under Grant No.KJ2010B383
文摘We propose a tripartite scheme for probabilistically teleporting an arbitrary two-qubit state with a fourqubit cluster-class state and a Bell-class state as the quantum channels. In the scheme, the sender and the controller make Bell-state measurements (BSMs) on their respective qubit pairs. With their measurement results, the receiver can reconstruct the original state probabilistically by introducing two auxiliary particles and making appropriate unitary operations and positive operator-valued measure (POVM) instead of usual projective measurement. Moreover, the total success probability and classical communication cost of the present protocol are also worked out.
文摘In this paper, intrinsic safety and positive security distance control for an up/down elevator which extracts the materials from an underground coal mine is approached. For a better understanding of intrinsic safety and positive security, the first part of the paper describes the potential risk the workers are facing while working in dangerous environments like coal mining with “grisou” atmospheres and what the conditions of an unfortunate event to take place are. We presented the diagram and working principle for intrinsic safety equipment used in potential explosive areas based on which we modeled and simulated the intrinsic and positive security distance control in order to get a software solution for it. We created an algorithm and simulated the process in Matlab Simulink. The simulation results done in Matlab Simulink were then entered into a Moeller PLC using a ladder-type programming language. For protection against explosive atmospheres, the PLC is inserted into a metal housing with intrinsic protection and Positive Security.
基金Supported by the National Natural Sciences Foundation of China(10361006)Supported by the Natural Sciences Foundation of Yunnan Province(2003A0001M)Supported by the Jiangsu "Qing-lanProject" for Excellent Young Teachers in University(2006)
文摘By using a fixed point theorem on a cone to investigate the existence of two positive periodic solutions for the following delay difference system with feedback control argument of the form {△x(n)=-b(n)x(n)+f(n,x(n-τ1(n)),…,x(n-τm(n)),u(n-δ(n))),△u(n)=-η(n)u(n)+a(n)x(n-σ(n)),n∈Z.
基金supported by the National Natural Science Foundation of China (60702033)Natural Science Foundation of Zhe-jiang Province (Y107440)
文摘An efficient algorithm is proposed for computing the solution to the constrained finite time optimal control (CFTOC) problem for discrete-time piecewise affine (PWA) systems with a quadratic performance index. The maximal positively invariant terminal set, which is feasible and invariant with respect to a feedback control law, is computed as terminal target set and an associated Lyapunov function is chosen as terminal cost. The combination of these two components guarantees constraint satisfaction and closed-loop stability for all time. The proposed algorithm combines a dynamic programming strategy with a multi-parametric quadratic programming solver and basic polyhedral manipulation. A numerical example shows that a larger stabilizable set of states can be obtained by the proposed algorithm than precious work.
文摘This paper investigates the positive real control problem for uncertain descriptor systems. The parametric uncertainty is assumed to be norm bounded. Firstly, for the nominal system, a new positive real characterization is given, which is expressed by a strict linear matrix mequality(LMI) without equality constraints. Secondly, for the uncertain system, necessary and sufficient conditions for the solvability of the positive real control problem are derived. Based on these conditions a state feedback law is obtained, which renders the resultant closed-loop system robustly positive real.
基金supported by the Key Project (11132001)the General Projects of the National Natural Science Foundation of China (11072146, 11002087)
文摘Recently, some researches indicate that positive feedback can benefit the control if appropriate time delay is intentionally introduced into control system. However, most work is theoretical one but few are experimental. This paper presents theoretical and experimental studies of delayed positive feedback control technique using a flexible beam as research object. The positive feedback weighting coefficient is designed by using the optimal control method. The available time delay is determined by analyzing the maximal real part of characteristic roots of the system. A DSP-based experiment system is introduced. Simulation and experimental results indicate that the delayed positive feedback control may effectively reduce the beam vibration if time delay is appropriately selected.
文摘It has been known that there are at least three regulatory regions (NCR1, NCR2 and PCR) in the 5'-flanking sequence (from -610 bp to +1bp) of human β-globin gene and that the function of PCR is unique to the human erythroleukemia (K562) cells. Here we have detected a DNA-binding protein factor (termed NFEa) in K562 cells, which can bind specifically to the PCR of human β-globin gene. The sequence of the binding site is 5'ACTGATG3' (between -222 bp and -216 bp). The NFEa is erythroid-specific and perhaps specific for K562 cells. It seemed that this factor differed from the erythroid-specific tran-scriptional factor (NFE-1) using competition assay. The presence of the NFEa further supported that the function of the cis-acting element PCR was specific for K562 cells, and helps us to understand the mechanism of the regulation of the expression of human β-globin gene in the human K562 cells.
基金National Natural Science Foundation of China(Nos.62073111 and 61751304)Fundamental Research Funds for the Provincial Universities of Zhejiang(No.GK209907299001-007)+1 种基金Natural Science Foundation of Zhejiang Province,China(Nos.LY20F030008 and LY20F030011)Foundation of Zhejiang Provincial Department of Education(No.Y201942017).
