Background:U2AF homology motif kinase 1(UHMK1)has been associated with RNA processing and protein phosphorylation,thereby influencing tumor progression.The study aimed to explore its regulatory mechanisms and biologic...Background:U2AF homology motif kinase 1(UHMK1)has been associated with RNA processing and protein phosphorylation,thereby influencing tumor progression.The study aimed to explore its regulatory mechanisms and biological functions in human prostate cancer(PCa).Methods:In this study,we systematically evaluated the expression and prognostic significance of UHMK1 in public databases,followed by validation through immunohis-tochemistry(IHC)in PCa specimens.Both gain-of-function and loss-of-function experiments were conducted to elucidate the role of UHMK1 in vitro and in vivo.Additionally,a series of molecular and biochemical assays were performed to investigate the regulatory mechanisms underlying UHMK1 activity.Results:Our findings revealed that UHMK1 expression was significantly upregulated in PCa tissues and correlated with poor patient prognosis,as demonstrated by analysis of public datasets and confirmed by immunohistochemical staining.Functional studies showed that UHMK1 depletion suppressed tumor cell proliferation and metastasis,while its overexpression promoted these processes.Mechanistically,we identified that UHMK1 phosphorylates nuclear receptor coactivator 3(NCOA3),which subsequently activates activating transcription factor 4(ATF4)to upregulate methylenetetrahydrofolate dehy-drogenase 2(MTHFD2)transcription.Interestingly,MTHFD2 was found to reciprocally enhance UHMK1 expression,establishing a positive feedback loop.Conclusions:In conclusion,our data suggest that the UHMK1-MTHFD2 axis forms a positive feedback loop that drives PCa progression.Targeting this loop represents a promising therapeutic strategy for restraining prostate cancer development and progression.展开更多
Numerical analysis of weak optical positive feedback (OPF) controlling chaos is studied in a semiconductor laser. The physical model of controlling chaos produced via modulating the current of semiconductor laser is...Numerical analysis of weak optical positive feedback (OPF) controlling chaos is studied in a semiconductor laser. The physical model of controlling chaos produced via modulating the current of semiconductor laser is presented under the condition of OPF. We find the physical mechanism that the nonlinear gain coefficient and linewidth enhance- ment factor of the laser are affected by OPF so that the dynamical behaviour of the system can be efficiently controlled. Chaos is controlled into a single-periodic state, a dual-periodic state, a tri-periodic state, a quadr-periodic state, a pentaperiodic state, and the laser emitting powers are increased by OPF in simulations. Lastly, another chaos-control method with modulating the amplitude of the feedback light is presented and numerically simulated to control chaotic laser into multi-periodic states.展开更多
Phospholipase D(PLD)lipid-signaling enzyme superfamily has been widely implicated in various human malignancies,but its role and underlying mechanism remain unclear in nasopharyngeal carcinoma(NPC).Here,we analyze the...Phospholipase D(PLD)lipid-signaling enzyme superfamily has been widely implicated in various human malignancies,but its role and underlying mechanism remain unclear in nasopharyngeal carcinoma(NPC).Here,we analyze the expressions of 6 PLD family members between 87 NPC and 10 control samples through transcriptome analysis.Our findings reveal a notable upregulation of PLD1 in both NPC tumors and cell lines,correlating with worse disease-free and overall survival in NPC patients.Functional assays further elucidate the oncogenic role of PLD1,demonstrating its pivotal promotion of critical tumorigenic processes such as cellproliferation and migration in vitro,as well as tumor growth in vivo.Notably,our study uncovers a positive feedback loop between PLD1 and the NF-κB signaling pathway to render NPC progression.Specifically,PLD1 enhances NF-kB activity by facilitating the phosphorylation and nuclear translocation of RELA,which in turn binds to the promoter of PLD1,augmenting its expression.Moreover,RELA over-expression markedly rescues the inhibitory effects in PLD1-depleted NPC cells.Importantly,the application of the PLD1 inhibitor,VU0155069,substantially inhibits NPC tumorigenesis in a patient-derived xenograft model.Together,our findings identify PLD1/NF-κB signaling as a positive feedback loop with promising therapeutic and prognostic potential in NPC.展开更多
Objective:Colorectal cancer(CRC)is a prevalent malignant tumor with a high fatality rate.CircPDIA4 has been shown to have a vital role in cancer development by acting as a facilitator.Nevertheless,the impact of the ci...Objective:Colorectal cancer(CRC)is a prevalent malignant tumor with a high fatality rate.CircPDIA4 has been shown to have a vital role in cancer development by acting as a facilitator.Nevertheless,the impact of the circPDIA4/miR-9-5p/SP1 axis on development of CRC has not been studied.Methods:Western blot,immunohistochemistry,and reverse transcription-quantitative polymerase chain reaction assays were used to analyze gene expression.The CCK-8 assay was used to assess cell growth.The Transwell assay was used to detect invasion and migration of cells.The luciferase reporter and RNA immunoprecipitation tests were used to determine if miR-9-5p and circPDIA4(or SP1)bind to one another.An in vivo assay was used to measure tumor growth.Results:It was shown that circPDIA4 expression was greater in CRC cell lines and tissues than healthy cell lines and tissues.CircPDIA4 knockdown prevented the invasion,migration,and proliferation of cells in CRC.Additionally,the combination of circPDIA4 and miR-9-5p was confirmed,as well as miR-9-5p binding to SP1.Rescue experiments also showed that the circPDIA4/miR-9-5p/SP1 axis accelerated the development of CRC.In addition,SP1 combined with the promoter region of circPDIA4 and induced circPDIA4 transcription.CircPDIA4 was shown to facilitate tumor growth in an in vivo assay.Conclusions:The circPDIA4/miR-9-5p/SP1 feedback loop was shown to aggravate CRC progression.This finding suggests that the ceRNA axis may be a promising biomarker for CRC patient treatment.展开更多
Synchronization is a process that describes the coherent dynamics of a large ensemble of interacting units.The study of explosive synchronization transition attracts considerable attention.Here,I report the explosive ...Synchronization is a process that describes the coherent dynamics of a large ensemble of interacting units.The study of explosive synchronization transition attracts considerable attention.Here,I report the explosive transition within the framework of a mobile network,while each oscillator is controlled by global-order parameters of the system.Using numerical simulation,I find that the explosive synchronization(ES)transition behavior can be controlled by simply adjusting the fraction of controlled oscillators.The influences of some parameters on explosive synchronization are studied.Moreover,due to the presence of the positive feedback mechanism,I prevent the occurrence of the synchronization of continuous-phase transition and make phase transition of the system a first-order phase transition accompanied by a hysteresis loop.展开更多
