A novel speed-assigned method is applied to the position tracking control of switched reluctance motor(SRM).A speed control freedom can be drawn into the position control through speed assignment. Adaptive backsteppin...A novel speed-assigned method is applied to the position tracking control of switched reluctance motor(SRM).A speed control freedom can be drawn into the position control through speed assignment. Adaptive backstepping control is used to design the position controller for the SRM. The accuracy of position tracking of the SRM can be enhanced with speed assignment. A disturbance observer is further designed to enhance the estimation accuracy of the unknown load torque. Simulation results certify that the design scheme is right and effective.展开更多
Purpose–The purpose of this paper is to present a control strategy which uses two independent PID controllers to realize the hovering control for unmanned aerial systems(UASs).In addition,the aim of using two PID con...Purpose–The purpose of this paper is to present a control strategy which uses two independent PID controllers to realize the hovering control for unmanned aerial systems(UASs).In addition,the aim of using two PID controller is to achieve the position control and velocity control simultaneously.Design/methodology/approach–The dynamic of the UASs is mathematically modeled.One PID controller is used for position tracking control,while the other is selected for the vertical component of velocity tracking control.Meanwhile,fuzzy logic algorithm is presented to use the actual horizontal component of velocity to compute the desired position.Findings–Based on this fuzzy logic algorithm,the control error of the horizontal component of velocity tracking control is narrowed gradually to be zero.The results show that the fuzzy logic algorithm can make the UASs hover still in the air and vertical to the ground.Social implications–The acquired results are based on simulation not experiment.Originality/value–This is the first study to use two independent PID controllers to realize stable hovering control for UAS.It is also the first to use the velocity of the UAS to calculate the desired position.展开更多
基金supported by the National Natural Science Foundation of China(61273086)
文摘A novel speed-assigned method is applied to the position tracking control of switched reluctance motor(SRM).A speed control freedom can be drawn into the position control through speed assignment. Adaptive backstepping control is used to design the position controller for the SRM. The accuracy of position tracking of the SRM can be enhanced with speed assignment. A disturbance observer is further designed to enhance the estimation accuracy of the unknown load torque. Simulation results certify that the design scheme is right and effective.
文摘Purpose–The purpose of this paper is to present a control strategy which uses two independent PID controllers to realize the hovering control for unmanned aerial systems(UASs).In addition,the aim of using two PID controller is to achieve the position control and velocity control simultaneously.Design/methodology/approach–The dynamic of the UASs is mathematically modeled.One PID controller is used for position tracking control,while the other is selected for the vertical component of velocity tracking control.Meanwhile,fuzzy logic algorithm is presented to use the actual horizontal component of velocity to compute the desired position.Findings–Based on this fuzzy logic algorithm,the control error of the horizontal component of velocity tracking control is narrowed gradually to be zero.The results show that the fuzzy logic algorithm can make the UASs hover still in the air and vertical to the ground.Social implications–The acquired results are based on simulation not experiment.Originality/value–This is the first study to use two independent PID controllers to realize stable hovering control for UAS.It is also the first to use the velocity of the UAS to calculate the desired position.