文摘This paper investigates the event-triggered control of positive switched systems with randomly occurring actuator saturation and time-delay,where the actuator saturation and time-delay obey different Bernoulli distributions.First,an event-triggering con-dition is constructed based on a 1-norm inequality.Under the presented event-triggering scheme,an interval estimation method is utilized to deal with the error term of the systems.Using a co-positive Lyapunov functional,the event-triggered controller and the cone attraction domain gain matrices are designed via matrix decomposition techniques.The positivity and stability of the resulting closed-loop systems are reached by guaranteeing the positivity of the lower bound of the systems and the stability of the upper bound of the systems,respectively.The proposed approach is developed for interval and polytopic uncertain systems,respectively.Finally,two examples are provided to illustrate the effectiveness of the theoretical findings.
基金the National Natural Science Foundation of China(Nos.62073111 and 61803134)the Fundamental Research Funds for the Provincial Universities of Zhejiang(No.GK209907299001-007)+2 种基金the Natural Science Foundation of Zhejiang Province,China(Nos.LY20F030008 and LY20F030011)the Open Research Project of Zhejiang Lab(No.2021MC0AB04)the Foundation of Zhejiang Provincial Education Department of China(No.Y202044263)。
文摘This paper is concerned with the event-triggered control of positive semi-Markovian jump systems without/with input saturation.The considered systems are subject to a stochastic semi-Markovian process whose sojourn time is dependent on a non-exponential distribution.First,an event-triggering condition is introduced in a linear form for the systems.A class of event-triggered feedback controllers is proposed using matrix decomposition technique.By using a stochastic co-positive Lyapunov function,the systems’positivity and stability are guaranteed.Then,the obtained results are developed for the systems with input saturation.A cone set is chosen as the attraction domain and the corresponding attraction domain gain matrix is designed in terms of standard linear programming approach.Finally,two numerical examples are provided to verify the validity and effectiveness of the presented theoretical findings.
基金Project(52272339)supported by the National Natural Science Foundation of ChinaProject(2023YFB390730303)supported by the National Key Research and Development Program of China+2 种基金Project(L2023G004)supported by the Science and Technology Research and Development Program of China State Railway Group Co.,Ltd.Project(QZKFKT2023-005)supported by the State Key Laboratory of Heavy-duty and Express High-power Electric Locomotive,ChinaProject(2022JZZ05)supported by the Open Foundation of MOE Key Laboratory of Engineering Structures of Heavy Haul Railway(Central South University),China。
文摘In this paper,a novel train positioning method considering satellite raw observation data was proposed,which aims to promote train positioning performance from an innovative perspective of the train satellite-based positioning error sources.The method focused on overcoming the abnormal observations in satellite observation data caused by railway environment rather than the positioning results.Specifically,the relative positioning experimental platform was built and the zero-baseline method was firstly employed to evaluate the carrier phase data quality,and then,GNSS combined observation models were adopted to construct the detection values,which were applied to judge abnormal-data through the dual-frequency observations.Further,ambiguity fixing optimization was investigated based on observation data selection in partly-blocked environments.The results show that the proposed method can effectively detect and address abnormal observations and improve positioning stability.Cycle slips and gross errors can be detected and identified based on dual-frequency global navigation satellite system data.After adopting the data selection strategy,the ambiguity fixing percentage was improved by 29.2%,and the standard deviation in the East,North,and Up components was enhanced by 12.7%,7.4%,and 12.5%,respectively.The proposed method can provide references for train positioning performance optimization in railway environments from the perspective of positioning error sources.
基金the National Key Research and Development Program of China(2023YFB3907300)the National Natural Science Foundation of China(U2268206,T2222015)the Beijing Natural Science Foundation(4232031).
文摘Global Navigation Satellite Systems(GNSSs)are vulnerable to both unintentional interference and intentional attacks,making it difficult to meet the stringent safety requirements of railway train control systems.The growing threat to information security posed by spoofing attacks has received limited attention.This study investigates the impact of GNSS spoofing attacks on train positioning,emphasizing their detrimental effects on the accuracy and availability of train location report functions for train operation control.To explore the antispoofing performance of typical GNSS-based train positioning schemes,specific approaches,and system architectures are designed under two GNSS-alone and two GNSS-integrated train positioning schemes.Field data are utilized to establish spoofing attack scenarios for GNSS-based train positioning,with which the anti-spoofing capabilities of different train positioning schemes are evaluated.Experimental results indicate that under specific conditions,the GNSS-integrated positioning schemes demonstrate superior GNSS spoofing suppression capabilities.Results of the tests present valuable guidance for designers and manufacturers in developing more advanced and resilient train positioning solutions and equipment for the next generation of train control systems,thereby promoting the applications of GNSS technology in railway systems.