Recently, some researches indicate that positive feedback can benefit the control if appropriate time delay is intentionally introduced into control system. However, most work is theoretical one but few are experiment...Recently, some researches indicate that positive feedback can benefit the control if appropriate time delay is intentionally introduced into control system. However, most work is theoretical one but few are experimental. This paper presents theoretical and experimental studies of delayed positive feedback control technique using a flexible beam as research object. The positive feedback weighting coefficient is designed by using the optimal control method. The available time delay is determined by analyzing the maximal real part of characteristic roots of the system. A DSP-based experiment system is introduced. Simulation and experimental results indicate that the delayed positive feedback control may effectively reduce the beam vibration if time delay is appropriately selected.展开更多
Under some minor technical hypotheses, for each T larger than a certain rS > 0, Krisztin, Walther and Wu showed the existence of a periodic orbit for the positive feedback delay differential equation x(t) = -rμx(t...Under some minor technical hypotheses, for each T larger than a certain rS > 0, Krisztin, Walther and Wu showed the existence of a periodic orbit for the positive feedback delay differential equation x(t) = -rμx(t) + rf(x(t-1)), where r and μ are positive constants and f : R → R satisfies f(0) = 0 and f' > 0. Combining this with a unique result of Krisztin and Walther, we know that this periodic orbit is the one branched out from 0 through Hopf bifurcation. Using the normal form theory for delay differential equations, we show the same result under the condition that f ∈ C3(R,R) is such that f''(0) = 0 and f'''(0) < 0, which is weaker than those of Krisztin and Walther.展开更多
An aileron is a crucial control surface for rolling.Any jitter or shaking caused by the aileron mechatronics could have catastrophic consequences for the aircraft’s stability,maneuverability,safety,and lifespan.This ...An aileron is a crucial control surface for rolling.Any jitter or shaking caused by the aileron mechatronics could have catastrophic consequences for the aircraft’s stability,maneuverability,safety,and lifespan.This paper presents a robust solution in the form of a fast flutter suppression digital control logic of edge computing aileron mechatronics(ECAM).We have effectively eliminated passive and active oscillating response biases by integrating nonlinear functional parameters and an antiphase hysteresis Schmitt trigger.Our findings demonstrate that self-tuning nonlinear parameters can optimize stability,robustness,and accuracy.At the same time,the antiphase hysteresis Schmitt trigger effectively rejects flutters without the need for collaborative navigation and guidance.Our hardware-in-the-loop simulation results confirm that this approach can eliminate aircraft jitter and shaking while ensuring expected stability and maneuverability.In conclusion,this nonlinear aileron mechatronics with a Schmitt positive feedback mechanism is a highly effective solution for distributed flight control and active flutter rejection.展开更多
Constructing high-performance nanozymes for specific biomolecules is crucial but challenging for practical applications and fundamental research.Herein,through the examination of the catalytic reaction paths of natura...Constructing high-performance nanozymes for specific biomolecules is crucial but challenging for practical applications and fundamental research.Herein,through the examination of the catalytic reaction paths of natural nicotinamide adenine dinucleotide(NADH)oxidase(NOX),a novel and efficient single-atom rhodium catalyst(Rh1/NC)was developed to mimic NOX.The Rh_(1)/NC demonstrated the ability to catalyze the dehydrogenation of NADH and transfer electrons to O_(2)to generate H_(2)O_(2)through the typical two-electron pathway.Furthermore,our findings revealed that Rh_(1)/NC exhibits the ability to catalyze the conversion of produced H_(2)O_(2)into OH under mildly acidic conditions.This process amplifies the oxidation of NADH,showcasing NADH peroxidase-like activity(NPx-like).As a paradigm,this unique dual enzyme-like property of Rh_(1)/NC with a positive feedback effect holds significance in disrupting cancer cellular homeostasis.Rh_(1)/NC can effectively consume NADH via cascade biocatalytic reactions within cancer cells,further triggering the elevation of reactive oxygen species(ROS),leading to impaired oxidative phosphorylation and decreased mitochondrial membrane potential,thus damaging the adenosine triphosphate(ATP)synthesis.The resulting'domino effect'interferes with the energy metabolism homeostasis of cancer cells,ultimately promoting cell apoptosis.This study provides potential guidance for the rational design of materials with greater capabilities.展开更多
The positive Arctic-methane(CH_(4))feedback forms when more CH_(4)is released from the Arctic tundra to warm the climate,fu rther stimulating the Arctic to emit CH_(4).This study utilized the CLM-Microbe model to proj...The positive Arctic-methane(CH_(4))feedback forms when more CH_(4)is released from the Arctic tundra to warm the climate,fu rther stimulating the Arctic to emit CH_(4).This study utilized the CLM-Microbe model to project CH_(4)emissions across five distinct Arctic tundra ecosystems on the Alaska North Slo pe,considering three Shared Socioeconomic Pathway(SSP)scenarios using climate data from three climate models from 2016 to 2100.Employing a hyper-resolution of 5m×5m within 40,000m^(2)domains accounted for the Arctic tundra's high spatial heterogeneity;three sites were near Utqiagvik(US-Beo,US-Bes,and US-Brw),with one each in Atqasuk(US-Atq)and Ivotu k(US-Ivo).展开更多
The current research mainly focuses on the flow control for the two-stage proportional valve with hydraulic position feedback which is named as Valvistor valve.Essentially,the Valvistor valve is a proportional throttl...The current research mainly focuses on the flow control for the two-stage proportional valve with hydraulic position feedback which is named as Valvistor valve.Essentially,the Valvistor valve is a proportional throttle valve and the flow fluctuates with the change of load pressure.The flow fluctuation severely restricts the application of the Valvistor valve.In this paper,a novel flow control method the Valvistor valve is provided to suppress the flow fluctuation and develop a high performance proportional flow valve.The mathematical model of this valve is established and linearized.Fuzzy proportional-integral-derivative(PID)controller is adopted in the closed-loop flow control system.The feedback is obtained by the flow inference with back-propagation neural network(BPNN)based on the spool displacement in the pilot stage and the pressure differential across the main orifice.The results show that inference with BPNN can obtain the flow data fast and accurately.With the flow control method,the flow can keep at the set point when the pressure differential across the main orifice changes.The flow control method is effective and the Valvistor valve changes from proportional throttle valve to proportional flow valve.For the developed proportional flow valve,the settling time of the flow is very short when the load pressure changes abruptly.The performances of hysteresis,linearity and bandwidth are in a high range.The linear mathematical model can be verified and the assumptions in the system modeling is reasonable.展开更多