基金supported in part by the National Key R&D Program of China under Grant 2024YFB4707900the National Natural Science Foundation of China under Grant 91948302 and Grant 52021003.
文摘Tendon-driven robots have distinct advantages in high-dynamic performance motion and high-degree-of-freedom manipulation.However,these robots face challenges related to control complexity,intricate tendon drive paths,and tendon slackness.In this study,the authors present a novel modular tendon-driven actuator design that integrates a series elastic element.The actuator incorporates a unique magnetic position sensing technology that enables observation of the length and tension of the tendon and features an exceptionally compact design.The modular architecture of the tendon-driven actuator addresses the complexity of tendon drive paths,while the tension observation functionality mitigates slackness issues.The design and modeling of the actuator are described in this paper,and a series of tests are conducted to validate the simulation model and to test the performance of the proposed actuator.The model can be used for training robot control neural networks based on simulation,thereby overcoming the challenges associated with controlling tendon-driven robots.
文摘It is crucial for implementing force/position control of robotic manipulator under the constraint of unknown environment to determine the force control and the position control directions. This paper presents an on line algorithm to real timely estimate the tangent and the normal vectors of the constraint surface based on the measured contact force under the consideration of frictional force. A fuzzy synthesis policy is proposed to coordinate the conflict between the compliant force control and the stiff position control. An experimental study on an AdeptThree, a SCARA type robotic manipulator, is conducted. The experimental results show that the policy presented in the paper is effective.
文摘Aim To analyse the influence of knowledge base on the performance of the fuzzy controller of the electrohydraulic position control system,and to determine their selection cri- teria. Methods Experiments based on different membership functions,scaling factors and con-trol rules were done separately.The experiment results and the influence of different know- ledge base on the control performance were analysed in theory so that criteria of selcting knowledge base can be summarized correctly.Results Knowledge base,including membershipfunctions, scaling factors and control rules,has a crucial effect on the fuzzy control system.Suitably selected knowledge base can lead to good control performance of fuzzy control sys-tem. Conclusion Being symmetric,having an intersection ratio of 1 and satisfying width con- dition are three necessities for selecting membership functions.Selecting scaling factors dependson both the system requirement and a comprehensive analysis in the overshoot,oscillation, rising time and stability. Integrity and continuity must be guaranteed when determining control rules.
文摘A force control strategy for position controlled robotic manipulators is presented. On line force feedback data are employed to estimate the local shape of the unknown constraint. The estimated vectors are used to generate the virtual reference trajectory for the target impedance model that is driven by the force error to produce command position. By following the command position trajectory the robotic manipulator can follow the unknown constraint surface while keeping an acceptable force error in a manner depicted by the target impedance model. Computer simulation on a 3 linked planar manipulator and experimental studies on an Adept 3, an SCARA type robotic manipulator, are conducted to verify the force tracking capability of the proposed control strategy.
基金completed in the Fluid Power and Tele-Robotics Research Laboratory at the University of Manitobathe supports of the Natural Sciences and Engineering Research Council(NSERC)of Canada+1 种基金China Scholarship Council(CSC)the National Natural Science Foundation of China(Nos.51275021 and 61327807)
文摘Electrohydrostatic actuator(EHA) is a type of power-by-wire actuator that is widely implemented in the aerospace industry for flight control, landing gears, thrust reversers, thrust vector control, and space robots. This paper presents the development and evaluation of positionbased impedance control(PBIC) for an EHA. Impedance control provides the actuator with compliance and facilitates the interaction with the environment. Most impedance control applications utilize electrical or valve-controlled hydraulic actuators, whereas this work realizes impedance control via a compact and efficient EHA. The structures of the EHA and PBIC are firstly introduced. A mathematical model of the actuation system is established, and values of its coefficients are identified by particle swarm optimization. This model facilitates the development of a position controller and the selection of target impedance parameters. A nonlinear proportional-integral position controller is developed for the EHA to achieve the accurate positioning requirement of PBIC. The controller compensates for the adverse effect of stiction, and a position accuracy of 0.08 mm is attained.Various experimental results are presented to verify the applicability of PBIC to the EHA. The compliance of the actuator is demonstrated in an impact test.
文摘The position control system of an electro-hydraulic actuator system (EHAS) is investigated in this paper. The EHAS is developed by taking into consideration the nonlinearities of the system: the friction and the internal leakage. A variable load that simulates a realistic load in robotic excavator is taken as the trajectory reference. A method of control strategy that is implemented by employing a fuzzy logic controller (FLC) whose parameters are optimized using particle swarm optimization (PSO) is proposed. The scaling factors of the fuzzy inference system are tuned to obtain the optimal values which yield the best system performance. The simulation results show that the FLC is able to track the trajectory reference accurately for a range of values of orifice opening. Beyond that range, the orifice opening may introduce chattering, which the FLC alone is not sufficient to overcome. The PSO optimized FLC can reduce the chattering significantly. This result justifies the implementation of the proposed method in position control of EHAS.