An analysis was conducted on the evolutional process of a mesoscale convective vortex (MCV) and associated heavy rainfall in the Dabie Mountain area on 21-22 June 2008,as well as their structural characteristics in ...An analysis was conducted on the evolutional process of a mesoscale convective vortex (MCV) and associated heavy rainfall in the Dabie Mountain area on 21-22 June 2008,as well as their structural characteristics in different stages,by using the mesoscale reanalysis data with 3 km and 1 h resolution generated by the Local Analysis and Prediction System (LAPS) in the Southern China Heavy Rainfall Experiment.The results showed that the latent heat released by convection in the midtroposphere was the main energy source for the development of a low-level vortex.There was a positive feedback interaction between the convection and the vortex,and the evolution of the MCV was closely related to the strength of the positive interaction.The most typical characteristics of the thermal structure in different stages were that,there was a relatively thin diabatic heating layer in the midtroposphere in the formative stage;the thickness of diabatic heating layer significantly increased in the mature stage;and it almost disappeared in the decay stage.The characteristics of the dynamic structure were that,in the formative stage,there was no anticyclonic circulation at the high level;in the mature stage,an anticyclonic circulation with strong divergence was formed at the high level;in the decay stage,the anticyclonic circulation was damaged and the high-level atmosphere was in a disordered state of turbulence.Finally,the structural schematics of the MCV in the formative and mature stage were established respectively.展开更多
Anomalous warming occurred in the equatorial central-eastern Pacific in early May 2014, attracting much attention to the possible occurrence of an extreme E1 Nifio event that year because of its similarity to the situ...Anomalous warming occurred in the equatorial central-eastern Pacific in early May 2014, attracting much attention to the possible occurrence of an extreme E1 Nifio event that year because of its similarity to the situation in early 1997. However, the subsequent variation in sea surface temperature anomalies (SSTAs) during summer 2014 in the tropical Pacific was evidently different to that in 1997, but somewhat similar to the situation of the 1990 aborted E1 Nifio event. Based on NCEP (National Centers for Environmental Prediction) oceanic and atmospheric reanalysis data, the physical processes responsible for the strength of E1 Nifio events are examined by comparing the dominant factors in 2014 in terms of the preceding instability of the coupled ocean-atmosphere system and westerly wind bursts (WWBs) with those in 1997 and 1990, separately. Although the unstable ocean-atmosphere system formed over the tropical Pacific in the preceding winter of 2014, the strength of the preceding instability was relatively weak. Weak oceanic eastward-propagating downwelling Kelvin waves were forced by the weak WWBs over the equatorial western Pacific in March 2014, as in February 1990. The consequent positive upper-oceanic heat content anomalies in the spring of 2014 induced only weak positive SSTAs in the central-eastern Pacific-unfavorable for the subsequent generation of summertime WWB sequences. Moreover, the equatorial western Pacific was not cooled, indicating the absence of positive Bjerknes feedback in early summer 2014. Therefore, the development of E1 Nifio was suspended in summer 2014.展开更多
There is an abrupt boundary between two well-developed wetland forests, a stand consisting of a broad-leaved, nitrogen-fixer Alnusjaponica and a stand of the needle-leaved Picea glehnii Masters, in eastern Hokkaido, J...There is an abrupt boundary between two well-developed wetland forests, a stand consisting of a broad-leaved, nitrogen-fixer Alnusjaponica and a stand of the needle-leaved Picea glehnii Masters, in eastern Hokkaido, Japan. To clarify maintenance mechanisms, we studied the forest profile, water level, groundwater and precipitation chemistry, seedling establishment patterns in relation to microhabitats, and seed migration. The profile of groundwater level insufficiently explained the abrupt boundary formation, while the groundwater chemistry differed significantly between the two forests ; i.e., EC, Na^+, K^+, Mg^2+, Ca^2+ and Cl^- were higher in P. glehnii forest and pH was lower. Precipitation in P. glehnii forest contained richer Na+, Ca^2+ and Cl^-, indicating that the differences in surface-water chemistry were mostly derived from precipitation. Solar radiation was less than 2.2 MJ.m^-2.d^-1 on P. glehnii forest in late June, while that was patchily distributed in A.japonica forest with a range from 1.0 to 3.7 MJ'm^-2'd^-1. Moss cover on the soil surface, most of which were made of Sphagnum spp., was 60% in P. glehnii forest, but was 10% in A. japonica forest. Surface water chemistry represented by pH was considered to determine the development of Sphagnum moss. About 70% of P. glehnii seedlings 〈 1.3 m in height established on moss cover. Seed-sowing experiments suggested that seed germination and seedling survival for both species were significantly higher in P. glehnii forest. Therefore, the regeneration of P. glehnii in A. japonica forest was negligible, owing to the paucity of favorable microhabitats and low seedling establishment. A. japonica regenerated only by resprouting, and the seedlings were few in both forests. In addition, A. japonica seed migration into the P. glehnii forests was greatly restricted, and low solar radiation in the P. glehnii forest contributed to low seedling survival. Based on those results, we concluded that Picea glehnii and Alnusjaponica could develop distinct and selfish environments being unsuitable for the other species and inhibit natural afforestation of another species each other by excluding invasion.展开更多
In this paper,we used time delay feedback to minimize the vibrations of a hybrid Rayleigh–van der Pol–Duffing oscillator.This system is a one-degree-offreedom containing the cubic and fifth nonlinear terms and an ex...In this paper,we used time delay feedback to minimize the vibrations of a hybrid Rayleigh–van der Pol–Duffing oscillator.This system is a one-degree-offreedom containing the cubic and fifth nonlinear terms and an external force.We applied the multiple scales method to get the solution from first approximation.Graphically and numerically,we studied the system before and after adding time delay feedback at the primary resonance case(ffi!).We used MATLAB program to simulate the efficacy of different parameters and the time delay on the main system.展开更多
In this study,on the basis of the results of the European Centre for Medium-Range Weather Forecasts Ocean Reanalysis System 4,the response of equatorial ocean currents and their roles during the peak phase of the Indi...In this study,on the basis of the results of the European Centre for Medium-Range Weather Forecasts Ocean Reanalysis System 4,the response of equatorial ocean currents and their roles during the peak phase of the Indian Ocean Dipole(IOD)are comprehensively explored.During the IOD peak season,a series of ocean responses emerge.First,significant meridional divergence in the surface layer and convergence in the subsurface layer are found in the equatorial region.The equatorial easterly winds and offequatorial wind curl anomalies are found to be responsible for the divergence at 55°–80°E and the convergence at 70°–90°E.Second,the meridional divergence and convergence are found to favor a weakened Wyrtki jet(WJ)in the surface layer and an enhanced Equatorial Undercurrent(EUC)in the subsurface layer,respectively.Therefore,these ocean responses provide ocean positive feedback that sustains the IOD peak as the weakened WJ and enhanced EUC help maintain the zonal temperature gradient.Additionally,heat budget analyses indicate that the weakened WJ favors sea surface temperature anomaly warming in the western Indian Ocean,whereas the enhanced EUC maintains the sea surface temperature anomaly cooling in the eastern Indian Ocean.展开更多
Located at the southern boundary of the tropical rainfall belt within the South Africa monsoon regime,Rodrigues Island,~2500 km east of East Africa,is ideally located to investigate climatic changes over the southwest...Located at the southern boundary of the tropical rainfall belt within the South Africa monsoon regime,Rodrigues Island,~2500 km east of East Africa,is ideally located to investigate climatic changes over the southwest Indian Ocean(SWIO).In this study,we investigate the climatic controls of its modern interannual rainfall variability in terms of teleconnection and local effects.We find that increased rainfall over the SWIO tends to occur in association with anomalously warm(cold)SSTs over the equatorial central Pacific(Maritime Continent),resembling the central Pacific El Niño,closely linked with the Victoria mode in the North Pacific.Our analyses show that the low-level convergence induced by warm SST over the equatorial central Pacific leads to anomalous low-level divergence over the Maritime Continent and convergence over a large area surrounding the Rodrigues Island,which leads to increased rainfall over the SWIO during the rainy season.Meanwhile,the excited Rossby wave along the tropical Indian Ocean transports more water vapor from the tropical convergence zone into the SWIO via intensified northwest wind.Furthermore,positive feedback induced by the Rossby wave response to the increased rainfall in the region contributes to the large interannual variations over the SWIO.展开更多
There is an abrupt boundary between two well-developed wetland forests, a stand consisting of a broad-leaved, nitrogen-fixer Alnus japonica and a stand of the needle-leaved Picea glehnii Masters, in eastern Hokkaido, ...There is an abrupt boundary between two well-developed wetland forests, a stand consisting of a broad-leaved, nitrogen-fixer Alnus japonica and a stand of the needle-leaved Picea glehnii Masters, in eastern Hokkaido, Japan.To clarify maintenance mechanisms, we studied the forest profile, water level, groundwater and precipitation chemistry, seedling establishment patterns in relation to microhabitats, and seed migration.The profile of groundwater level insufficiently explained the abrupt boundary formation, while the groundwater che-mistry differed significantly between the two forests;i.e., EC, Na+, K+, Mg2+, Ca2+ and Cl-were higher in P.glehnii forest and pH was lower.Precipitation in P.glehnii forest contained richer Na+, Ca2+ and Cl-, indicating that the differences in surface-water chemistry were mostly derived from precipitation.Solar radiation was less than 2.2 MJ·m-2·d-1 on P.glehnii forest in late June, while that was patchily distributed in A.japonica forest with a range from 1.0 to 3.7 MJ·m-2·d-1.Moss cover on the soil surface, most of which were made of Sphagnum spp., was 60% in P.glehnii forest, but was 10% in A.japonica forest.Surface water chemistry represented by pH was considered to determine the development of Sphagnum moss.About 70% of P.glehnii seedlings < 1.3 m in height established on moss cover.Seed-sowing experiments suggested that seed germination and seedling survival for both species were significantly higher in P.glehnii forest.Therefore, the regeneration of P.glehnii in A.japonica forest was negligible, owing to the paucity of favorable microhabitats and low seedling establishment.A.japonica regenerated only by resprouting, and the seedlings were few in both forests.In addition, A.japonica seed migration into the P.glehnii forests was greatly restricted, and low solar radiation in the P.glehnii forest contributed to low seedling survival.Based on those results, we concluded that Picea glehnii and Alnus japonica could develop distinct and selfish environments being unsuitable for the other species and inhibit natural afforestation of another species each other by excluding invasion.展开更多
Oxidative therapies receive a limited antitumor efficiency due to the insufficient reactive oxygen species(ROS)levels at focal sites and the evolvement of antioxidant defense systems.Herein,we develop an albumin-based...Oxidative therapies receive a limited antitumor efficiency due to the insufficient reactive oxygen species(ROS)levels at focal sites and the evolvement of antioxidant defense systems.Herein,we develop an albumin-based nanomedicine to co-deliver chlorin e6(Ce6)and COH-SR4(CS),which can simultaneously enhance the yield and lethality of intracellular ROS for amplified photodynamic therapy(PDT).In which,CS acts as both an activator of AMP-activated protein kinase(AMPK)and an inhibitor of glutathione S-transferases(GSTs).Benefiting from it,the prepared HSA-Ce6@COH-SR4(HCCS)enables positive feed-back uptake by promoting AMPK phosphorylation,leading to rapid and extensive tumor accumulation of drugs.As a result,HCCS obviously increases the ROS production to elevate intracellular oxidative stress.Furthermore,HCCS can inhibit GSTs to disturb the antioxidant defense system of tumor cells,intensifying the oxidative damage of ROS.Ultimately,the PDT of HCCS is significantly strengthened by improving the ROS yield and lethality,which greatly declines the proliferation of breast cancer in vivo.This study may open a window in the development of drug co-delivery system for enhanced oxidative therapy of tumors.展开更多
Chronic obstructive pulmonary disease(COPD) is a chronic inflammatory disorder characterized by airflow obstruction and progressive damage of lung tissues. As currently more than 3 billion people use biomass fuel for ...Chronic obstructive pulmonary disease(COPD) is a chronic inflammatory disorder characterized by airflow obstruction and progressive damage of lung tissues. As currently more than 3 billion people use biomass fuel for cooking and heating worldwide, exposure to biomass smoke(BS) is recognized as a significant risk factor for COPD. Recent clinical data have shown that BS-COPD patients have a Th2-type inflammatory profile significantly different from that in COPD induced by cigarette smoke. As COPD is essentially proinflammatory,however, the mechanism underlying this Th2-type anti-inflammatory profile remains elusive.In this work, a network model is applied to study BS-induced inflammatory dynamics. The network model involves several positive feedback loops, activations of which are responsible for different mechanisms by which clinical phenotypes of COPD are produced. Our modeling study in this work has identified a subset of BS-COPD patients with a mixed M1-and Th2-type inflammatory profile. The model’s prediction is in good agreement with clinical experiments and our in silico knockout simulations have demonstrated several important network components that play an important role in the disease. Our modeling study provides novel insight into BS-COPD progression, offering a rationale for targeted therapy and personalized medicine for treatment of the disease in future.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.81902617 and 82100816)Guangdong Natural Science Foundation(Grant No.2021A1515012322)Guangzhou Basic and Applied Basic Research Subject-Young Doctor’s“Sailing”Project(Grant No.2024A04J4702).
文摘Background:U2AF homology motif kinase 1(UHMK1)has been associated with RNA processing and protein phosphorylation,thereby influencing tumor progression.The study aimed to explore its regulatory mechanisms and biological functions in human prostate cancer(PCa).Methods:In this study,we systematically evaluated the expression and prognostic significance of UHMK1 in public databases,followed by validation through immunohis-tochemistry(IHC)in PCa specimens.Both gain-of-function and loss-of-function experiments were conducted to elucidate the role of UHMK1 in vitro and in vivo.Additionally,a series of molecular and biochemical assays were performed to investigate the regulatory mechanisms underlying UHMK1 activity.Results:Our findings revealed that UHMK1 expression was significantly upregulated in PCa tissues and correlated with poor patient prognosis,as demonstrated by analysis of public datasets and confirmed by immunohistochemical staining.Functional studies showed that UHMK1 depletion suppressed tumor cell proliferation and metastasis,while its overexpression promoted these processes.Mechanistically,we identified that UHMK1 phosphorylates nuclear receptor coactivator 3(NCOA3),which subsequently activates activating transcription factor 4(ATF4)to upregulate methylenetetrahydrofolate dehy-drogenase 2(MTHFD2)transcription.Interestingly,MTHFD2 was found to reciprocally enhance UHMK1 expression,establishing a positive feedback loop.Conclusions:In conclusion,our data suggest that the UHMK1-MTHFD2 axis forms a positive feedback loop that drives PCa progression.Targeting this loop represents a promising therapeutic strategy for restraining prostate cancer development and progression.
基金The project supported by Education Department of Jiangsu Province of China under Grant No. 06KJD140111
文摘Numerical analysis of weak optical positive feedback (OPF) controlling chaos is studied in a semiconductor laser. The physical model of controlling chaos produced via modulating the current of semiconductor laser is presented under the condition of OPF. We find the physical mechanism that the nonlinear gain coefficient and linewidth enhance- ment factor of the laser are affected by OPF so that the dynamical behaviour of the system can be efficiently controlled. Chaos is controlled into a single-periodic state, a dual-periodic state, a tri-periodic state, a quadr-periodic state, a pentaperiodic state, and the laser emitting powers are increased by OPF in simulations. Lastly, another chaos-control method with modulating the amplitude of the feedback light is presented and numerically simulated to control chaotic laser into multi-periodic states.
基金This work was supported by the Guangdong Basic and Applied Basic Research Foundation(2024A1515013061)the Sci-Tech Project Foundation of Guangzhou City(2023A04J2141)+2 种基金National Natural Science Foundation(82261160657)Chang Jiang Scholars Program(J.-X.B.)Special Support Program of Guangdong(J.-X.B.)。
文摘Phospholipase D(PLD)lipid-signaling enzyme superfamily has been widely implicated in various human malignancies,but its role and underlying mechanism remain unclear in nasopharyngeal carcinoma(NPC).Here,we analyze the expressions of 6 PLD family members between 87 NPC and 10 control samples through transcriptome analysis.Our findings reveal a notable upregulation of PLD1 in both NPC tumors and cell lines,correlating with worse disease-free and overall survival in NPC patients.Functional assays further elucidate the oncogenic role of PLD1,demonstrating its pivotal promotion of critical tumorigenic processes such as cellproliferation and migration in vitro,as well as tumor growth in vivo.Notably,our study uncovers a positive feedback loop between PLD1 and the NF-κB signaling pathway to render NPC progression.Specifically,PLD1 enhances NF-kB activity by facilitating the phosphorylation and nuclear translocation of RELA,which in turn binds to the promoter of PLD1,augmenting its expression.Moreover,RELA over-expression markedly rescues the inhibitory effects in PLD1-depleted NPC cells.Importantly,the application of the PLD1 inhibitor,VU0155069,substantially inhibits NPC tumorigenesis in a patient-derived xenograft model.Together,our findings identify PLD1/NF-κB signaling as a positive feedback loop with promising therapeutic and prognostic potential in NPC.
基金supported by the National Natural Science Foundation of China(Grant Nos.82073276 and 82273100)Science and Technology Project of Tianjin Binhai New Area Health Commission(Grant No.2022BWKY016)the China Digestive Tumor Clinical Scientific Research Public Welfare Project(Grant No.P014-058).
文摘Objective:Colorectal cancer(CRC)is a prevalent malignant tumor with a high fatality rate.CircPDIA4 has been shown to have a vital role in cancer development by acting as a facilitator.Nevertheless,the impact of the circPDIA4/miR-9-5p/SP1 axis on development of CRC has not been studied.Methods:Western blot,immunohistochemistry,and reverse transcription-quantitative polymerase chain reaction assays were used to analyze gene expression.The CCK-8 assay was used to assess cell growth.The Transwell assay was used to detect invasion and migration of cells.The luciferase reporter and RNA immunoprecipitation tests were used to determine if miR-9-5p and circPDIA4(or SP1)bind to one another.An in vivo assay was used to measure tumor growth.Results:It was shown that circPDIA4 expression was greater in CRC cell lines and tissues than healthy cell lines and tissues.CircPDIA4 knockdown prevented the invasion,migration,and proliferation of cells in CRC.Additionally,the combination of circPDIA4 and miR-9-5p was confirmed,as well as miR-9-5p binding to SP1.Rescue experiments also showed that the circPDIA4/miR-9-5p/SP1 axis accelerated the development of CRC.In addition,SP1 combined with the promoter region of circPDIA4 and induced circPDIA4 transcription.CircPDIA4 was shown to facilitate tumor growth in an in vivo assay.Conclusions:The circPDIA4/miR-9-5p/SP1 feedback loop was shown to aggravate CRC progression.This finding suggests that the ceRNA axis may be a promising biomarker for CRC patient treatment.
基金the Natural Science Foundation of Jiangsu Province,China(Grant No.20KJB470030).
文摘Synchronization is a process that describes the coherent dynamics of a large ensemble of interacting units.The study of explosive synchronization transition attracts considerable attention.Here,I report the explosive transition within the framework of a mobile network,while each oscillator is controlled by global-order parameters of the system.Using numerical simulation,I find that the explosive synchronization(ES)transition behavior can be controlled by simply adjusting the fraction of controlled oscillators.The influences of some parameters on explosive synchronization are studied.Moreover,due to the presence of the positive feedback mechanism,I prevent the occurrence of the synchronization of continuous-phase transition and make phase transition of the system a first-order phase transition accompanied by a hysteresis loop.
基金supported by the Key Project (11132001)the General Projects of the National Natural Science Foundation of China (11072146, 11002087)
文摘Recently, some researches indicate that positive feedback can benefit the control if appropriate time delay is intentionally introduced into control system. However, most work is theoretical one but few are experimental. This paper presents theoretical and experimental studies of delayed positive feedback control technique using a flexible beam as research object. The positive feedback weighting coefficient is designed by using the optimal control method. The available time delay is determined by analyzing the maximal real part of characteristic roots of the system. A DSP-based experiment system is introduced. Simulation and experimental results indicate that the delayed positive feedback control may effectively reduce the beam vibration if time delay is appropriately selected.
基金The start-up funds of Wilfrid Laurier University of Canada, the NNSF (10071016) of Chinathe Doctor Program Foundation (20010532002) of Chinese Ministry of Education the Key Project of Chinese Ministry of Education ([2002]78) and the
文摘Under some minor technical hypotheses, for each T larger than a certain rS > 0, Krisztin, Walther and Wu showed the existence of a periodic orbit for the positive feedback delay differential equation x(t) = -rμx(t) + rf(x(t-1)), where r and μ are positive constants and f : R → R satisfies f(0) = 0 and f' > 0. Combining this with a unique result of Krisztin and Walther, we know that this periodic orbit is the one branched out from 0 through Hopf bifurcation. Using the normal form theory for delay differential equations, we show the same result under the condition that f ∈ C3(R,R) is such that f''(0) = 0 and f'''(0) < 0, which is weaker than those of Krisztin and Walther.
基金supported in part by the Aeronautical Science Foundation of China under Grant 2022Z005057001the Joint Research Fund of Shanghai Commercial Aircraft System Engineering Science and Technology Innovation Center under CASEF-2023-M19.
文摘An aileron is a crucial control surface for rolling.Any jitter or shaking caused by the aileron mechatronics could have catastrophic consequences for the aircraft’s stability,maneuverability,safety,and lifespan.This paper presents a robust solution in the form of a fast flutter suppression digital control logic of edge computing aileron mechatronics(ECAM).We have effectively eliminated passive and active oscillating response biases by integrating nonlinear functional parameters and an antiphase hysteresis Schmitt trigger.Our findings demonstrate that self-tuning nonlinear parameters can optimize stability,robustness,and accuracy.At the same time,the antiphase hysteresis Schmitt trigger effectively rejects flutters without the need for collaborative navigation and guidance.Our hardware-in-the-loop simulation results confirm that this approach can eliminate aircraft jitter and shaking while ensuring expected stability and maneuverability.In conclusion,this nonlinear aileron mechatronics with a Schmitt positive feedback mechanism is a highly effective solution for distributed flight control and active flutter rejection.
基金financially supported by the National Natural Science Foundation of China(No.22207066)Taishan Scholars Program of Shandong Province(No.TS201712065)+2 种基金the Academic Promotion Program of Shandong First Medical University(No.2019QL009)the Science and Technology Funding from Jinan(No.2020GXRC018)the Traditional Chinese Medicine Science and Technology Project of Shandong Province(No.Q-2022142)。
文摘Constructing high-performance nanozymes for specific biomolecules is crucial but challenging for practical applications and fundamental research.Herein,through the examination of the catalytic reaction paths of natural nicotinamide adenine dinucleotide(NADH)oxidase(NOX),a novel and efficient single-atom rhodium catalyst(Rh1/NC)was developed to mimic NOX.The Rh_(1)/NC demonstrated the ability to catalyze the dehydrogenation of NADH and transfer electrons to O_(2)to generate H_(2)O_(2)through the typical two-electron pathway.Furthermore,our findings revealed that Rh_(1)/NC exhibits the ability to catalyze the conversion of produced H_(2)O_(2)into OH under mildly acidic conditions.This process amplifies the oxidation of NADH,showcasing NADH peroxidase-like activity(NPx-like).As a paradigm,this unique dual enzyme-like property of Rh_(1)/NC with a positive feedback effect holds significance in disrupting cancer cellular homeostasis.Rh_(1)/NC can effectively consume NADH via cascade biocatalytic reactions within cancer cells,further triggering the elevation of reactive oxygen species(ROS),leading to impaired oxidative phosphorylation and decreased mitochondrial membrane potential,thus damaging the adenosine triphosphate(ATP)synthesis.The resulting'domino effect'interferes with the energy metabolism homeostasis of cancer cells,ultimately promoting cell apoptosis.This study provides potential guidance for the rational design of materials with greater capabilities.
基金the financial and facility support from San Diego State Universitypartially provided by the SPRUCE and NGEE Arctic projects,which are supported by the Office of Biological and Environmental Research in the Department of Energy Office of Science+3 种基金partially supported by the U.S.National Science Foundation(2145130,1702797,2208656)provided by the Polar Geospatial Center under NSF OPP awards 1204263 and 1702797supported by NASA ABoVE program(NNX15AT74A and NNX16AF94A)the National Oceanic and Atmospheric Administration NOAA/EPP Grant(NA22SEC4810016)
文摘The positive Arctic-methane(CH_(4))feedback forms when more CH_(4)is released from the Arctic tundra to warm the climate,fu rther stimulating the Arctic to emit CH_(4).This study utilized the CLM-Microbe model to project CH_(4)emissions across five distinct Arctic tundra ecosystems on the Alaska North Slo pe,considering three Shared Socioeconomic Pathway(SSP)scenarios using climate data from three climate models from 2016 to 2100.Employing a hyper-resolution of 5m×5m within 40,000m^(2)domains accounted for the Arctic tundra's high spatial heterogeneity;three sites were near Utqiagvik(US-Beo,US-Bes,and US-Brw),with one each in Atqasuk(US-Atq)and Ivotu k(US-Ivo).
基金Supported by National Natural Science Foundation of China(Grant No.51805350)Key Technologies Research and Development Program of China(Grant No.2018YFB2001202)+1 种基金Natural Science Foundation of Shanxi Province of China(Grant No.201801D221226)Postdoctoral Science Foundation of China(Grant No.2019M651073).
文摘The current research mainly focuses on the flow control for the two-stage proportional valve with hydraulic position feedback which is named as Valvistor valve.Essentially,the Valvistor valve is a proportional throttle valve and the flow fluctuates with the change of load pressure.The flow fluctuation severely restricts the application of the Valvistor valve.In this paper,a novel flow control method the Valvistor valve is provided to suppress the flow fluctuation and develop a high performance proportional flow valve.The mathematical model of this valve is established and linearized.Fuzzy proportional-integral-derivative(PID)controller is adopted in the closed-loop flow control system.The feedback is obtained by the flow inference with back-propagation neural network(BPNN)based on the spool displacement in the pilot stage and the pressure differential across the main orifice.The results show that inference with BPNN can obtain the flow data fast and accurately.With the flow control method,the flow can keep at the set point when the pressure differential across the main orifice changes.The flow control method is effective and the Valvistor valve changes from proportional throttle valve to proportional flow valve.For the developed proportional flow valve,the settling time of the flow is very short when the load pressure changes abruptly.The performances of hysteresis,linearity and bandwidth are in a high range.The linear mathematical model can be verified and the assumptions in the system modeling is reasonable.
基金supported by the state "973" project "Research on Theories and Methods of Monitoring and Predicting of Heavy Rainfall in South China" (Grant No. 2004CB418300)
文摘An analysis was conducted on the evolutional process of a mesoscale convective vortex (MCV) and associated heavy rainfall in the Dabie Mountain area on 21-22 June 2008,as well as their structural characteristics in different stages,by using the mesoscale reanalysis data with 3 km and 1 h resolution generated by the Local Analysis and Prediction System (LAPS) in the Southern China Heavy Rainfall Experiment.The results showed that the latent heat released by convection in the midtroposphere was the main energy source for the development of a low-level vortex.There was a positive feedback interaction between the convection and the vortex,and the evolution of the MCV was closely related to the strength of the positive interaction.The most typical characteristics of the thermal structure in different stages were that,there was a relatively thin diabatic heating layer in the midtroposphere in the formative stage;the thickness of diabatic heating layer significantly increased in the mature stage;and it almost disappeared in the decay stage.The characteristics of the dynamic structure were that,in the formative stage,there was no anticyclonic circulation at the high level;in the mature stage,an anticyclonic circulation with strong divergence was formed at the high level;in the decay stage,the anticyclonic circulation was damaged and the high-level atmosphere was in a disordered state of turbulence.Finally,the structural schematics of the MCV in the formative and mature stage were established respectively.
基金supported by the National Basic Research Program of China (Grant Nos.2014CB953902,2011CB403505,and 2012CB417203)the Priority Research Program of the Chinese Academy of Sciences (Grant Nos.XDA11010402 and XDA01020302)the National Natural Science Foundation of China (Grant Nos.41175059 and 41375087)
文摘Anomalous warming occurred in the equatorial central-eastern Pacific in early May 2014, attracting much attention to the possible occurrence of an extreme E1 Nifio event that year because of its similarity to the situation in early 1997. However, the subsequent variation in sea surface temperature anomalies (SSTAs) during summer 2014 in the tropical Pacific was evidently different to that in 1997, but somewhat similar to the situation of the 1990 aborted E1 Nifio event. Based on NCEP (National Centers for Environmental Prediction) oceanic and atmospheric reanalysis data, the physical processes responsible for the strength of E1 Nifio events are examined by comparing the dominant factors in 2014 in terms of the preceding instability of the coupled ocean-atmosphere system and westerly wind bursts (WWBs) with those in 1997 and 1990, separately. Although the unstable ocean-atmosphere system formed over the tropical Pacific in the preceding winter of 2014, the strength of the preceding instability was relatively weak. Weak oceanic eastward-propagating downwelling Kelvin waves were forced by the weak WWBs over the equatorial western Pacific in March 2014, as in February 1990. The consequent positive upper-oceanic heat content anomalies in the spring of 2014 induced only weak positive SSTAs in the central-eastern Pacific-unfavorable for the subsequent generation of summertime WWB sequences. Moreover, the equatorial western Pacific was not cooled, indicating the absence of positive Bjerknes feedback in early summer 2014. Therefore, the development of E1 Nifio was suspended in summer 2014.
文摘There is an abrupt boundary between two well-developed wetland forests, a stand consisting of a broad-leaved, nitrogen-fixer Alnusjaponica and a stand of the needle-leaved Picea glehnii Masters, in eastern Hokkaido, Japan. To clarify maintenance mechanisms, we studied the forest profile, water level, groundwater and precipitation chemistry, seedling establishment patterns in relation to microhabitats, and seed migration. The profile of groundwater level insufficiently explained the abrupt boundary formation, while the groundwater chemistry differed significantly between the two forests ; i.e., EC, Na^+, K^+, Mg^2+, Ca^2+ and Cl^- were higher in P. glehnii forest and pH was lower. Precipitation in P. glehnii forest contained richer Na+, Ca^2+ and Cl^-, indicating that the differences in surface-water chemistry were mostly derived from precipitation. Solar radiation was less than 2.2 MJ.m^-2.d^-1 on P. glehnii forest in late June, while that was patchily distributed in A.japonica forest with a range from 1.0 to 3.7 MJ'm^-2'd^-1. Moss cover on the soil surface, most of which were made of Sphagnum spp., was 60% in P. glehnii forest, but was 10% in A. japonica forest. Surface water chemistry represented by pH was considered to determine the development of Sphagnum moss. About 70% of P. glehnii seedlings 〈 1.3 m in height established on moss cover. Seed-sowing experiments suggested that seed germination and seedling survival for both species were significantly higher in P. glehnii forest. Therefore, the regeneration of P. glehnii in A. japonica forest was negligible, owing to the paucity of favorable microhabitats and low seedling establishment. A. japonica regenerated only by resprouting, and the seedlings were few in both forests. In addition, A. japonica seed migration into the P. glehnii forests was greatly restricted, and low solar radiation in the P. glehnii forest contributed to low seedling survival. Based on those results, we concluded that Picea glehnii and Alnusjaponica could develop distinct and selfish environments being unsuitable for the other species and inhibit natural afforestation of another species each other by excluding invasion.
文摘In this paper,we used time delay feedback to minimize the vibrations of a hybrid Rayleigh–van der Pol–Duffing oscillator.This system is a one-degree-offreedom containing the cubic and fifth nonlinear terms and an external force.We applied the multiple scales method to get the solution from first approximation.Graphically and numerically,we studied the system before and after adding time delay feedback at the primary resonance case(ffi!).We used MATLAB program to simulate the efficacy of different parameters and the time delay on the main system.
基金the National Key R&D Program of China(No.2019YFA0606701)the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA20060502)+6 种基金the National Natural Science Foundation of China(Nos.42076020,41776023 and 91958202)the Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou)(No.GML2019ZD0306)the Innovation Academy of South China Sea Ecology and Environmental Engineering of the Chinese Academy of Sciences(No.ISEE2018PY06)the Key Research Program of the Chinese Academy of Sciences(No.ZDRW-XH-2019-2)the Youth Innovation Promotion Association of the Chinese Academy of Sciences(No.2020340)the Rising Star Foundation of the SCSIO(No.NHXX2018WL0201)the Independent Research Project Program of the State Key Laboratory of Tropical Oceanography(No.LTOZZ2101)。
文摘In this study,on the basis of the results of the European Centre for Medium-Range Weather Forecasts Ocean Reanalysis System 4,the response of equatorial ocean currents and their roles during the peak phase of the Indian Ocean Dipole(IOD)are comprehensively explored.During the IOD peak season,a series of ocean responses emerge.First,significant meridional divergence in the surface layer and convergence in the subsurface layer are found in the equatorial region.The equatorial easterly winds and offequatorial wind curl anomalies are found to be responsible for the divergence at 55°–80°E and the convergence at 70°–90°E.Second,the meridional divergence and convergence are found to favor a weakened Wyrtki jet(WJ)in the surface layer and an enhanced Equatorial Undercurrent(EUC)in the subsurface layer,respectively.Therefore,these ocean responses provide ocean positive feedback that sustains the IOD peak as the weakened WJ and enhanced EUC help maintain the zonal temperature gradient.Additionally,heat budget analyses indicate that the weakened WJ favors sea surface temperature anomaly warming in the western Indian Ocean,whereas the enhanced EUC maintains the sea surface temperature anomaly cooling in the eastern Indian Ocean.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.41888101,41731174 and 41561144003 to Hai CHENG,and 41472140)the Chinese Academy of Sciences“PIFI Program”(Grant No.2020VCA0019)to Ashish SINHA.Qiong ZHANG acknowledges the support from Swedish Research Council(Vetenskapsrådet,Grant Nos.2013-06476 and 2017-04232).
文摘Located at the southern boundary of the tropical rainfall belt within the South Africa monsoon regime,Rodrigues Island,~2500 km east of East Africa,is ideally located to investigate climatic changes over the southwest Indian Ocean(SWIO).In this study,we investigate the climatic controls of its modern interannual rainfall variability in terms of teleconnection and local effects.We find that increased rainfall over the SWIO tends to occur in association with anomalously warm(cold)SSTs over the equatorial central Pacific(Maritime Continent),resembling the central Pacific El Niño,closely linked with the Victoria mode in the North Pacific.Our analyses show that the low-level convergence induced by warm SST over the equatorial central Pacific leads to anomalous low-level divergence over the Maritime Continent and convergence over a large area surrounding the Rodrigues Island,which leads to increased rainfall over the SWIO during the rainy season.Meanwhile,the excited Rossby wave along the tropical Indian Ocean transports more water vapor from the tropical convergence zone into the SWIO via intensified northwest wind.Furthermore,positive feedback induced by the Rossby wave response to the increased rainfall in the region contributes to the large interannual variations over the SWIO.
基金supported by the grants from Ministry of Education, Science, and Culture of Japan.
文摘There is an abrupt boundary between two well-developed wetland forests, a stand consisting of a broad-leaved, nitrogen-fixer Alnus japonica and a stand of the needle-leaved Picea glehnii Masters, in eastern Hokkaido, Japan.To clarify maintenance mechanisms, we studied the forest profile, water level, groundwater and precipitation chemistry, seedling establishment patterns in relation to microhabitats, and seed migration.The profile of groundwater level insufficiently explained the abrupt boundary formation, while the groundwater che-mistry differed significantly between the two forests;i.e., EC, Na+, K+, Mg2+, Ca2+ and Cl-were higher in P.glehnii forest and pH was lower.Precipitation in P.glehnii forest contained richer Na+, Ca2+ and Cl-, indicating that the differences in surface-water chemistry were mostly derived from precipitation.Solar radiation was less than 2.2 MJ·m-2·d-1 on P.glehnii forest in late June, while that was patchily distributed in A.japonica forest with a range from 1.0 to 3.7 MJ·m-2·d-1.Moss cover on the soil surface, most of which were made of Sphagnum spp., was 60% in P.glehnii forest, but was 10% in A.japonica forest.Surface water chemistry represented by pH was considered to determine the development of Sphagnum moss.About 70% of P.glehnii seedlings < 1.3 m in height established on moss cover.Seed-sowing experiments suggested that seed germination and seedling survival for both species were significantly higher in P.glehnii forest.Therefore, the regeneration of P.glehnii in A.japonica forest was negligible, owing to the paucity of favorable microhabitats and low seedling establishment.A.japonica regenerated only by resprouting, and the seedlings were few in both forests.In addition, A.japonica seed migration into the P.glehnii forests was greatly restricted, and low solar radiation in the P.glehnii forest contributed to low seedling survival.Based on those results, we concluded that Picea glehnii and Alnus japonica could develop distinct and selfish environments being unsuitable for the other species and inhibit natural afforestation of another species each other by excluding invasion.
基金support of National Natural Science Foundation of China(No.52073140)the Guangdong Basic and Applied Basic Research Foundation(No.2022B1515020095).
文摘Oxidative therapies receive a limited antitumor efficiency due to the insufficient reactive oxygen species(ROS)levels at focal sites and the evolvement of antioxidant defense systems.Herein,we develop an albumin-based nanomedicine to co-deliver chlorin e6(Ce6)and COH-SR4(CS),which can simultaneously enhance the yield and lethality of intracellular ROS for amplified photodynamic therapy(PDT).In which,CS acts as both an activator of AMP-activated protein kinase(AMPK)and an inhibitor of glutathione S-transferases(GSTs).Benefiting from it,the prepared HSA-Ce6@COH-SR4(HCCS)enables positive feed-back uptake by promoting AMPK phosphorylation,leading to rapid and extensive tumor accumulation of drugs.As a result,HCCS obviously increases the ROS production to elevate intracellular oxidative stress.Furthermore,HCCS can inhibit GSTs to disturb the antioxidant defense system of tumor cells,intensifying the oxidative damage of ROS.Ultimately,the PDT of HCCS is significantly strengthened by improving the ROS yield and lethality,which greatly declines the proliferation of breast cancer in vivo.This study may open a window in the development of drug co-delivery system for enhanced oxidative therapy of tumors.
基金This work was supported by the National Natural Science Foundation of China(No.21273209).
文摘Chronic obstructive pulmonary disease(COPD) is a chronic inflammatory disorder characterized by airflow obstruction and progressive damage of lung tissues. As currently more than 3 billion people use biomass fuel for cooking and heating worldwide, exposure to biomass smoke(BS) is recognized as a significant risk factor for COPD. Recent clinical data have shown that BS-COPD patients have a Th2-type inflammatory profile significantly different from that in COPD induced by cigarette smoke. As COPD is essentially proinflammatory,however, the mechanism underlying this Th2-type anti-inflammatory profile remains elusive.In this work, a network model is applied to study BS-induced inflammatory dynamics. The network model involves several positive feedback loops, activations of which are responsible for different mechanisms by which clinical phenotypes of COPD are produced. Our modeling study in this work has identified a subset of BS-COPD patients with a mixed M1-and Th2-type inflammatory profile. The model’s prediction is in good agreement with clinical experiments and our in silico knockout simulations have demonstrated several important network components that play an important role in the disease. Our modeling study provides novel insight into BS-COPD progression, offering a rationale for targeted therapy and personalized medicine for treatment of the disease in future.